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Nonlinear Model Predictive Control of a 
Class of Continuum Robots Using 
Kinematic and Dynamic Models 
 
Controlling continuum robots with precision is particularly a challenging 
task due to the complexity of their mathematical models and inaccuracies 
in modeling approaches. Therefore, most advanced control schemes have 
shown poor performances, especially in trajectory tracking accuracy. This 
paper presents a proposed Nonlinear Model Predictive Control (NMPC) 
scheme to solve the trajectory tracking of a class of continuum robots, 
namely Cable-Driven Continuum Robot (CDCR). However, since NMPC 
schemes are often limited by the computational burden associated with the 
optimization algorithms to be solved at each sampling time, the Particle 
Swarm Optimization (PSO) algorithm is used to solve the arising 
optimization problem NMPC, thanks to its simplicity and fast convergence. 
The proposed NMPC-PSO scheme is applied to the developed kinematic 
and dynamic models of the considered CDCR. Based on the kinematic and 
dynamic model, the two proposed controllers have been validated against 
numerical simulations of two-dimensional CDCR with two bending 
sections for set-point stabilization and point-to-point trajectory tracking. 
For both controllers, the performance of tracking accuracy and 
computation time is analyzed and compared. Moreover, the obtained 
simulation results are compared to the available literature works. In view 
of the results obtained on the considered CDCR, the proposed NMPC-PSO 
scheme can track in real-time the desired trajectory with high accuracy 
and much less execution time than other advanced control schemes, which 
makes it an alternative for real-time applications. 
.  
Keywords: Continuum robot, cable-driven continuum robot, nonlinear 
model predictive control, particle swarm optimization, trajectory tracking. 

 
 
1. INTRODUCTION 

 
In recent years, the field of continuum robots, whether 
theoretical research or practical applications, has recei-
ved significant attention from the robotic community 
due to the continuum robots’ characteristics such as 
high flexibility, compliance, and, more importantly, 
their safe interaction. Uniquely, these robots can be of a 
hard or a soft structure [1, 2], i.e., they have no joints 
and no rigid parts in their bodies, allowing them to 
adapt their shape to pick up a range of objects and 
provide skilled positioning even in restricted environ–
ments, mimicking the movement of some animals such 
as the elephant’s trunk, snake’s body, and octopus’ 
tentacles. Currently, numerous examples of continuum 
robots have been built, including the concentric tube 
continuum robot [3], the tendon-driven continuum robot 
(TDCR) [4], the pneumatic continuum robot [5], and the 
cable-driven continuum robot (CDCR) [6] which is 
under consideration in the present paper.  

Continuum robots’ modeling is a challenging task. 
Hence, kinematic models that define the relationship 

between the robot’s configuration and the operational 
variables must be established for a successful kinematic 
motion and derivation of the dynamic model. Based on 
some hypotheses and simplifications, kinematic models 
of continuum robots are solved. Undoubtedly, the most 
commonly used approach is the Constant Curvature 
Kinematic Approach (CCKA) which is successfully 
applied to different model types of continuum robots [3-
10], thanks to its simplicity [7]. In contrast to kinematic 
modeling, continuum robots’ dynamic modeling 
remains a challenging task due to its complexity and 
modeling inaccuracies. Despite this, many researchers 
have made great efforts to study the dynamic behavior 
of different types of continuum robots using other 
methods and theories such as the Lagrangian method [5-
10], Kine's approach [11-12], Cosserat rod theory [13-
14] and Hamilton principle [15-16]. Contrastingly, some 
researchers have been using a discrete Cosserat app–
roach to derive the dynamics of multisection soft mani–
pulators [17]. Needless to say, previous works have 
provided valuable enlightenment in dynamic modeling 
for continuum robots. A secondary contribution of this 
paper is the calculation of the kinematic and dynamic 
models of a planar multi-bending-section CDCR that 
will be used in the design of the controllers in question. 

Controlling a robotic system can be done according 
to the kinematic or dynamic models. However, 
according to the literature review, the continuum robot 



 

340 ▪ VOL. 50, No 2, 2022 FME Transactions
 

control problem has been widely investigated using a 
variety of controllers like the Proportional-Integrated-
Derivative (PID) controller and its variants, adaptive 
control schemes, fuzzy logic controller, model predic–
tive control, and others. In terms of kinematic control 
versus dynamic control, it is obvious that it is com–
monly employed because it is relatively simple and 
easier to implement. In contrast, the nonlinear dynamic 
behavior of continuum robots and the lack of an effi–
cient dynamic model make the implementation of its 
control difficult. 

Regarding conventional control schemes, the Pro–
portional-Integrated-Derivative controller [6] and a 
Proportional-Derivative controller [18] were used to 
ensure the trajectory tracking of a class of continuum 
robots in a fixed orientation and a planar continuous soft 
robot, namely vine robot, respectively, both joined with 
the dynamic model. However, these techniques have 
limitations, especially when the robot has complexity 
and uncertainty in the model. Therefore, intelligent 
control techniques can be considered promising 
alternatives. 

