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Vertical Wind Speed Extrapolation 
Using Regularized Extreme Learning 
Machine 
 
The cost of measuring wind speed (WS) increases significantly with mast 
heights. Therefore, it is required to have a method to estimate WS at hub 
height without the need to use measuring masts. This paper examines using 
the Regularized Extreme Learning Machine (RELM) to extrapolate WS at 
higher altitudes based on measurements at lower heights. The RELM uses 
measured WS at heights 10-40 m to estimate WS at 50 m. The estimation 
results of 50 m are further used along with the measured WS at 10-40 to 
estimate WS at 60 m. This procedure continues until the estimation of 180 
m. The RELM's performance is compared with the regression tree 
(RegTree) method and the standard 1/7 Power Law. 
The proposed algorithm provides an economical method to find wind speed 
at hub height and, consequently, the potential wind energy that can be 
generated from turbines installed at hub height based on measurements 
taken at much lower heights. Moreover, these methods' extrapolated values 
are compared with the actual measured values using the LiDAR system. 
The mean absolute percentage error (MAPE) between extrapolated and 
measured WS at the height of 180 m using measurements at the height of 
10-40 m using RELM, RegTree, 1/7 Power Law, and Power Law with 
adaptive coefficients is 13.36%, 16.76%, 33.50%, and 15.73%, 
respectively. 
 
Keywords: Wind Speed; Vertical Extrapolation; Regularized Extreme 
Learning Machine; Regression Tree. 

 
1. INTRODUCTION 
 
Globally increasing energy requirements and 
environmental concerns due to the burning of fossil 
fuels to meet power demands have led people from all 
walks of life to utilize clean and renewable energy 
sources. The renewable sources of energy that are being 
given attention include wind, solar, geothermal, 
biomass, and ocean. The wind is one of the most 
commonly used energy sources in the present scenario 
due to its commercial acceptance and technological 
maturity. Saudi Arabia is also installing wind farms and 
has an extensive capacity buildup program by 2030. So, 
to best utilize the wind resources, its variability on a 
time scale (from minutes to hours to days, etc.) is 
critical to managing wind power economically. Among 
all the meteorological parameters, wind speed is the 
most fluctuating parameter. It changes with time of the 
day, day of the year, location, and height. Wind speed 
increases with height, specifically onshore, due to 
several near-surface human activities, air density, trees, 
buildings, surface roughness, topographical features, 
etc. [1]. However, these effects weaken with increasing 
height, and wind speed usually increases with height.  

Figure 1 shows the LiDAR system based on 
measured wind speeds at different heights at the 

Dhahran site for around 100 hours during the data 
collection period. It is to be noted that wind speed 
values at different heights follow the trend with time 
and show its fluctuating nature. Wind speed at 20 m is 
the lowest while 180 m is the highest. 

The figure shows that WS increases with height. It is 
to be noted that wind speed values at different heights 
also follow the trend with time. 

In general, higher wind speed (WS) yields higher 
energy produced by the wind turbine. Therefore, wind 
turbines with higher hub heights are chosen [2]. This 
leads to measuring WS at hub heights using wind masts 
or LiDAR-type devices to estimate energy sources 
accurately. However, both measurements require high 
costs and skilled technicians for aerodynamic and wind 
farm layout optimization [3–5]. For example, the price 
of 60 m and 80 m turbine masts are about US$45,000 
and US$85,000, respectively [6]. Generally, the hub 
heights of modern commercially available wind turbines 
vary from 80 m to 180 m for both onshore and offshore 
installations. Therefore, accurate methods are needed to 
estimate WS at a certain height using measurements at 
lower heights to make the installation investment 
advantageous and profitable. 

Several methods have been proposed to estimate WS 
at higher heights based on measurements at lower 
heights. Logarithmic and power-law methods were 
found to perform well only under stable atmospheric 
conditions [7]. Machine learning approaches have been 
used for temporal predictions of wind speed and 
pressure-correction algorithms for fast convergence [8]–
[10]. However, the estimation of WS at higher heights 
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based on measurements at lower heights is very limited. 
Turkan et al. [11] compared the performance of seven 
different machine-learning methods to find WS at 30 m 
height based on measurements at 10 m height. The 
seven methods are Support vector machine regression, 
multi-layer perceptron, radial basis function neural 
networks, Kstar, locally weighted learning, decision 
stump, and random tree. Daily average WS values at 10 
m and 30 m heights for one year at Kutahya city in 
Turkey were used in this study. Data from 11 months 
were used for training, and the data for one month was 
used for testing. The support vector machine performed 
the best among the 7 analyzed methods. However, the 
study was limited to using WS at one level (10 m) and 
extrapolating it to one level (30 m). 
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Figure 1. Samples of measured WS at various heights 

