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Non-Iterative Wall Model Formula for 
Non-Equilibrium Boundary Layer Flows
 
A novel non-iterative (explicit) formulation of generalized wall functions 
that applies to equilibrium and non-equilibrium boundary layer flows was 
proposed. The proposed formulation uses a set of variables that are more 
useful for computational fluid dynamics codes as they allow for calculating 
wall shear stress without an iterative procedure. In addition, an explicit 
form of the formulation was provided that applies to wall models with and 
without pressure gradients. The new variable transformation casts the 
generalizedwall function into a new form that simplifies the 
implementation and evaluation of wall-shear stress in computational 
codes. 
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1. INTRODUCTION 
 

Time-averaged turbulence models based on Reynolds 
decomposition have been successfully used in 
simulations of practical engineering flows[1-5]. Some 
often used turbulence models include k-epsilon [6], k-
omega [7], Spalart-Allmaras [8,9], v2f [10], to mention 
a few. The computational expense of time-averaged-
based turbulence models in practical applications is 
primarily driven by the computational cost of resolving 
sharp gradients in the flow field near solid walls.The 
turbulent flows can be simulated without recourse to 
any turbulence models using the so-called Direct 
Numerical Simulation (DNS) of Navier-Stokes 
equations. However, the computational cost associated 
with DNS is prohibitively high [11,12] due to 
significant mesh resolution requirements near solid 
walls. Turbulence models based on Reynolds averaged 
Navier-Stokes (RANS) equations and corresponding 
turbulence models decrease the computational cost 
significantly. Even though the mesh resolution 
requirements are considerably lower than DNS, RANS 
models are still required to resolve the boundary layer to 
compute the correct wall shear stress  and resolve the 
sharp velocity gradients in the vicinity of walls. 
Therefore, the wall treatment in RANS simulations 
remains one of the central questions in turbulent flow 
simulations. 

The wall treatments in RANS simulations are 
broadly divided into two categories, namely wall-
integrated and wall-modeled. Wall-integrated RANS 
models are typically called Low Reynolds Number 
(LRN) models and are capable of resolving the 
flowfield in all regions, including the boundary layer 
portion of the domain. In other words, LRN models can 
take into account the change of the local Reynolds 
number signifying the local ratio of inertial to viscous 

forces without any need for the special wall treatment. 
Other examples of LRN models are Spalart-Allmaras 
and k-omega SST models. However, LRN models 
require increased mesh resolution near the wall to 
accurately capture velocity gradients and compute the 
wall-shear stress.  

On the other hand, wall-modeled RANS models 
cannot accurately represent the boundary layer flows, 
requiring a special set of boundary conditions called 
wall functions. The wall function provides a reduced-
order model of the boundary layer's momentum 
equation, enabling accurate computation of the wall-
shear stress. Wall functions are traditionally based on 
the velocity profile in the boundary layer, called the law 
of the wall, obtained by simplifying the time-averaged 
momentum equation in the streamwise direction.The 
simplified momentum equation is then integrated 
analytically to get the solution's closed-form [13, 14]. 

The first attempts to obtain the law of the wall date 
back to Prandtl [15,16], who obtained the velocity 
profile by introducing assumptions that the inertial and 
viscous forces were equally important in the laminar 
sublayer. In reality, inertial forces dominate the 
boundary layer's logarithmic (inertial) region [13]. 
Furthermore, the closed-form obtained by Prandtl did 
not take into account non-equilibrium effects due to 
pressure gradients and separated flows. In addition, 
Prandtl's law of the wall did not provide the velocity 
profile for the buffer region of the boundary layer. 
Several expressions of the law of the wall were 
developed to account for the presence of the buffer 
layer[17-20] by incorporating various assumptions and 
experimental observations. However, none of the 
proposed laws incorporated non-equilibrium effects. 
Hanjalic and Popovac [21] proposed the inclusion of the 
pressure gradient in the law of the wall. 

Similarly, Röber [22] proposed a single expression 
for the velocity profile that included the effects of 
pressure gradients. Finally, Shih et al. [23] proposed a 
generalized form of wall functions applicable to a wide 
range of non-equilibrium flows. Other wall treatments 
include the two-layer approach [24] and non-equili–
brium wall functions [25]. 
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One of the main difficulties in implementing wall 
functions is their implicit nature. For example, compu–
tational codes require wall-shear stress to be computed 
to obtain the correct turbulent viscosity near the wall. 
However, the wall of the law gives the expression for 
velocity profile in the boundary layer. Therefore, the 
wall shear stress must be computed from the velocity 
profile, which is done through an iterative procedure. 
The need for the iterative procedure is discussed in the 
next section.  

Given the difficulties with the existing expressions 
for the wall functions, the desired wall function should 
have the following characteristic: 

1) Applicability to equilibrium and non-
equilibrium boundary layer flows 

2) Ability to evaluate wall-shear stress without 
recourse to iterative procedures 

The wall function formulation that has the stated 
desired properties was proposed in this work. The 
formulation is based on a generalized wall function 
expression [23], which was transformed into a new set 
of variables to evaluate wall-shear stress explicitly. 
 
2. WALL FUNCTION THEORY 

 
The following expression gives the governing equations 
for incompressible turbulent fluid flow 

 
( ) ( )i j iji

i i i

u uu p
t x x x

ρ σρ ∂ ∂∂ ∂
+ = − +

∂ ∂ ∂ ∂
  (1) 
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Cartesian tensor notation was used in Equations 1 
and 2, where indexes i and j take the values denoting 
three directions labeled (x,y,z). All quantities in Equa–
tions 1 and 2 are time-averaged quantities. The Boussi–
nesq assumption was used to represent the stress tensor 
σij 

 ( )2ij t ijSσ μ μ= +                         (3) 
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Here the symbol μ is molecular, whereas μt is 
turbulent viscosity. Equation 1 is a time-averaged, 
constant density form of momentum equation applicable 
to incompressible turbulent flows. No special notation 
was used to denote time-averaged quantities. 