Regarding advanced control techniques or intelligent 
control techniques, various schemes have been proposed 
to improve the trajectory tracking accuracy of conti–
nuum robots, including Neural Networks (NNs) control, 
adaptive control, fuzzy logic control, nonlinear model 
predictive control, etc. In General, these techniques are 
suitable for robotic systems with nonlinear, complex, and 
unknown models under uncertainties and distur–bances.  

In literature, neural network techniques have been 
used for tracking the trajectory of some continuum 
robots, using both kinematic and dynamic models, as in 
[19-21]. In [19], the authors applied the NN technique 
to control the end-tip of a CBHA by tracking the 
trajectory without physical interactions with the envi–
ronment. In [20], the authors have presented a controller 
designed for continuum robots utilizing a neural 
network feed-forward component to compensate for the 
dynamic uncertainties. Furthermore, a neural network-
based tracking controller was presented for a wide range 
of continuum manipulators [21]. However, this tech–
nique suffers from local minima issues, often poor 
solutions to be used in the training phase to solve the 
problem. Besides, the excellent performance is mainly 
related to large-size regressors [22].  

Some researchers have been using fuzzy logic 
control. For instance, in [23], a fuzzy logic controller 
based on the kinematic model is proposed for auto–
nomous execution of end-effector trajectory tracking 
tasks for a TDCR. In contrast, in [24], a fuzzy logic-
based static feedback controller is developed for a single 
bending section of a TDCR. Furthermore, a fuzzy logic 
methodology was proposed in [25] to design a nonlinear 
controller to regulate the end-effector of a continuum 
manipulator to a constantly desired position, and an 
intelligent controller based on Fuzzy Reinforcement 
Learning (FRL) was proposed for the trajectory tracking 
of a TDCR in [26]. The Taguchi method and evolu–
tionary genetic algorithm (GA) tuned the proposed 
FRL-based control parameters to provide faster con–
vergence to the Nash Equilibrium. Even though the 
fuzzy logic control technique has many advantages, 

particularly its robustness to system uncertainty, it 
requires a significant coding effort. 

Other researchers have employed adaptive control 
schemes [22, 27]. The adaptive neural networks scheme 
[22] and adaptive support vector regressor controller [27] 
have been made on a continuum manipulator, namely 
Compact Bionic Handling Arm (CBHA), in which both 
controllers are applied to the kinematic models. 
Furthermore, an adaptive model predictive control is 
proposed to improve the dynamic performance and 
eliminate the steady-state error of a soft continuum robot 
[28]. However, when there are tight constraints to be 
satisfied, the Model-based Predictive Control (MbPC) 
algorithm is more suitable and can be a promising 
alternative for continuum robots control. For instance, a 
Nonlinear Model Predictive Control (NMPC) scheme is 
proposed in [29] to control the growth of vine-like 
growing robots using the kinematic model. In [30], a 
Nonlinear Evolutionary Model Predic–tive Control 
(NEMPC) is used to control the pneumatically actuated 
continuum robot in which its dynamic model is 
approximated using a Deep Neural Net–work (DNN). In 
[31], a Model Predictive Control (MPC) has been 
developed for the autonomous steering of Concentric 
Tube Robots (CTRs). In the same context, we intend to 
apply the Nonlinear Model Predictive Control (NMPC) 
scheme based on the Particle Swarm Optimization (PSO) 
algorithm to control a class of continuum robots, namely 
Cable-Driven Continuum Robot (CDCR), using both 
kinematic and dynamic models.  

The paper includes the kinematic and dynamic 
modeling of a class of continuum robots, namely Cable-
Driven Continuum Robot (CDCR), in the planar 
projection. Then, based on the developed models, a 
Nonlinear Model Predictive Control (NMPC) scheme is 
proposed to control the tip of a planar CDCR consisting 
of a two bending-section. Nevertheless, the main draw–
back of applying the NMPC schemes is related to the 
computational burden associated with optimization 
algorithms that must be solved in each sampling period. 
In this paper, the Particle Swarm Optimization (PSO) 
algorithm is used as a solution to the optimization 
problem arising in the MBPC, due to its simplicity and 
fast convergence. Thus, the NMPC-PSO controller, 
based on the kinematic and dynamic models, enables 
the states of the planar CDCR to track a desired 
reference trajectory in free Cartesian space. 

The outline of this paper proceeds as follows: 
Section 2 summarizes the kinematics modeling of a 
cable-driven continuum robot in the planar projection. 
Section 3 presents the dynamic model development. 
Section 4 focuses on developing the proposed Nonlinear 
Model of Predictive Control and the optimizer method, 
namely Particle Swarm Optimization. Section 5 presents 
the simulation results used to illustrate the proposed 
controllers' effectiveness and performance. Some conc–
luding remarks and prospects are drawn in Section 6. 