Saiful Islam et al. used two hybrid neural networks 
to estimate WS at 100 m based on measurements at 10-
40 m heights [12]. The first hybrid method used a 
genetic algorithm to find initial weights and biases, 
followed by MLP to estimate the WS at higher heights. 
The second hybrid method used particle swarm 
optimization to find the initial weights and biases, 
followed by MLP for WS extrapolation. The two-hybrid 
methods performed equally well and outperformed the 
MLP network alone. However, in the study, there were 
no measured values beyond a height 40 m, and results 
were compared to each other but not to the actual 
values. Bañuelos-Ruedas et al. [13] reviewed several 
classical non-machine learning methods to estimate WS 
at higher heights. Most of the papers dealt with WS 
vertical extrapolation for medium heights (100-120 m).  

Mohandas and Rehman used Restricted Boltzmann 
Machine (RBM) to estimate WS up to a height of 120 m 
based on 10-40m[3]. The restricted Boltzmann Machine 
(RBM) is a probabilistic model with two layers. Each 
RBM represents a pair of layers in a deep neural 
network (DNN). The RBM must be exposed to the 
training data in an unsupervised fashion (input data 
only, without target) using contrastive divergence by 
updating the weights using the difference between states 
on the same layer after taking the samples from another 
layer’s distribution. Stacking the trained RBMs provides 
near-optimal weights for DNN and prevents vanishing 
gradient problems by stacking the RMBs layer by layer.  

This paper proposes using the regularized extreme 
learning machine (RELM) method for extreme height 
(up to 180 m) WS vertical extrapolation. The proposed 
method is simple because the algorithm is only required 
to optimize the output weights. The main practical app–
lication of the proposed algorithm is to predict the WS 
ahead of time for power estimation to manage the grid 
properly. The results of the proposed method are 
compared with the regression tree, the standard 1/7 
Power Law, and the Power Law with adaptive coeffi–
cient methods for low, medium, and high height 
extrapolations. 

 
2. METHODOLOGY 
 
The extrapolation in this study uses the regularized 
extreme learning machine (RELM) method to optimize 
the model based on a single-hidden layer feed-forward 
neural network (SLFN), as depicted in Figure 2[14]. 
The extrapolation problem can be considered a reg–

ression problem with N training samples ( ){ } 1
,

N
i i i
x y

=
, 

with input vector M
ix ∈  and the corresponding desi–

red output iy ∈ . Each input vector consists of M 
elements representing the number of WS measured at 
the lower altitude. The output of the SLFN has a single 
output representing the WS at height M + 1. 

 
Figure 2. RELM for Estimation 

Assuming that the model perfectly satisfies the 
relationship between xi and yi, the SLFN with L hidden 
units is modeled by the following summation: 

( )
1

, 1,2,...,
L

j j i i
j

w x y i Nβ
=

= =∑   (1) 

where wj = [wj1, wj2, …, wjM]T is randomly initialized 
input weight vector that connects M input units to the j-
th hidden unit, and βj represents the weight that connects 
the j-th hidden unit to the output unit. The output unit 
uses a linear activation function without any bias. The N 
equations in (1) can be concisely expressed as the 
following linear system: 

H yβ =   (2) 
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with the output weights β = [β1, β2, …, βL]T and outputs 
y = [y1, y2, …, yN ]T. The hidden layer output values is 
given by the matrix H 

( )
1,1 1,

1 1

,1 1, 1

...

,..., , ,... ...

...

L

L N

N L N

h h

w w x x

h h
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

H   (3) 

Where 

,i j i ih w x=    (4) 

It can be observed from the equation above that all 
weights in Hare fixed, and we need to find the output 
weights β as solutions to the linear equation in (2) [15]. 
So, the output weights β  are given by: 

1
,

ˆ
T T

T T

y if N L
D

otherwise
D

β

−⎧ ⎛ ⎞+ >⎪ ⎜ ⎟⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪ +⎜ ⎟⎪ ⎝ ⎠⎩

I
H H H

I
H HH

 (5) 

where D is a regularization constant to prevent 
overfitting[16]. The RELM method has been applied 
successfully for predictions[17], [18]. 