Equation 1 is simplified in the boundary layer, 
assuming that the pressure is uniform in the wall-normal 
direction throughout the boundary layer. Moreover, the 
flow is considered to be essentially one dimensional and 
pressure gradient-free in a streamwise direction denoted 
by the symbol x, yielding the following non-dimen–
sional expression [13, 23]: 

 ( )1 1, t
t t
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vdu
v v

vdy

+
+ +

+
+ = =   (5) 

Symbols appearing in Equation 1 are defined as 
follows 

 ( ) 1
, 8.3, , 11.81

7

B
t tu A y A B y+ + += = = >   (6) 

where u is a time-averaged velocity in the streamwise 
direction, y is the distance in the wall-normal direction, 
and v is molecular kinematic viscosity. The non-
dimensional quantities u+ and ty

+  are the non-dimensi–
onal velocity and wall distance. The friction velocity is 
defined as 

 /t wu τ ρ=                      (7) 

Equation 3 provides the relationship between wall 
shear stress, friction velocity, and density. Therefore, 
Equation 5 must be solved to obtain the wall-shear 
stress.  

 
2.1 Zero-pressure gradient wall functions 
 
Strictly speaking, Equation 5 describes one-dimensional 
flows without a pressure gradient. For example, the flat 
plate boundary layer without the pressure gradient is a 
prototypical flow approximated by Equation 1. Prandtl 
[15] provided the analytical solution for the velocity 
profile over the flat plate with zero pressure gradient by 
integrating Equation 1 to obtain the following 
expression: 

 1
ln t

t

u yu
B

u vκ
⎛ ⎞= +⎜ ⎟
⎝ ⎠

      (8) 

( )1
ln , 10.8, 0.41, 5.0t tu y B y Bκ

κ
+ + += + > = =   

The first part of Equation 8 was obtained by inte–
grating Equation 5,assumingthe turbulent viscosity is 
negligible in the laminar sublayer. Therefore, in the 
laminar sublayer, inertial and viscous forces due to 
molecular diffusion are of the same order allowing 
turbulent viscosity to be neglected. On the other hand, 
the second part of Equation 8 is obtained by integrating 
in the wall-normal direction from the wall to infinity. 
The resulting profile is called the logarithmic profile. 
Prandtl's law of the wall ignores the buffer region, and 
the two solutions are matched for the value  ty

+  = 10.8 
to give a law applicable for all non-dimensional wall 
distance values. 

A closer inspection of Equation 8 reveals that for 
any values of non-dimensional wall distance greater 
than 10.8, it is necessary to employ an iterative proce–
dure. The need for iteration becomes apparent when the 
definition of non-dimensional velocity is examined. 
Equation 6 indicates that to solve Equation 5, the value 
of non-dimensional wall distance must be known, which 
depends on non-dimensional velocity. When Equation 6 
is substituted into Equation 7, the following expression 
is obtained: 

 1
ln t

t

u yu
B

u vκ
⎛ ⎞= +⎜ ⎟
⎝ ⎠

                          (9) 

Equation 9 defines a non-linear function that re–
quires an iterative procedure to determine the friction 
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velocity. Equation 5 is used to solve the friction velocity 
using an iterative procedure. The corresponding 
turbulent viscosity is computed once the friction 
velocity is known, thus allowing the momentum and 
turbulence model equations to be solved. However, in 
finite volume codes, the iterative procedure is repeated 
for each face on the wall boundary resulting in the 
complex implementation of wall functions and incre–
ased computational expense. 

Prandtl's law of the wall is an example of an 
implicitly defined wall function. Even a deceptively 
simple expression of Equation 5 requires an iterative 
procedure to compute the friction velocity and the wall-
shear stress. Prandtl's law of the wall is not commonly 
used in the definition of wall functions as it ignores the 
buffer zone. Ignoring the buffer layer leads to inaccurate 
results of wall-shear stress in situations when the non-
dimensional wall distance falls within the range of the 
buffer zone. Moreover, Prandtl's law of the wall was de–
rived under the assumption of the zero pressure gradient. 
Most practical flows will have pressure gra–dient gra–
dients in the near-wall region rendering the wall function 
based on Prandtl's law inaccurate or completely wrong. 

 In an attempt to define a continuous expression for 
the law of the wall with zero pressure gradient that takes 
into account the buffer zone, Spalding [17] proposed the 
following form of the law of the wall: 
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While Spalding's proposal is an improvement over 
Prandtl's law of the wall, an iterative procedure is required 
to evaluate the friction velocity. The iterative procedure 
typically employed to compute the friction velocity from 
Equation 10 is Newton iterations.A quadratic convergence 
characterizes Newton iterations if a suitable initial 
condition is used to start the iterations. Due to its quadratic 
convergence, Newton iterations converge within several 
iterations. However, if the initial value of the iterations was 
not within the radius of convergence, Newton iterations 
diverge very quickly. The divergence of the iterative 
procedure may lead to incorrect values of friction velocity 
and consequently to errors in turbulent viscosity near the 
wall. The divergence in Newton iterations does not 
necessarily lead to the overall divergence of the CFD 
simulation. Instead, the iterations may produce erroneous 
values that are hard to detect and correct. 

Given that the Newton linearization of Equation 
10must be implemented in computational codes, it is 
safe to state that code complexity may be significant. In 
addition, the Newton iterations must be done for each 
face of a finite volume on the boundary leading to 
increased computational cost. Finally, Spalding's wall 
function does not include pressure gradient, thus leading 
to significant errors for non-equilibrium boundary layer 
flows. 

Pieringer and Sanz [25] sought to improve upon 
Spalding's wall function by incorporating the shear-
stress distribution perpendicular to the wall surface, 
mainly determined by pressure gradients. However, 
their model still requires an iterative approach to cal–
culate shear stress. 

Spalding's proposed form of the law of the wall 
resulted in a non-linear function that contained expo–
nential terms. To simplify the law of the wall while 
providing a unified expression valid in all regions of the 
boundary layer, Musker [18] proposed the following 
function: 

( )3
1 1 1

, 0.001093, 0.41
t tt

C
v yc y

κ
κ+ ++

= + = +   (11) 

The simplifaction proposed by Musker was based on 
the inverse weighting of two different functions. The 
first function represented the inertial region of the bou–
ndary layer given by the following expression 

( ) ( )31 t tf y C y+ +=    (12) 

While the first function was suitable for the laminar 
sublayer 

 ( )2 t tf y yκ+ +=     (13) 

The inverse function weighting of the buffer zone 
was postulated to be well approximated. The smooth 
transition is obtained between two regions, namely the 
laminar sublayer and the inertial layer. 