 
2. KINEMATIC MODELS 

 
The schematic structure of the famous hard class of 
continuum robots with three cable actuators per bending 
section, namely the Cable-Driven Continuum Robot 
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(CDCR), is depicted in Figure 1. It is essential to 
highlight that by serially connecting the bending 
sections, a CDCR with multiple bending sections can be 
constructed, i.e., with n bending sections and 3×n cable 
actuators. Hence, each bending section has an elastic 
core (usually called backbone) along which are rigidly 
mounted m rigid spacer disks. The bending and 
orientation motion of each bending section is made by 
the deflection of the elastic core by applying suitable 
tension on one or two cables at the same time. In the 
following analysis, only the bending motion is 
considered, particularly in the planar projection. 
 

 
Figure 1. CDCR schematics 

 
 

 
 
Figure 2. Single bending-section schematics 
 
2.1 Forward Kinematics 

 
It is of paramount importance to note that in order to 
establish the dynamic model, kinematic models, inc–
luding local and global positions and velocities, will be 
first derived. However, the Constant Curvature Kine–
matic Approach (CCKA) [7] is generally used in 
modeling among the approaches proposed to handle the 
forward kinematics of continuum robots.  

Based on this kinematic analysis, the homogeneous 
transformation matrix Ts that contains the position 
vector Ps and the rotation matrix Rs of any frame 
attached at s, with [ ]0, ks l∈ , on the backbone of the 
bending-section k in the local reference frame 1−ℜk  

( )1 1 1 1, , ,− − − −k k k ko x y z  can be calculated as follows: 
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where s is the curvilinear parameter that represents the 
length from the origin of the reference frame 1k−ℜ  to 
the specified point s, and the abbreviations c(·) and s(·) 
mean respectively cos(·) and sin(·). 

More generally, the homogeneous transformation 
matrix Tk defining any frame attached at s to the 
backbone of the bending-section k, with k = 1,2,…,n, 
the global reference frame ( )0 0 0 0 0, , ,o x y zℜ  can be 
calculated as follows: 
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where [ ]1
T

kθ θ θ= …  is the vector of the bending 
angles that will be used as generalized coordinates in 
the following section. 

For further use, since each backbone k is considered 
to have a uniform mass distribution, the position vector 
of its gravity center Pk  relative to the global reference 
frame 0ℜ  can be calculated as follows [10]: 
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Furthermore, the position vector of the cable holes 

, ,Pi j k
�  on the disk j for the bending-section k relative to 

the global reference frame 0ℜ  can be obtained as 
follows: 

, , ,P T . ,i j k j k ir=�                             (6) 

where Tj,k is calculated at s = jlk/m, with j = 1,2,…,m  
using equation (4), and ri is the position vector of the 
routing holes on the disk in its local reference frame that 
can be expressed as follows: 

( ) ( ) Tc s 0 1 ,i i ir r γ γ⎡ ⎤= ⎣ ⎦                 (7) 

where r is the radial distance from the center of the disk 
to the routing holes, and iγ  is the arrangement angle of 
the cable holes on the disk given as follows: 
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2.2 Differential kinematics 

 
The linear velocity Pk

�  at any point s can be obtained by 
direct differentiation with respect to the time of the 
vector position Pk , while the angular velocity ωk can be 
expressed as follows [11]: 

1 1R . .k k k sω ω ω− −= +                         (9) 

with 

t̂ . t ,s s sω = �                            (10) 

where ts is the third vector column of the rotation matrix 
Rs, t̂s  is the associated skew matrix of the vector ts and 
(·) means the differentiation with respect to time. 
 
3. DYNAMIC MODEL 
 
In order to derive a dynamic model of multisection 
CDCR using the Lagrange method for general coordi–
nates θ, the kinetic energy, the potential energy, and the 
corresponding generalized forces will be derived first.  

d .
d
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t θ θθ
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                    (11) 

where T, U and Q are kinetic energy, gravitational 
energy, and generalized forces, respectively.  
 
3.1 Kinetic energy 
 
The kinetic energy, including translational and rotati–
onal kinetic energy, of a multisection CDCR concerning 
the global reference frame 0ℜ  can be expressed as fol–
lows: 

.trans rotT T T= +                          (12) 
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T , b
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T  and d
rot

T  are the translati–

onal and rotational kinetic energy of the backbone and 
the disks, respectively. 

As mentioned above, the distribution mass of each 
backbone is assumed to be uniform, and the disks are 
mounted on the elastic core at an equal distance and 
have the same mass. Therefore, the translational kinetic 
energy of the backbones and disks can be calculated 
respectively as follows:  
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where mb
k  and ,md

j k  are the backbone and disk mass, 
respectively. 

Similarly, the rotational kinetic energy of the back–
bone and the disks can be calculated respectively as 
follows:  
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where Ib
k  and ,Id

j k  are the moment of inertia of the 
backbone k and the disk (j,k), respectively.  Equation 
(18) ωj,k is calculated at ks jl m= , with 1,2,...,j m= , 
using equation (9). 
 
3.2 Potential energy 
 
The total potential energy of a multi-section CDCR 
consists of two parts: gravitational potential energy and 
elastic potential energy.  