The experiment was carried out by dividing the data 
into 75%, 5%, and 20% for training, validation, and 
testing. There is no iteration in the RELM since the 
output weights β is obtained analytically with a single 
calculation (equation 5) given hidden layer values H got 
using equation 4 and training data. In addition to pre–
venting the over-fitting problem, the regularization 
parameter (D) is also used to enhance the generalization 
performance. Selecting the appropriate D is performed by 
trial and error. The validation is used to determine the 
regularization parameter D by comparing the perfor–
mance (Equation 9) using the validation data. The output 
weights β are calculated in equation 5 using the training 
data. At the same time, the validation data is only used in 
selecting β with minimum error and is not included in 
calculating β. The performance of the validation data 
shows that the model with the regu–larization constant D 
= 10-7 and the number of hidden units M = 5 achieves the 
best and most robust result (Table 1). 
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Figure 3. A trained regression tree sample with nodes (circle) and leaves (rectangle) 

Table 1 Preliminary experiments to determine RELM configurations 

D 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103 
M = 7 2.50 2.50 2.76 15.2 11.4 30.1 172.7 29.1 662.9 5.10 19.2 6.63 71.43 6.69 
M = 6 2.50 2.50 2.51 2.48 74.4 118.0 18.66 13.54 13.04 21.26 28.19 11.05 111.53 19.35 
M = 5 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 
M = 4 3.00 3.00 4.37 2.60 2.62 3.96 4.16 4.28 4.98 2.68 2.61 2.61 2.61 2.61 
M = 3 4.10 5.46 9.95 3.00 6.11 6.21 4.42 2.65 2.89 4.30 2.58 2.57 3.41 3.69 

Table 2. The results of the WS estimation at 50-180 m heights based on measured WS at 10-40 m heights 

Heights 
(m) 

MSE MAPE (%) R2 (%) 
RELM RegTree 1/7 PL A-PL RELM RegTree 1/7 PL A-PL RELM RegTree 1/7 PL A-PL 

50 0.04 0.05 0.15 0.05 2.61 3.01 6.08 3.19 98.94 98.37 98.76 98.76 
60 0.15 0.21 0.65 0.19 4.75 5.72 11.38 5.53 96.10 93.67 95.41 95.41 
70 0.27 0.40 1.27 0.37 6.04 7.41 14.94 7.02 93.56 89.39 92.31 92.31 
80 0.46 0.70 2.17 0.61 7.37 9.22 18.24 8.60 89.93 83.35 87.98 87.98 
90 0.68 1.04 3.17 0.89 8.46 10.62 20.86 9.85 86.29 77.73 83.74 83.74 
100 0.96 1.48 4.41 1.25 9.54 11.96 23.31 11.06 81.88 71.60 78.72 78.72 
110 1.22 1.88 5.58 1.58 10.25 12.87 25.18 11.96 78.63 67.13 74.96 74.96 
120 1.52 2.35 6.93 1.97 10.99 13.84 26.94 12.86 74.89 62.33 70.75 70.75 
130 1.79 2.76 8.18 2.30 11.44 14.48 28.34 13.49 72.24 58.98 67.74 67.74 
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140 2.10 3.25 9.60 2.69 11.95 15.17 29.67 14.11 69.18 55.25 64.37 64.37 
150 2.36 3.65 10.90 3.03 12.32 15.60 30.76 14.58 67.17 52.69 62.03 62.03 
160 2.67 4.11 12.36 3.42 12.74 16.09 31.82 15.05 64.76 50.05 59.34 59.34 
170 2.90 4.42 13.57 3.71 13.04 16.36 32.67 15.38 63.40 48.49 57.82 57.82 
180 3.17 4.84 14.90 4.05 13.36 16.76 33.50 15.73 61.65 46.38 55.96 55.96 

 
2.1 Regression Tree 
 
The regression tree (RegTree) method [19] is used as a 
non-parametric method for estimating continuous 
dependent output with continuous inputs xw; here, 
data is divided into nodes based on conditional binary 
comparisons[20]. RegTree builds a tree consisting of 
nodes and leaves (terminal-nodes) representing the 
conditional distribution of output y given inputs x = {x1, 
x2, …, xn} as shown in Figure 3. The main steps in the 
RegTree method are[21]: 

1) Starting from the root node, the method 
evaluates all possible partitions for each of the 
estimators by applying an impurity function γ(t) to 
each partition t and calculating the impurity diffe–
rence. The impurity function  γ(t) is given by: 

( ) ( ) ( )( )2
1

N

i
n

t y t y tγ
=

= −∑   (6) 

where yi(t) and ( )y t  denote the outputs and the 
corresponding mean at node t, respectively. 
2) Determine the best partition by calculating the 
goodness function δ(t) and split the data set into 
right and left child nodes. The goodness function 
δ(t) is given by: 

( ) ( ) ( ) ( )R Lt t t tδ γ γ γ= − −   (7) 

where γ(tR) and γ(tL) denote the impurity function of 
the right and left child nodes of node t, respectively. 
3) Repeat steps 1-2 for each non-leaf until the 
maximum number of nodes. 
4) Prune the tree and select a sequence of sub-tree 
that achieves the best result on the validation data. 