Musker's law of the wall provides the correct scaling 
of the turbulent viscosity close to the wall in the wall-

normal direction, namely  ( )3~t tv y+ +  . The proposed 

turbulent viscosity function was used together with 
Reynolds averaged momentum equations to produce the 
dimensionless velocity gradient given by the expression 
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Equation 14 was integrated to yield the law of the 
wall as follows: 
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Despite the simplifying assumptions used in the 
derivation of Equation 15, an iterative procedure is still 
needed to compute the friction velocity. Therefore, the 
Newton iterations may diverge similarly as in the case of 
Spalding's law of the wall. Furthermore, Musker's law of 
the wall did not include pressure gradients, and it is not 
suitable for non-equilibrium boundary layer flows. 
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The law of the wall proposed by Werner and Wengle 
[19, 26] provided an explicit formula for computing the 
non-dimensional velocity as follows 

tr u y+ + +=             (16) 

3
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dpv
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+ =    (17) 

The proposed formula was based on the piece-wise 
expression that is valid for all values of  ty

+ . Moreover, 
Werner and Wengles's law of the wall yields the 
following expression for the wall-shear stress: 
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The proposed law of the all has been widely used in 
practical computations due to its ability to avoid 
iterative procedures to compute friction velocity and 
wall shear stress.However, the proposed law of the wall 
has several drawbacks. The first drawback is that it does 
not include the effect of pressure gradients. The second 
drawback is that the piece-wise expression does not lead 
to a smooth transition from the laminar sublayer to the 
inertial region in the buffer zone. Finally, the proposed 
law of the wall is not accurate for very large values of  
yτ
+ . Therefore, despite its simplicity and computational 

efficiency, Werner and Wengle's law of the wall should 
only be used in specific applications to avoid errors.  

Similarly, wall functions proposed by von Karman 
[27], Deissler[28], Rannie [29], and Reichardt [30] 
suffer from the same problem of not including the 
pressure gradient in its formulation and needing the 
Newton iterations to evaluate the wall-shear stress. 

Alternative approaches to defining the explicit law 
of the wall include direct integration of boundary layer 
equations [31] and transported turbulence quantities to 
obtain the friction velocity. For example, if k–ε  
turbulence models [7, 32-34] are used in simulations, it 
is possible to employ the following expression to 
compute the friction velocity directly from the 
transported quantities:  

1 1
4 2 , 0.09tu C k Cμ μ= =    (20) 

Equation 20 applies only to models that evaluate 
turbulent kinetic energy. In addition, the turbulent 
kinetic energy requires a wall function that sets the 
correct behavior near the wall. The wall function for k 
as a function of ty

+  must be carefully chosen to obtain 
the correct scaling of turbulent viscosity in the near-wall 

region, i.e., ( )3~t tv y+ + .The absence of pressure gra–

dient in the definition of the wall function for turbulent 
kinetic energy makes this approach unsuitable for non-
equilibrium boundary layer flows. 

The direct integration of Equation 5 was proposed 
by Kalitzin et al. [31]. The simplified RANS equations 
for the boundary layer flow were integrated using a 
numerical method for a range of values of non-
dimensional wall distance ty

+ . The computed values of 
the non-dimensional velocity u+ were then tabulated to 
obtain the implicitly defined law of the wall. The 
implicit nature of the tabulated solution is due to the 
mutual dependence of non-dimensional wall distance 
and the velocity on the friction velocity. Kalitzin et al. 
proposed to define a new variable  

tr u y+ + +=    (21) 

The proposed variable avoids the implicit nature of the 
tabulated solution as it eliminates the friction velocity from 
its expression. Therefore, the non-dimen–sional velocity 
was tabulated against the new variable as this approach 
allowed direct evaluations of the wall-shear stress. Using 
tables to obtain the solution for the velocity u+ avoids the 
need for the numerical solution of the simplified RANS 
equation. However, an interpolation procedure is required 
to evaluate the table values for any intermediate values of 
r+ that were not precom–puted. The interpolation proce–
dure inevitably introduces the error due to interpolation 
that can be reduced if the solution is obtained on a larger 
number of integration points. The main advantage of the 
tabulated method is using the new variable to avoid 
Newton iterations. However, the drawback of the method 
is that the resulting table did not depend on the pressure 
gradients making the approach unsuitable for non-equili–
brium boundary layer flows. Despite its drawbacks, the use 
of the new variable paved the way for redefining the wall 
of the law into its explicit form proposed in this work. 

 
2.2 Non-zero-pressure gradient wall functions 
 
The inclusion of pressure gradients in the formulation of 
wall functions is of great importance for practical flow 
simulations. Therefore, wall functions that include pres–
sure gradients in their formulation are commonly known 
as generalized or non-equilibrium wall functions. 

Such wall functions and other attempts to incor–
porate pressure gradients into the law of the wall are 
described extensively in the literature [20, 23, 35-42]. 
Kim and Choudhury [20] relied on the two-layer 
approach described by Launder [33]. They created an 
expression that includes a logarithmic velocity function 
of the kinetic energy. A description of shear stress based 
on this expression necessitates information about the 
turbulent kinetic energy within the boundary layer. A 
more generalized form of the wall function in [20] is 
presented in Equation 22, which does not require 
turbulent kinetic energy transport computation.   

UC
+  (22) 

where p+ is defined as follows 

3
t

dpv
p

dxuρ
+ =                 (23) 
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Equation 22 still requires an iterative procedure to 
calculate wall shear stress and is implicitly defined. In 
addition, the expression is inconsistent withthe expe–
riment for large values of ty

+  in larger pressure gra–
dients. A non-equilibrium wall function proposed by 
Röber [22] combines the analytical expression for the 
viscous sublayer with a van Driest damping function. 
However, similarly to that proposed by Kim and 
Choudhury, the wall function is limited in utility to 
smaller values of ty

+  and still requires an implicit pro–
cedure for evaluation. Other attempts to improve the 
accuracy of these wall functions come in the form of 
three-zonal wall functions, such as that proposed by 
Chmielewski and Gieras [43], which is more accurate in 
modeling the mean streamwise velocity profile. How–
ever, because it still models the inner and outermost 
portions of the boundary layer in the same manner as 
more two-zonal wall functions, it faces many of the 
same limitations.  