.gr elsV V V= +                            (19) 

The backbones and disks are subject to gravity. 
Therefore, their total gravitational potential energy can 
be obtained as the following: 
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where g is the gravitational constant. 
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The total elastic potential energy of all backbones 
can be calculated as follows [6]: 
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where E is the Young’s modulus. 

  
3.3 Generalized forces 
 
The generalized force applied to the robot consists of 
actuation forces, external forces, and frictional forces. 
However, as each bending section is curved in a circular 
arc shape; therefore, the external forces and the 
frictional forces coming from the contact between the 
cables and the routing holes will not be taken into 
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account in this case. However, the cables are attached to 
the end disk of each bending section; the generalized 
force exerted on the end disk of each bending section by 
cable i can be calculated as the following: 

T3
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,
, 1, , ,1

P P P
. . ,

P P
i m k i m k i m k

i k
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where fi,k is the magnitude of the actuation force of cable 
i  exerted on the enddisk m  of the bending-section k. 
 
3.4 Resulting models of a two bending-section 

CDCR 
 
It is noteworthy that detailed kinematic and dynamic 
models are needed to implement the controller. The 
resulting Cartesian kinematic models of a two bending-
section CDCR in the planar projection are presented in 
Appendix A. However, regarding the dynamic model of 
the considered robot, given that the elements involved 
in the dynamic model have very long and complex 
expressions; therefore, it will be presented in the general 
form as follows: 

( ) ( ) ( ) ( ), .M C K D Qθ θ θ θ θ θ+ + =�� �           (26)      

The state variables described in equation (27) are 
used to present the dynamical model in the state space 
representation. Then, the fourth-order Runge-Kutta 
method is used as a numerical solution.  
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Thereby, the dynamic model can be written in the 
general form as follows: 

( ) ( ) ( ) ( ), , .u .S t F S t H S t t= +�               (28) 

where S(t) represents the state variable vector, F(S,t) 
and H(S,t) are nonlinear functions, and u(t) represents 
the command vector. 
  
4. CONTROLLER DESIGN 
 
The basic idea of Nonlinear Predictive Control consists 
in calculating, at each sampling time over the prediction 
horizon, a control sequence aimed at minimizing an 
appropriate quadratic cost function taking into account 
the physical and environmental constraints. Hence, this 
section summarizes the NMPC strategy and the applied 
optimizer method, namely Particle Swarm Optimization 
(PSO).  

 
4.1 NMPC formulation 
 
Model predictive control has become an attractive 
feedback strategy, predominantly linear processes. 
However, many robotic systems, particularly continuum 
robots, are governed by nonlinear and complex models, 
whether kinematic or dynamic and generally have 
inaccuracies in modeling approaches. These factors 
motivate the use of Nonlinear Model Predictive Control 
(NMPC) to describe such a system's highly nonlinear 

processes and nonlinear models. On the other hand, The 
computation burden associated with the optimization 
problem of the NMPC is persisting as a challenge for 
the application of the NMPC schemes to control 
systems that present fast dynamics. Various algorithms 
have been proposed to solve the optimization problem 
of the NMPC. Sequential Quadratic Programming 
(SQP) is the most efficient algorithm for solving the 
optimization problem of the NMPC, but it is time-
consuming. Other algorithms have been proposed to 
solve this problem in a reasonable computation time, 
such as a nonlinear sum of squares [32] and the multiple 
shooting method [33], but these remain quite difficult to 
code. In [34], the control law is computed offline, and 
the controller is implemented online as a lookup table. 
In [35], a varying-parameter one-layer projection neural 
network is used to solve a quadratic programming 
optimization problem of the NMPC to control a mobile 
medical robot.  

Nowadays, metaheuristic optimization algorithms 
effectively find reasonable solutions for complicated 
real-life problems. In [36], Particle Swarm Optimization 
(PSO) and Gravitational Search Algorithm (GSA) have 
been applied to resolve the optimization problem of the 
NMPC to control a wheeled mobile robot. Ant Colony 
Optimization algorithm(ACO) was applied to solve the 
MPC optimization problem to control the torque of a 
three-phase induction motor [37]. This paper uses the 
PSO algorithm to solve the arising optimization 
problem in NMPC due to its simplicity and fast 
convergence[38]. 

Designing the control law aims to ensure that the 
robot tracks the reference trajectory without error. Thus, 
it xτ is the state space and uτ is the control signal. The 
nonlinear state-space model representing the motion of 
any robotic system may be described as follows: 

( )1x F x ,u ,
s.t.
u U, x X.

τ τ τ

τ τ

+⎧ =
⎪
⎨
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                     (29) 

where F is a continuous mapping with F(0,0) = 0. U  
and X are the set of feasible input and state values, 
respectively.  