Figure 3 shows a trained subtree using normalized 
WS from heights 10 to 40 m to predict WS at 50 m. 
Therefore, each input vector x consists of 4 elements x1, 
x2, x3 and x4, corresponding to WS at 10 m, 20 m, 30 m, 
and 40 m, respectively. It can be noticed that the root 
node is built using the fourth element x4 (WS at 40 m) 
since it is the most correlated to WS at 50 m. The full 
regression tree containing nodes using other input 
elements (x1, x2 and x3) is very large and is not feasible 
to be displayed. Based on the figure, the prediction is 
calculated by comparing the input element x4 at the root 
node until one of the leaves. For example, if  x4 = 0.5, 
then the output value will follow the red line to reach y 
= 0.54. The final output is further denormalized by 
multiplying it by the maximum value. 

 
2.2 1/7th Power Law 
 
In addition to the RegTree method, several previous 
studies used 1/7 Power Law [22] which is simple but 
very useful for vertical WS extrapolation. As shown in 

Figure 1, higher locations tend to produce higher WSs 
[12]. Therefore, the 1/7 Power Law states that the 
incremental relationship between WS and height, i.e., 
WS vM+1 at height hM+1 can be calculated by the 
following equation: 

1
71

1
M

M M
M

h
v v

h
+

+
⎛ ⎞
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⎝ ⎠

   (8) 

where vM is the wind speed at height hM and the 
roughness coefficient is set to α = 1/7. In addition to the 
standard 1/7 PL, the power-law with an adaptive coef–
ficient (A-PL) is also used for vertical extrapolation. 
The coefficient is selected by trial and error on the vali–
dation data. The experiments show that the coefficients 
α = 0.34, 0.45, 0.5, 0.3, 0.5, 0.45, 0.4, 0.4, 0.35, 0.4, 
0.35, 0.4, 0.35 and 0.35 for height 50 m, 60 m, … 180 
m extrapolations achieve the best performance at the 
analyzed location. 

 
2.3 Performance Measures 

 
In this study, three performance measures are employed 
based on the difference between the actual values (y) 
and the predicted outputs ( ŷ ), including mean squared 
error (MSE), mean absolute percent error (MAPE), and 
the coefficient of determination (R2). These performance 
measures are calculated using the following equations: 

1

ˆ1 N n n

nn

y y
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N y=

−
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−
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∑
∑

  (11) 

where y  denotes the mean of the measured data. 
 
3. EXPERIMENTAL RESULTS  

 
In general, WS are measured using masts up to 40 
meters, so the WS must be extrapolated to the desired 
heights. The 1/7 power law method has low accuracy 
for vertical extrapolation. Therefore, in addition to the 
fixed coefficient, the power-law with adaptive coef–
ficient, machine learning, and statistical-based 
approaches are used for vertical extrapolation. This 
paper used two real datasets to confirm the robustness 
of the RELM. 
 
3.1  Numerical Results from the first dataset 
The first WS data were measured in Dhahran, Saudi 
Arabia, between 20 June 2015 and 29 February 2016 
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using a LiDAR system. The WS data was stored for an 
average of 10 minutes. Then, the average WS value is 
calculated at an altitude of 10-180 m. The RELM 
described above was used to estimate WS at higher 
elevations. WS at heights of 10-40m is used to estimate 
the value of WS at altitudes of 50-180 m. During the 
training, all data is normalized between 0 and 1 by 
dividing the data by the maximum value. 

The extrapolation process is carried out by training 
RELM using WS values at heights of 10, 20, 30, and 40 
m as inputs and WS at the height of 50 m as an output. 
Next, the WS was measured at heights10-40 m, and the 
extrapolated WS at the height of 50 m was used to train 
a new RELM with 5 inputs to estimate the WS at60 m 
height. These steps, which use the measured and 
estimated WS values at lower elevations to calculate the 
WS value at one level higher height, are continued until 
the estimation of the WS at the height of 180 m. 