 A slightly different approach to non-equilibrium 
wall functions comes from Duprat et al. [44], which 
relies on velocity scaling and van Driest damping. This 
combination allows for a continuous wall function [45]. 
Despite this utility, it is still an implicit method and 
requires an iterative procedure for friction velocity. In 
addition, it is similar to those methods proposed by 
Kim, Choudhury, and Röber, as it deviates from 
experiments for large wall distance values.  

 A non-equilibrium wall function that includes 
acceleration terms was developed by Popovac and 
Hanjalić [21]. The wall function is described in 
Equations 24-26 where E = eBκ and UC

+  and a 
simplified form is shown in Equation 27. 

1
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           (27) 

The above-generalized wall function is accurate in 
various flow regimes, including recirculation zones [46, 
47], but requires an iterative calculation of wall shear 
stress. Additionally, the wall function will compute 
negative values of velocity at large ty

+  in environments 
with large adverse pressure gradients. In environments 
with large favorable pressure gradients, the generalized 
expression will diverge from experimental data and 
overestimate velocity values. As with all other non-
equilibrium wall functions discussed so far, it is 
unbounded for large ty

+ . 
 One wall function that is not unbounded for large 

ty
+ was proposed by Shih et al. [23]. The model uses a 

velocity scale that incorporates the effects of both 
viscosity and gradients of pressure. The model also 
blended the buffer region to ensure a continuous wall 
function across all values of ty

+ . The model proposed 
by Shih was based on work done by Lumley [13] and 
shows excellent agreement with the experiment for a 
wide range of pressure gradients and ty

+  values. How-
ever, the model is limited in its applications due to its 
complex implementation. The model itself is also 
implicit. While several works have improved upon the 
model proposed by Shih, including that by González et 
al. [48] and Hickel et al. [49], these works also contain 
similar complexity in implementation and the need for 
an iterative procedure.  

 Except for the Werner and Wengle formulation [19, 
26], all wall functions proposed in the literature require 
an iterative procedure to calculate wall shear stress. The 
Werner and Wengle formulation is not applicable for 
flows with a pressure gradient. So a new wall function 
must be developed to have a globally applicable model 
that does not require an iterative procedure. In previous 
works, attempts to do this were limited by the use of 

ty
+  and u+, which are both functions of friction velocity 

ut. Thus, a novel transformation of variables is required 
to circumvent the need for an iterative procedure. This 
transformation of variables allows for converting the 
generalized Shih et al. model into an explicit for–
mulation. The Shih et al. model was chosen as it agrees 
with the experiment for a broad range of wall distance 
values and incorporates pressure gradient effects.   
 
3. TRANSFORMATION OF VARIABLES 
 
Kalitzin et al. indicated that using the new variable 
defined as a product of the non-dimensional velocity 
and wall-distance given by Equation 28 removes the 
need for the iterative procedure to compute the friction 
velocity. The proposal of Kalitzin defines an approach 
to formulating wall functions that satisfy the requi–
rement for non-iterative evaluation of wall shear stress. 
The non-iterative evaluation of the wall shear stress was 
one of the present work's goals stated in the introduction 
section. However, the relationship defined by Equation 
28 is not a simple convenience expression. Therefore, to 
see the meaning of the new variable, the new local 
velocity scale is introduced as follows: 
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ˆ v
u
y

=    (28) 

The proposed form of the velocity scale is obtained 
from the dimensional arguments, and it is used to define 
a normalized time-averaged velocity denoted by the 
symbol r+ as follows: 

ˆ
u

r
u

+ =                                  (29) 

Therefore, the new variable represents the norma–
lized velocity in the boundary layer related to non-
dimensional velocity and wall-distance through Equa–
tion 28. 

The newly defined variable was used in this work to 
define a variable transformation to define the law of the 
wall in an analytical instead of a tabulated form suitable 
for the non-iterative evaluation of the wall-shear stress. 
Starting from the incompressible boundary layer 
equation 
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+ +
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the new form of the incompressible boundary layer 
equation in new variables is obtained as follows: 

( )1 t tdu dr p r dyη+ + + + + ++ = +            (32) 

Here tη
+  is the transformed normalized turbulent 

viscosity defined as 

( )1 1t t tu v yη+ + + += + + −              (33) 

Equations 30 and 32 are equivalent and can be 
transformed into each other with the help of the 
differential identity 

( ) ( )t t td r d u y y du u dy+ + + + + + += = +    (34) 

Equation 32 represents the differential equation in a 
new set of variables. To get the law of the wall in the 
new set of variables, Equation 32 has to be integrated. 
The transformedlaw of the wall in new wall units is 
equivalent to the law in traditional wall units. The equi–
valence was demonstrated in Appendix A and B for 
Prandtl's and Musker's hypotheses.   

 
4. GENERALIZED WALL FUNCTION FORMULATION 

IN NEW VARIABLES 
 
Generalized wall functions were proposed by Shih et al. 
[23, 35] to include pressure gradients in the law of the 
wall. The proposal by Shih is taken in this work to 

satisfy the second requirement that wall functions must 
apply to equilibrium and non-equilibrium boundary 
layer flows. The main idea of generalized wall functions 
was to introduce a new velocity scale that describes 
both viscous and pressure effects. The symbol uc  
denoted the new velocity scale, and it is used to scale 
the linearized streamwise RANS equation as follows: 

w wdpyu
v u v
y dx

τ
ρ ρ

∂ ′ ′− = +
∂

  (44) 

and obtain the generalized solution of the law of the 
wall with pressure gradients effects [23] 

1 22
p pw t t

C C
c c c c ct

dp
u uu uu dxf y f y

dpu u u u uu
dx

τ
ρ

+ +⎛ ⎞⎛ ⎞
= + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

  (45) 

where the new velocity scale was defined as 

c t pu u u= +                (46) 

where uc is the new velocity scale, ut is the friction 
velocity, and up is the pressure gradient velocity. Fric–
tion velocity was defined using the familiar expression 

w
tu

τ
ρ

=           (47) 

And the pressure gradient velocity was defined by the 
following expression 

1
3w

p
dpv

u
dxρ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                         (48) 

The new velocity scale gives rise to the new 
definition of the non-dimensional wall-distance variable 

c
c
u y

y
v

+ =    (49) 

The new non-dimensional wall-distance variable is 
more general as it includes both friction and pressure 
effects in its definition. The new non-dimensional wall-
distance definition is in sharp contrast to the classical 
non-dimensional wall-distance variable that neglects 
any pressure effects.  