It should be stressed that the optimization problem 
to be solved by the NMPC can be formulated as 
follows: 

( )
U

min x,u,NJ τ ,                         (30) 

where the cost function J to be minimized over the 
optimization horizon N is expressed as the following: 

( ) ( ) ( ) ( )
1 T
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N N
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J
τ

τ
τ

τ
+ −

+
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where N is the optimization horizon, ( )Nxτ +Ψ the 
weight on the final state space, and xd, xa the desired and 
the actual state, respectively.  

In the NMPC strategy, the problem is solved to obtain 
the optimal control sequences u = [uτ … uτ+N+1] over a 
finite prediction horizon, but only the first control 
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sequence is applied to the robot. To sum it up, the prob–
lem is to find the control sequences defined by θk, with k 
= 1,2,…,n, that allows the robot to track a given reference 
trajectory defined in the task space. The block diagram of 
the proposed NMPC-POS is shown in figure 3. 
 

 
Figure 3. Block diagram of the proposed MPC-PSO 

 

4.2 Optimization method 
 
It is crucial to accentuate that, in this study, the Particle 
Swarm Optimization (PSO) method is used to solve the 
arising optimization problem in NMPC, thanks to its 
simplicity and fast convergence.  

In 1995, Kennedy and Eberhart introduced a new 
metaheuristic method called Particle Swarm Optimi–
zation [39], which is an evolutionary optimization 
technique based on the social behavior of bird flocks in 
search of food. In a PSO method, each possible solution 
is called a particle, and the population is the swarm. 
Basically, the initial phase consists of randomly gene–
rating the population in the search space, where each 
particle p has its own position pxτ  and velocity pvτ . In 
each iteration τ, the position of each particle is updated 
as a function of the local best position pbestPτ  and the 

global best position gbestPτ . Therefore, the position and 
velocity of each particle are updated according to the 
following equations: 

( ) ( )1
1 1 2 2 .p p pbest p gbest pv v P x P xτ τ τ τ τ τσ ρ σ ρ+ = + − + −   (32) 

1 1.p p px x vτ τ τ+ += +                           (33) 

where σ1 and σ2 are positive constants; ρ1 and ρ1 are two 
random variables with a uniform distribution between 0 
and 1. 

Although the PSO method is a faster convergence 
algorithm than other optimization algorithms and is 
used to construct the control scheme [38, 40-41], in 
contrast to those benefits, the common drawback of 
optimization methods is the early convergence of the 
solution towards the local minima. A swarm regene–
ration technique was added to the PSO algorithm [42]. 

5. SIMULATION RESULTS 
 
In this section, the effectiveness and performance, in 
terms of tracking accuracy and computation time, of the 
proposed NMPC-PSO controller based on the developed 
kinematic and dynamic models are examined and 
compared. To achieve this purpose, two simulation 
examples are performed. The first example shows the 
convergence of the two controllers for a desired robot’s 
end-point. In contrast, the second one is proposed to 
implement the controller on a CDCR for tracking a 
trajectory in a free Cartesian environment for both 
kinematic and dynamic models. A two bending-section 
CDCR is simulated for all case studies, inside its 
workspace, with the estimated geometric and material 
detailed in Table 1. The parameters of the PSO method 
are given in Table 2. Eventually, the simulations are 
conducted on MATLAB software using Intel (R) Core 
(TM) i3-2310M CPU at 2.10 GHz and 4Go RAM. 
Table 1. Geometrics and material of the simulated CDCR  

j  5 ,
d
j kr  20 mm 

k  2 b
kr  2.5 mm 

mb
k  0.032 kg r  19 mm 

,mb
j k  0.010 kg E  2.1 GPa 

lk  300 mm g  9.81 m/s2 

Table 2. PSO parameters 

Swarm size Inertia iterations Correction factor 
100  1.25  50  1.02  

 
4.3 Set-point Stabilization 

 
It is worth noting that this simulation aims to highlight 
the performance of the proposed NMPC-PSO with the 
kinematic and dynamic models during the set-point 
stabilization simulation, which does not involve time as 
a constraint. Figures 4 and 5 show the perfect tracking 
of two controllers to reach the goal predefined as 
[100,0,400] (mm), where the robot’s simulation models 
begin from the initial position as [50,0,500] (mm).  

 
Figure 4. Results of set-point simulation to evaluate the 
stabilization of the controller with the kinematic model 
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Figure 5. Results of set-point simulation to evaluate the 
stabilization of the controller with the dynamic model 

From these Figures, it is clear that NMPC-PSO with 
the dynamic model is more stable than that with the 
kinematic model since the controller stabilizes the 
robot’s end-tip at the goal after 28 iterations against 33 
iterations for the kinematic controller. In addition to 
that, the NMPC-PSO joined with the dynamic model 
eliminates the oscillations present in the state variables 
x  and z . In contrast, the controller with the kinematic 
model took less computational time (5.9 msec) that 
joined with the dynamic model (9.16 msec). 