The general solution in Equation 44 consists of two 
linearly additive parts. The linearly additive nature of 
the solution allows forthe separation of Equation 44 into 
two components [13, 23]: 

    ( )1
1

wu
v u v
y

τ
ρ

∂ ′ ′− =
∂

   (50) 

( )2
2

wdpu y
v u v
y dyρ

∂ ′ ′− =
∂

     (51) 

The corresponding solutions of Equations 50 and 51 
read 

( )1
12

w
t

r t

u
f y

u u

τ
ρ

+=                    (52) 
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( )2
23

w

p
p p

dp
u v dx

f y
u uρ

+

⎛ ⎞
⎜ ⎟
⎝ ⎠=       (53) 

Equations 51 and 53 give rise to a new normalized 
wall distance  

p
p
u y

y
v

+ =      (54) 

accounting for pressure effects. 
The ability to separate Equation 44 into two com–

ponent equations accounting for friction and pressure 
effects results from introducing the new velocity scale 
and the linearization of the initially non-linear momen–
tum equation. One significant advantage of the for–
malism used in Shih et al. is the complete separation of 
friction and pressure effects, allowing for their separate 
treatment. Therefore, in principle, it is possible to vali–
date any hypothesis for the friction part independently of 
the pressure part of the solution. Such property allows for 
great flexibility and allows, for example, the use of 
Musker's hypothesis in a generalized wall function.  

The law of the wall given by Equation 45 was 
defined in terms of the new velocity scale uc, which is 
difficult to use directly. Therefore, the reformulation of 
the generalized wall function was proposed in this work 
to simplify the evaluation of the friction velocity. The 
new function sgn(arg), defined as having a value of+1 if 
arg > 0 and -1 if arg < 0, was introduced in Equation 45 
to simplify the notation  

( ) ( ) ( )1 2sgn sgn
pwr

w t p
c c c

udpuu
f y f y

u u dx u
τ + +⎛ ⎞= + ⎜ ⎟

⎝ ⎠
  (55) 

Regrouping the terms in Equation 55 and solving for 
the friction velocity yields the following definition of 
friction velocity 

( ) ( )
( ) ( )

2

1 1

sgn

sgn

w
p p

t
t

dp
u u f y

dx
u

u f y

+

+

⎛ ⎞− ⎜ ⎟
⎝ ⎠=                   (56) 

Additional manipulations of Equation 56 provide a 
simplified  expression for the friction velocity: 

( ) ( )
( ) ( )

2

1 1

sgn

sgn

w
p p

t
t

dp
u u f y

dx
u

u f y

+

+

⎛ ⎞− ⎜ ⎟
⎝ ⎠=                (57) 

Equation 57 is a new form of friction velocity that is 
very convenient for evaluating the friction velocity. Ho–
wever, it should be noted that Equation 57 is still an 
implicit function, and Newton iterations are required to 
evaluate it.  

In Shih et al. [23, 35], the solution to the friction 
part of the law of the wall given by Equation 57 was 
based on the experimental observation, and the corres–
ponding curve fit as follows: 
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  (58) 

The pressure part of the law of the wall was defined 
to be 
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Since the friction part of Equation 57 given by 
Equation 58 depends on the friction velocity, it has to be 
transformed into a new set of coordinates to allow an 
explicit evaluation of the friction velocity. Therefore, a 
transformed function g1(r+) was introduced into Equa–
tion 57 to make it explicit: 

( )
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  (60) 

With the help of the function g1(r+), the explicit 
expression for the wall-shear stress was defined as 
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Equation 61 enables the wall-shear stress evaluation 
in a new wall unit r+ that is independent of friction 
velocity. Therefore, the proposed form of wall-shear 
stress is very convenient for implementation in CFD co-
des. It requires exactly one function evaluation without 
iterations to calculate the value of the local wall-shear 
stress on finite volume face at the wall boundary. 
Equation 61 was previously unknown and represented 
the significant finding proposed in this work. 

 
5. ILLUSTRATIVE EXAMPLES OF WALL FUNC–

TIONS IN TRANSFORMED VARIABLES 
 
A demonstration of the usefulness of the findings in this 
work is necessary to show its applicability to relevant 
problems. To illustrate this, numerous examples were 
compiled, each of which was solved using the gene–
ralized wall functions in the new set of proposed 
variables. In the examples described in the following 
sections, the k-ω SST model [21] was used to calculate 
the turbulent viscosity field, μt. The governing equations 
used in the k-ω SST model are described in equations 
D1-D3 in Appendix D. Boundary conditions far from 
the way were prescribed as in [21]. Boundary conditions 
near the solid wall were defined based on the asym–
ptotic near-wall behavior of transport equations for both 
k and ω [31]. The definition of boundary conditions 
allowed for a well-posed problem with a specified no-
slip condition at the wall.  
 The following sections focus on computations that 
are not wall-resolved, meaning that the mesh cell im–
mediately adjacent to the wall produces a y+ value 
greater than 1. Equation 61 was used to determine wall 
shear stress for the meshes, and k and ω fields near the 
wall were specified according to equations D1-D6 in 
Appendix D.  

The two studies demonstrating the new non-equi–
librium wall functions were flow over a backward-
facing step [50] and a diffuser [51]. Both are examples 
of flow with an adverse pressure gradient and separation 
for which there are quality experimental measurements. 
They are thus ideal for validating applications of the 
wall function boundary conditions as defined in Equa–
tions 61, D4, and D5.  

Caelus, a second-order finite volume solver library, 
was used in all computational studies [52, 53]. A 
second-order upwind discretization methodology was 
used for the convective terms of the momentum and 
turbulence equations, while a central discretization 
scheme was used for the diffusive fluxes [54]. Four 
meshes with various grid resolutions were created by 
successive uniform mesh refinement. Uniform mesh 
refinement was used to maintain a constant aspect ratio 
for all cells across the four meshes while allowing for 
varying values of yτ

+ . The computational setup allowed 
for a parametric evaluation of the proposed general wall 

functions. A k - ω SST transport model [55] was used in 
each computation, but the proposed wall functions are 
not limited to one turbulence model. They can be app–
lied to other equilibrium and non-equilibrium turbulence 
models. 

 
5.1 Backward-facing step study 
 
Driver and Seegmiller collected extensive experimental 
data on flow over a backward-facing step, including 
information about various top wall deflections [50]. 
Changing the top wall deflection angle affected the 
pressure gradient of the step, which in turn impacted the 
reattachment point of the flow. The computation in this 
work focused on a zero-angle deflection of the top wall. 
Results from the calculation were compared with reat–
tachment point measurements, pressure and friction 
coefficients along the top and bottom walls, and velocity 
profile measurements provided by Driver and Seegmiller.    

 The mesh used in the computation consisted of a 
hexahedral mesh 40h upstream and 50h downstream of 
the step, where h is the height of the step. The 
dimensions were chosen to ensure that the flow was not 
influenced by boundary conditions. The mesh height 
was 8h upstream of the step and 9h downstream. A 
magnified section of the 65,000 cell mesh, centred on 
the backward-facing step, is shown in Figure 1, along 
with relative domain dimensions.  

 
Figure 1. Detail of Backward-facing step mesh. All spatial 
dimensions were normalized by the step height, h. 

Atmospheric pressure and temperature were used for 
inlet boundary conditions. The inlet velocity was 
44.2m/s, and the turbulence intensity value was 0.061%. 
The number of elements, as well as the yτ

+ value at the 
wall for each mesh, is shown in Table 1.  
Table 1. Mesh size (N), wall spacing (yt

+), and aspect ratio 
(AR) are used in mesh refinement study simulations. The 
mesh aspect ratio (AR) was held constantan the refinement 
process. 

Grid Refinement Level    
1 16,000 30 
2 65,000 15 
3 261,000 6 
4 1,046,000 3 

 
The following figures compare experimental and 

computational results for the various grid refinement 
levels. Figure 2 shows the computed and experimental 
friction coefficients at the lower wall for a normalized 
axial distance ranging from x/h = -5 to x/h = 35. The 
largest error occurs for the mesh with yτ

+  = 30 and ste–
adily decreases with mesh refinement. Despite the imp–
rovement, all meshes underpredict the friction coeffi–
cient for 0 ≤ x/h ≤ 5. However, the shapes of the 
computed and experimental curves are in good agree–
ment for all meshes.  
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Figure 2. The friction coefficient (Cf) over the lower wall(x/h 
= -5 to 35) comparison to experiments. Solid circles are 
experimental measurements of Driver and Seegmiller [50]. 
Lines represent simulation results with symbols: square – 
yt

+ = 30, triangle – yt
+ = 15, diamond – yt

+ = 6, and x – yt
+ = 3. 

Figure 3 shows a comparison between computed and 
experimental lower wall pressure coefficients. As with 
the friction coefficients, the shapes of the computed and 
experimental pressure coefficients are in good agreement.  

 
Figure 3. Comparison ofpressure coefficient (Cp) and expe–
rimental values.Filled circles [50] and simulated – square – 
yt

+ = 30, triangle – yt
+ = 15, diamond – yt

+ = 6, and x – yt
+ = 3. 

Figures 4 to 7 show comparisons of the experi–mental 
and simulated velocity profiles at various nor–malized 
axial distances. As shown, simulated results agree well 
with experimental data for x/h = -4, x/h = 1 and x/h = 4. 
The mesh with yt

+ = 30 differs from the other mesh 
results and experimental data for predictions of the 
location of zero velocity but is otherwise consistent. 
Differences between computations and experiments grow 
in magnitude at locations of x/h = 6  and larger. 

 
Figure 4. Streamwise velocity distributions at the location 
x/h = -4 as the function of normalized wall distance, y. The 
velocity was normalized by the reference velocity, Uref, 
defined in Reference [50] for each simulation. 

 
Figure 5. Streamwise velocity distributions at the location 
x/h = 1 as the function of normalized wall distance, y,. The 
velocity was normalized by the reference velocity, Uref, 
defined in Reference [50] for each simulation. 

 
Figure 6. Streamwise velocity distributions at the location 
x/h = 4 as the function of normalized wall distance, y,. The 
velocity was normalized by the reference velocity, Uref, 
defined in Reference [50] for each simulation.  

 
Figure 7. Streamwise velocity distributions at the location 
x/h = 6 as the function of normalized wall distance, y,. The 
velocity was normalized by the reference velocity, Uref, 
defined in Reference [50] for each simulation.  

5.2 Asymmetric Plane Diffuser Study 
 
Experimental data for asymmetric flow in a plane 
diffuser [56] was collected by Obi and Matsuda [51]. 
The experiment analyzed fully turbulent flow, which 
causes separation and flow reattachment at the lower 
wall of the diffuser. The complex nature of the flow 
field makes simulating the turbulence behavior 
challenging for many models. In addition, separation 
regions also pose quality challenges for evaluating and 
testing wall functions.  
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 The mesh used in the computation consisted of a 
hexahedral mesh. All dimensions were normalized by 
the channel height, h. The expansion ratio of the 
diffuser is 4.7, and the flow inlet is 110h upstream. The 
outlet is 55h downstream of the plane diffuser. Figure 8 
shows the 20,000 element mesh with relevant domain 
dimensions.  

 
Figure 8. Computational mesh for the plane diffuser with 
20,000 cella. 

The boundary conditions used in the simulation were 
identical to those used in [51]. The inlet velocity was u 
= 0.3 m/s and the turbulent kinetic energy and specific 
dissipation rate were as k = 0.2945755 m2/s2 and ω = 
97.37245 1/s, respectively. The walls were modelled 
using the no-slip conditions, and the zero Neumann 
condition was applied to the flow outlet.  