 
4.4 Trajectory tracking in a free Cartesian 

environment 
 

In the second simulation example, the NMPC-PSO 
based on the kinematic and dynamic models is evalu–
ated against tracking a circular-shaped trajectory in a 
free Cartesian environment. The reference trajectory is 
described in Equation (34). The control sampling time is 
equal to 0.01 seconds for the total duration of movement 
as 10 sec. 

dx 50sin 550 50cos ,
5 5

Tt tπ π⎧ ⎫⎛ ⎞ ⎛ ⎞= +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

     (34) 

The obtained simulation results of both controllers' 
trajectory tracking and control signals are presented in 
Figures 6, 7, 8, and 9.  

 
Figure 6. Actual and reference trajectories and the 
Euclidean errors between them using the kinematic model 

From Figures 6 and 7, it is readily apparent that the 
curves are almost superposed where the mean Euclidean 

errors between the actual and reference trajectory along 
x-axis and z-axis respectively are smaller than 7·10-5 
(mm) and 3·10-4 (mm) for the controller joined with the 
kinematic model, and smaller than 2·10-5 (mm) and 
6·10-6 (mm) for the dynamic controller. The presented 
results show good trajectory tracking for both cont–
rollers. 

 
Figure 7. Actual and reference trajectories and the 
Euclidean errors between them using the dynamic model  

To clarify more about the oscillations which appear 
when using the NMPC-PSO joined with the kinematic 
model, Figure 8 highlights the oscillations that appear in 
the angular velocity versus those calculated from the 
control signals of the controller joined with the dynamic 
model (see, Figure 9). 

 
Figure 8. The angular velocity with the kinematic NMPC-
PSO 

 
Figure 9. The angular velocity with the dynamic NMPC-PSO 

The two controllers' required computation times to 
track the circular-shaped trajectory are presented in 
figures 10 and 11, respectively. Figure 10 shows the 
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relatively low computation times of NMPC-PSO based 
on the kinematic model compared to that joined with the 
dynamic model, where the mean computational time for 
the two controllers is less than 5.5  msec and 8.89  
msec, respectively. So, these results are very 
encouraging for real-time applications of the two 
controllers. However, the computation time of the 
optimization methods depends on the number of 
variables to be optimized, i.e., to be found. So, as the 
robot's bending-sections increase, the computation time 
will increase proportionally. 

 
Figure 10. Computation times for the kinematic NMPC-PSO 

 
Figure 11. Computation times for the dynamic NMPC-PSO 

 
Figure 12. Evaluation of cable lengths for the kinematic 
NMPC-PSO 

Moreover, the temporal evolutions of the cable 
lengths necessary to track the circular-shaped trajectory, 
which is calculated using the results obtained from the 
NMPC-PSO based on the kinematic model, are shown 
in Figure 12. Similarly, the temporal evolutions of the 
required tensions applied on the cables for tracking the 
desired trajectory, calculated using the results obtained 
from the NMPC-PSO based on the dynamic model, are 
shown in Figure 13. 

To sum up, the analysis of the previously presented 
simulation results confirms the possibility of applying 
successfully the proposed NMPC-PSO, based on the 
kinematic and dynamic models, for trajectory tracking 
for a class of continuum robots, namely Cable-Driven 
Continuum Robot (CDCR).  

 
Figure 13. Evaluation of tensions applied on the cables for 
the dynamic NMPC-PSO 

For comparison, the proposed NMPC-PSO based on 
the dynamic model has achieved a good performance in 
trajectory tracking accuracy, smoothness in control 
signals, and absence of oscillations in the state variables 
compared to the kinematic one. In contrast, the 
proposed NMPC-PSO based on the kinematic model 
took less computation time and was easier in 
formulation than the dynamic one.  

Generally, continuum robots have different 
characteristics and are not controlled with the same 
inputs. Therefore, it is difficult to directly compare the 
proposed control techniques based only on the obtained 
results. Table 3 lists some contributions in continuum 
robot control techniques, in which trajectory tracking 
accuracy results were displayed. By analyzing the 
results of these contributions, it can be seen that the 
proposed NMPC-PSO scheme achieves the best 
performance in terms of trajectory tracking accuracy. 
However, it should be noted that there are other factors 
affecting the performance of the controller, such as (1) 
the used mathematical model (kinematic or dynamic 
model), (2) the model's complexity, (3) the number of 
bending-section of the robot, and (4) the robot control 
space (2- or 3-dimensional space).  

In a nutshell, it can be said that the proposed NMPC-
PSO scheme showed a real ability for real-time imple-
mentation and high accuracy of trajectory tracking, 
making it a promising alternative controller for 
continuum robots and especially for the cable-driven 
continuum robot class. 

Table 3. Some contributions in the control of continuum robots 

Robot characteristics Control techniques Trajectory tracking control 
CDCR: Continuous shape, rigid 
structure, two bending sections, 
controlled by cables. 

NMPC-PSO scheme: Proposed scheme. Accuracy: < 43 10−⋅  mm; 
Validation: Simulation of a planar robot in a free 
environment. 
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CBHA: Continuous shape, soft 
structure, two bending sections, 
pneumatic actuation. 

Nonadaptive neural network controller 
[22]. 
 