The computation was run on four different meshes, 
beginning with a coarse mesh that underwent successive 
uniform grid refinement to produce the other three 
meshes. The refinement was performed to ensure that 
the cell aspect ratio remained constant for all meshes. 
The four meshes, along with the number of elements 
and yt

+ for each, is shown in Table 2.  
Table 2. Mesh size (N), wall spacing (yt

+), and aspect ratio 
(AR) were used for the plane diffuser simulations.The mesh 
aspect ratio (AR) was held constantan the refinement 
process. 

Grid Refinement Level N yt
+ 

1 5,000 40 
2 20,000 20 
3 82,000 10 
4 332,000 5 

 
The distribution of yt

+ at the bottom wall for each 
mesh is shown in Figure 9. Figure 10 and Figure 11 
show comparisons between experimental and compu–
tational data for both pressure coefficients at the bottom 
wall and velocity profiles within the diffuser. As shown, 
the shapes of all computed curves are in good 
agreement with that of the experiment, with the largest 
error present in the yt

+ = 40 case.  

 
Figure 9. Lower wall  variations for each grid resolution. 

 
Figure 10. Plane diffuser lower wall distribution of coeffi–
cient of pressure. 

 
Figure 11. Normalized streamwise velocity profiles at x/h = 
-5.8, x/h = 2.6, x/h = 6, x/h = 13.5, x/h = 20 and x/h = 27. 

6. SUMMARY AND CONCLUSIONS 
 
A novel non-iterative formulation of wall functions that 
applies to equilibrium and non-equilibrium boundary 
layer flows was proposed. The proposed formulation 
uses a set of variables that are more useful for 
computational codes as they allow for calculating wall 
shear stress without an iterative procedure. An explicit 
form of the formulation is provided for laws of the wall 
that do and do not include the effects of pressure 
gradients. A new near-wall variable r+ was created by 
normalizing the local velocity, which allowed for an 
explicit definition of the wall shear stress. The new 
formulation was validated in two key ways. The first 
was by demonstrating that applying the new variables to 
the existing law of the wall formulations yielded the 
same established wall shear stress values. The second 
validation was through a computational study of a 
backward-facing step and a plane diffuser. Both 
computational studies demonstrated the new 
formulation's effectiveness in handling pressure gradient 
effects. In addition, the computational studies have 
shown that the new formulation converged to measured 
experimental results with sufficient mesh refinement.  

APPENDIX A: PRANDTL'S LAW OF THE WALL IN 
NEW VARIABLES  

The differential equation for the boundary layer flow in 
the case of zero-pressure gradient flow is defined to be 

( )1 , 0t tv du dy p+ + ++ = =   (A1) 
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Prandtl's hypothesis stated that in the laminar sub–
layer, the turbulent viscosity is negligible, i.e. 

1tv
+    (A2) 

Substitution of Equation A2 into Equation A1 yields 
the following expression for the laminar sublayer  

tdu dy+ +=                               (A3) 

The solution of Equation A3 defines the law of the 
wall for the laminar sublayer portion of the boundary 
layer under Prandtl's hypothesis: 

 , 5t tu y y+ + += <                        (A4) 

Equivalently, the transformed viscosity under the 
same assumptions becomes 

 1t tu yη+ + += + −                  (A5) 

The differential equation of the laminar sublayer is 
defined to be  

( )tu y du dr+ + + ++ =    (A6) 

Using Equation A4, the differential equation was 
integrated to read 

2, 5u r r+ + += ≤    (A7) 

Equation A7 defines the law of the wall for the 
laminar sublayer in terms of new variables. 

Prandtl's hypothesis postulates that the normalized 
turbulent viscosity is much greater than unity in the 
inertial region of the boundary layer  

1tv
+    (A8) 

therefore, the normalized transformed turbulent visco–
sity becomes 

1t t tu v yη+ + + += + −    (A9) 

Using the normalized transformed viscosity expre–
ssion in the transformed RANS equation of boundary 
layer flow yields the following expression: 

( )t tu v y du dr+ + + + ++ =                (A10) 

Prandtl's hypothesis for the inertial region in new 
variables takes the new form  

t t
t
k r y

v
u

+ +
+

+
−

=    (A11) 

where kt was defined to be 

1
tk

u
κ

+
= +   (A12) 

The solution of Equation A10 is  

( ) 21
ln , 10.8u r C r

κ
+ + += + ≥   (A13) 

The contribution of the normalized velocity to kt is 
negligible for large r+ values. The function kt is appro–
ximated by a constant value obtained from the curve fit 

1
, 0.7576

2.1108tk C= =   (A14) 

The Comparison between the law of the wall in wall 
units and transformed variables is shown in Figure A1. 
The agreement between the two curves is excellent. 
Therefore, it is possible to use new variables to obtain 
the classical results under the same hypothesis. 
However, the significant advantage of the newly defined 
law of the wall is that the Newton procedure is not 
needed to evaluate the wall shear stress directly. It 
should be noted that the laminar sublayer region was 
extended through the buffer zone for convenience. 

 
Figure A1. Comparison of the original and transformed wall 
functions. The solid line labeled f(yt

+) corresponds to the 
wall function defined with respect to yt

+ given by Equation 
A4 and Equation A7. Dashed line labeled g(r+) corresponds 
to the wall function defined as a function of variable r+ and 
given by Equation A4 and Equation A7. The viscous 
sublayer solution was extended to values yt

+ ≤ 10.8 for 
comparison purposes. The dashed lines indicate the 
percent error from the law of the wall. 