Accuracy: 15 mm; 
Validation: Simulation and real-time 
experiments. 

Adaptive neural network controller [22]. Accuracy: 5 mm; 
Validation: Simulation and real-time 
experiments. 

Nonadaptive support vector regressor 
controller [27]. 
 

Accuracy: 11 mm; 
Validation: Simulation and real-time 
experiments. 

Adaptive support vector regressor 
controller [27]. 
 

Accuracy: 5 mm; 
Validation: Simulation and real-time 
experiments. 

Large-Scale Soft Robot. Model reference predictive adaptive 
control [29]. Accuracy: 49 10−⋅  mm; 

Validation: Simulation. 
TDCR: Continuous shape, rigid 
structure, controlled by wire 
cables. 

Fuzzy-logic-based static feedback 
controller [24]. 

Accuracy: 0. 5 mm 
Validation: real-time experiment.  

Fuzzy-Model-Based Approach [23]. Accuracy: 0.7165 mm; 
Validation: real-time experiment. 

Vine-like growing robot: 
Continuous shape, pneumatic 
actuator muscles, controlled by 
air pressure.  

NMPC-based growth control [29]. Not available. 

CTR: Continuous shape, soft 
structure, actuated by mecha–
nisms external to the backbone. 

Nonlinear Model Predictive Control [31]. accuracy: < 45 10−⋅ m; 
Validation: Simulation and real-time 
experiments. 

 
6. CONCLUSION 

 
This paper proposes a Nonlinear Model Predictive 
Control (NMPC) scheme to solve the trajectory tracking 
for a class of continuum robots, namely Cable-Driven 
Continuum Robot (CDCR). The Particle Swarm Opti–
mization (PSO) algorithm was used to solve the 
optimization problem arising in the NMPC. This 
metaheuristic method has strong advantages compared 
to other algorithms, such as its simplicity to code and its 
fast convergence that provides a low computation time. 
First, the kinematic and dynamic models of two-
dimensional CDCR with two bending sections are 
developed. The dynamic model is derived using the 
Euler-Lagrange method based on kinematic equations of 
inextensible bending-section and the Constant Curva–
ture Kinematic Approach (CCKA). Based on the 
developed kinematic and dynamic models of the CDCR, 
an NMPC-PSO scheme was proposed to solve the 
trajectory tracking problem. For the two controllers, 
joined with the kinematic and dynamic models, the 
simulation was performed on set-point stabilization and 
trajectory tracking in MATLAB software. Because of 
the obtained simulation results, the two proposed 
schemes have succeeded in controlling the tip of the 
considered CDCR, in a free Cartesian environment, in 
real-time and with high accuracy. The obtained 
computation times and quality of the solution in terms 
of the trajectory tracking accuracy show that NMPC-
PSO, based on the kinematic and dynamic models, is a 
feasible alternative for real-time applications. 

In terms of dynamic control versus kinematic 
control, the obtained results show the effectiveness of 
the NMPC-PSO based on the dynamic model to track 
the desired trajectory with high accuracy, zero 
oscillations, and smoothness in control signals. In 
contrast, the NMPC-PSO based on the kinematic model 

is easier to implement and takes lower computational 
time compared to when it is based on the dynamic one.  

In comparison with works [22-23, 31] in terms of 
trajectory tracking accuracy, it is observed that the 
proposed NMPC-PSO scheme, based on both kinematic 
and dynamic models, can track the desired trajectory in 
real-time with high accuracy. The analysis of the 
available contributions in the control of continuum 
robots provides an additional argument to support the 
idea that the proposed NMPC-PSO schemes can 
improve the performance of these continuum robots, 
especially those of the considered class, namely Cable-
Driven Continuum Robots (CDCRs) for trajectory 
tracking problem.  

As a perspective, we intend to extend the proposed 
NMPC-PSO scheme to a continuum robot in 3D space 
configurations and consider obstacle avoidance during 
trajectory tracking. 

APPENDIX A 

The developments of kinematic and differential 
kinematic models used in this paper are presented, 
respectively, as follows: 

( ) ( ) ( )( )

( ) ( ) ( )( )

2 2 1 1 2 1 1 1 2
1 2

2 2 1 1 1 1 1 2
1 2

c c c ,
x

s s c ,

θ θ θ θ θ θ θ θ
θ θ

θ θ θ θ θ θ θ
θ θ

⎧ = + − − +⎪⎪= ⎨
⎪ = − + +
⎪⎩

lx

lz
 (36) 

11 12 1

21 22 2
x

J J
J J

θ
θ
⎧ ⎫⎡ ⎤ ⎪ ⎪= ⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦ ⎩ ⎭

�
� �                      (37) 

with 

( ) ( )
( ) ( )

2
2 1 2 1 1

11 2 2
1 2 1 1 2 1 2 1

c s ...
.

s s

lJ
θ θ θ θ θ

θ θ θ θ θ θ θ θ

⎛ ⎞− − +
⎜ ⎟=
⎜ ⎟− +⎝ ⎠

     (38) 
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( ) ( ) ( )( )12 1 1 2 2 1 22
2

c c s .lJ θ θ θ θ θ θ
θ
−

= − − + −    (39) 

( ) ( )
( ) ( )

2
2 1 1 1

21 2 2
1 2 1 1 2 1 2 1

s c ...
.

c c

lJ
θ θ θ θ

θ θ θ θ θ θ θ θ

⎛ ⎞− +− ⎜ ⎟=
⎜ ⎟− −⎝ ⎠

       (40) 

( ) ( ) ( )( )22 1 2 1 2 1 22
2

s s c .lJ θ θ θ θ θ θ
θ

= − − + −    (41) 
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NOMENCLATURE 

E Young’s modulus. 
f  Force. 
F Continuous mapping function. 
F Nonlinear function. 
H Nonlinear function. 
i  Cable index, with 1, 2,3.i =  
I Inertia moment.  
g Gravitational constant. 
j Disk index, with 1,2,...,j m= , numbered 

from base to tip of the bending section. 
J  Cost function.  
k  Bending-section index, with 1,2,...,k n= , 

numbered from base to tip of the robot. 
kl  Length of the bending section k . 
m Disks number. 
m Mass. 
n Bending-sections number. 
N  Optimization horizon. 
p Particle.  
P  Position vector at point s  on the backbone. 
P The position vector of the gravity center. 
P� The position vector of the cable hole. 

pbestP  Local best position. 

gbestP  Global best position. 

Q Generalized force. 
r  Distance from the center of the disk to the 

routing hole. 
R Rotation matrix. 

,
d
j kr  Radius of disk 
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b
kr  Radius of backbone 

s  Curvilinear parameter. 
S  State variable vector 
t  Time. 
t  Third vector column of R . 
T  Homogeneous transformation matrix. 
T  Kinetic energy. 
U  Set of feasible input. 
u  Control signal. 
v  Particle velocity. 
V  Potential energy. 
x  Particle position. 
x  State-space.  
X  State values. 

Greek symbols 

ω  Angular velocity.  
τ  Iteration. 
θ  Bending angles vector, with 

[ ]T1 ... nθ θ θ= . 

iγ  The angle of arrangement of cables in a 
rotation distance of 120 degrees. 

1 2,ρ ρ   Random variables. 

1,j jη −  
 

The contact angle between the direction of 
cable tensions 

μ  Coefficient of friction. 
σ  
 

Represents the direction of frictional force 
in which their values are either 1−  or 1+ . 

1 2,σ σ  Positive constants. 
Ψ  Weight on the final state space. 
ℜ  Reference frame. 

Abbreviations 

a  Actual. 
b  Backbone. 
c  Cosine. 
d  Desired. 
d  Disk. 
els  Elastic. 
gr  Gravitational. 
rot  Rotational. 
s  Sine. 

trans Translational. 
 
 

ПРЕДИКТИВНА КОНТРОЛА НЕЛИНЕАРНОГ 
МОДЕЛА КЛАСЕ КОНТИНУАЛНИХ РОБОТА 
КОРИСТЕЋИ КИНЕМАТСКЕ И ДИНАМИЧКЕ 

МОДЕЛЕ 
 

A. Aмоури, А. Шерфиа, Х. Мерабти,  
Ј.Л.Д. Лексир 

 
Контролисање континуалних робота са прециз–
ношћу је посебно изазован задатак због сложености 
њихових математичких модела и нетачности у 
приступима моделирању. Стога је већина напредних 
контролних шема показала лоше перформансе, 
посебно у тачности праћења путање. Овај рад 
представља предложену шему нелинеарног модела 
предиктивне контроле (НМПК) за решавање 
праћења путање класе континуалних робота, 
односно Cable-Driven Continuum Robot (CDCR). 
Међутим, пошто су НМПK шеме често ограничене 
рачунским оптерећењем повезаним са алгоритмима 
оптимизације који се решавају у сваком тренутку 
узорковања, алгоритам за оптимизацију роја честица 
(ПСО) се користи за решавање насталог проблема 
оптимизације НМПK, захваљујући својој једнос–
тавности и брзој конвергенцији. Предложена 
НМПK-ПСО шема је примењена на развијене кине–
матичке и динамичке моделе разматраног CDCR-а. 
На основу кинематичког и динамичког модела, два 
предложена регулатора су валидирана у односу на 
нумеричке симулације дводимензионалног CDCR-а 
са два дела савијања за стабилизацију задате тачке и 
праћење путање од тачке до тачке. За оба 
контролера, перформансе тачности праћења и 
времена израчунавања се анализирају и пореде. 
Штавише, добијени резултати симулације се пореде 
са доступним литературним радовима. С обзиром на 
резултате добијене на разматраном CDCR-у, 
предложена НМПK-ПСО шема може у реалном 
времену да прати жељену путању са високом 
прецизношћу и много краћим временом извршења 
него друге напредне шеме управљања, што је чини 
алтернативом за апликације у реалном времену. 
 

 