APPENDIX B: MUSKER'S LAW OF THE WALL IN 
NEW VARIABLES  

 
Musker's law of the wall was based on the inverse 
weighting between the logarithmic region and the buffer 
zone profiles to obtain one continuous representation of 
the law of the wall valid for all values of non-dimen–
sional wall distance. It is possible to apply the same 
approach used in Prandtl's hypothesis to express the 
profile in new variables. However, a curve fitexpresses 
Musker's profile in new variables. Curve fitting is a 
general approach to expressing the law of the wall cor–
responding to any underlying hypothesis in new 
variables. In general, the curve fit minimizes the error in 
the least-squares sense. Therefore, all that is needed is 
the expression of the law of the wall that is used to 
evaluate the function for various values of the non-
dimensional wall distance. In the case of Musker's 
function, the law of the wall becomes 



234 ▪ VOL. 50, No 2, 2022 FME Transactions
 

 

( ){

( )
( )

( )

2
2

2

1 1

1
ln 4

4

2 5 4
ln

2

tan tan

r a
u a

k a a

a r
a

r a

r

α α
α

α β
α α

β
α

α α
β β

+
+

+

+

+
− −

⎛ ⎞+⎜ ⎟= + −
⎜ ⎟ +
⎝ ⎠

⎡ ⎤⎡ ⎤
− +⎢ ⎥⎢ ⎥

−⎢ ⎥⎢ ⎥⎣ ⎦ +⎢ ⎥
⎢ ⎥+
⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎫⎤⎛ ⎞− ⎪⎢ ⎥⎜ ⎟ + ⎬⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎪⎦⎭⎝ ⎠⎣ ⎦

  (B1) 

Various symbols appearing in Equation B1 are defi–
ned as follows 

2
1 1
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a l
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= + +    (B2) 

1
3 3

3

3

4

4 27
1 2 2727 , 0.23
2 54

8.347 10

s c
s ccl c

cs c s

s −

⎛ ⎞+⎜ ⎟
+⎜ ⎟= + =⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠

= ×

  (B3) 

2 21
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c
α α β α α= − = −   

Equation B1 does not need any iterations to evaluate 
the friction velocity since the new form of Musker's 
function defines an explicit relationship between u+ and 
r+. Therefore, only one evaluation of Equation 50 is 
required per face of the finite volume lying on the wall 
boundary.  

 
Figure B1.Comparison of the original and transformed wall 
functions.The solid line with diamonds corresponds to that 
incompressible boundary layer in new units, Equation B1. 
The solid line with circles is Musker's function. The dashed 
lines indicate percent error from Musker's law of the wall.  

APPENDIX C: k - ω SST TURBULENCE MODEL 

Turbulent viscosity field μt must be known to close 
the momentum equation. In this work, the turbulent 

viscosity field was computed by solving the k - ω SST 
transport equations [55]. The following expressions give 
the k - ω SST turbulence model for incompressible 
flows: 

( ) ( )

( )

*j

j

k t
i i

u kk
P wk

t x

k
x x

ρρ
β ρ

μ σ μ

∂∂
+ = − +

∂ ∂

⎡ ⎤∂ ∂
+ +⎢ ⎥∂ ∂⎣ ⎦

  (C1) 

( ) ( )
(

) ( )

2

2
12 1

j

j t j

t
i i i

u
P

t x v x

k
F

x x x
ω

ω

ρ ωρω γ βρω μ

ρσω ωσ μ
ω

∂∂ ∂
+ = − + +⎡⎣∂ ∂ ∂

⎤∂ ∂ ∂
+ −⎥∂ ∂ ∂⎦

 (C2)  

with the following definitions of terms in Equation C1 
and Equation C2: 

i
ij

i

u
P

x
τ

∂
=

∂
   (C3) 

2ij t ijSτ μ=    (C4) 

( )
1

2max , ,t
a k
a F
ρ

μ
ω

=
Ω

   (C5) 

( )41 1tanhF ζ=    (C6) 

tv
+   (C7) 

( )22 2tanhF ζ=   (C8) 

2 * 2
500

max 2 ,
k v

d d
ζ

β ω ω

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
  (C9) 

2 ij ijW WΩ =    (C10) 

1
2

ji
ij

i i

uu
W

x x

∂⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

   (C11) 

Values of constants used in computational studies in 
this work are as follows: 
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APPENDIX D:  k - ω BOUNDARY CONDITIONS  

The behaviour of specific dissipation rate and 
turbulent kinetic energy in the boundary layer was 
specified as follows:  

I. The specific dissipation field ω+ in the laminar 
sublayer of the turbulent boundary layer is 
given by: 
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 ( )26
vis

i
yω

β
+ +=                        (D1) 

 
2
r

v

u

ωω+ =                               (D2) 

II. The ω+ in the logarithmic region of the turbulent 
boundary value is given by [25]: 

log
1

, 0.09C
C y

μ
μ

ω
κ

+
+

= =   (D3) 

III. The intermediate region between the laminar 
sublayer is given by: 

2 2
logvisω ω ω+ + ++ +            (D4) 

IV. The  in the boundary layer was defined as 

 tk v ω+ + +=                             (D5) 

2
r

k
k

u
+ =                              (D6) 
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NOMENCLATURE  

k Turbulent kinetic energy 
k+ Normalized turbulent kinetic energy 
pw Pressure at the wall 
p+ Normalized pressure 
r+ Normalized local averaged velocity 

u Stream-wise component of time-averaged 
velocity 

uC Velocity scale related to viscous and 
pressure effects  

up Velocity scale related to pressure effects 
ut Friction velocity 
u+ Non-dimensional velocity 
y Distance in the wall-normal direction 
y+ Non-dimensional wall-normal distance 

Greek symbols 

tη
+  Transformed normalized turbulent viscosity 

μt Local turbulent viscosity 
v Molecular kinematic viscosity 
vt Turbulent kinematic viscosity 

tv
+  Non-dimensional turbulent kinematic 

viscosity 
ρ Fluid density 
σij Viscous stress tensor 
τw Wall shear stress 
ω Specific dissipation 
ω+ Normalized specific dissipation  

 
 

ФОРМУЛА НЕИТЕРАТИВНОГ МОДЕЛА ЗИДА 
ЗА НЕРАВНОТЕЖНЕ ТОКОВЕ ГРАНИЧНОГ 

СЛОЈА 
 

A. Јемцов, Ј.П. Гонзалес, Ј.П. Марусзевски,  
Р.Т. Кели 

 
Предложена је нова неитеративна формулација 
генерализованих функција зида која се примењује 
на равнотежне и неравнотежне токове граничног 
слоја. Предложена формулација користи скуп вари–
јабли које су корисније за рачунске кодове јер омо–
гућавају израчунавање напона на смицање зида без 
итеративне процедуре. Поред тога, предвиђена је 
експлицитна форма формулације која се користи за 
законе зида са и без градијента притиска. Нова 
трансформација варијабле трансформише функцију 
зида у нови облик који поједностављује имплемен–
тацију и процену напона на смицање зида у 
рачунарским кодовима. 

 

 
 

 

 