Table 2 shows the performance of the RELM, 
RegTree, and 1/7 Power Law methods in terms of MSE, 
MAPE, and R2. RELM achieves MAPE values ranging 
from 2.61% at 50 m to 13.36% at 180 m, 1/7 Power Law 
achieves 3.01% at 50 m to 16.76% at 180 m of MAPE 
values, and 1/7 Power Law achieves 6.08% at 50 m to 
33.50% at 180 m of MAPE values. The same trends were 
observed in the case of MSE where RELM, RegTree, and 
1/7 Power Law yield 0.04 to 3.17, 0.05 to 4.84, and 0.15 
to 14.90, respectively. These values indicate that the 
performance of all methods deteriorates with more 
heights, as shown in Figure 4. Despite having better MSE 
and MAPE than 1/7 Power Law, the RegTree R2 score is 
lower than the R2 score of 1/7 Power Law, as shown in 
Figure 5. The proposed method outperforms the other 
methods and achieves a higher R2 score than that of the 
RegTree and 1/7 Power Law for all heights. 

 
Figure 4. MAPE between different methods 

Despite having better MSE and MAPE values than 
the 1/7 Power Law (Table 2 and Figure 4), the RegTree 
R2 score is lower than the R2 score of the 1/7 Power 
Law, as shown in Figure 5. The proposed algorithm 
outperforms the other methods and achieves the highest 
R2 score for all heights. 

The extrapolation results are displayed for only three 
heights, namely 50, 100, and 180 m, representing low, 
medium, and extreme heights, respectively. Figures 6(a) 
and 6(b) at low height WS estimation show the WS esti–
mated using RELM and RegTree, respectively. Each line 
in figure 6(a), for example, shows the measured WS at 
heights 10-40 m and the corresponding extrapolated WS at 
50 m. Figure 6(c) shows the scatter plot for WS mea–sured 
and estimated for a height of 50 m using RELM with an R2 
score of 98.94%, Figure 6(d) is a scatter plot for RegTree 
with an R2 score of 98.37%, and Figure 6(e) is a scatter 

plot for 1/7 Power Law with an R2 score of 98.76%. Figure 
6(e) shows that many points on the scatter plot for 1/7 
Power Law are above the diagonal line, indicating that the 
estimated values are too low compared with the measured 
values. This is by the WS value calculated using RELM 
and LWSE for a height of 50 m shown in Figure 6(f) for 
the same interval. Some samples of the 1/7 Power Law 
estimated values are below the measured values. 

 
Figure 5. R2 between different methods 

In the estimation results for medium height (100 m), 
the superiority in the performance of the RELM is also 
shown in Figure 7. RELM, RegTree, and 1/7 Power 
Law methods use the 10-40 m measurement results and 
the 50-90 m estimation results to estimate the WS at the 
100 m height. All methods' performance (MSE, MAPE, 
and R2) decreased when compared to the estimation 
performance at the height of 50 m. However, for all 
aspects of accuracy, RELM still outperforms the other 
methods; for example, the coefficients of determination 
for RELM, RegTree, and 1/7 Power Law are 81.88 %, 
71.6 %, and 78.72 %, respectively. The scatter plot for 
1/7 Power Law also shows that many points are located 
far above the diagonal line, which indicates that the 1/7 
Power Law estimation result is too low. 

Figure 8 shows the extrapolation of WS to the 
maximum height. The results of the WS measurements 
at an altitude of 10-40 m and the estimated values at 
altitudes of 50-170 m are used to estimate the WS at the 
height of 180 m. MSE, MAPE, and R2 for all methods 
(RELM, RegTree, and 1/7 Power Law) are worse than 
the estimation results at low (50 m) and medium (100 
m) heights. This is due to the increasing use of the 
estimated WS values for the estimated height of 180 m. 
Even so, the extrapolation using RELM outperforms 
that of RegTree and 1/7 Power Law. 

 
3.2  Numerical Results from the second dataset 

 

The second WS dataset was collected from 1 March 
2017 to 31 March 2018 using a LiDAR device installed 
at the King Fahd University of Petroleum & Minerals 
(KFUPM) beach at the same heights as the first dataset. 
Table 3 summarizes the numerical results obtained 
using the same methods evaluated using the same 
assessment measures. It can be noticed that the results 
confirmed the superiority of the RELM method for all 
heights and performance measures. The A-PL has a 
significant performance improvement over the standard 
1/7 power law. On average, the A-PL also outperforms 
the RegTree at higher heights (over 80 m). The main 
drawback of the A-PL is that the best coefficient must 
be determined empirically. The error also increases with 
heights as more estimation error accumulates.  
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(a)RELM estimated WS at a height 50 m (b)RegTree estimated WS at height50 m 
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(c) RELM Scatter plot of estimated WS at 50 m (d) RegTree Scatter plot of estimated WS at 50 m 

W
in

d 
S

pe
ed

 (m
/s

)

(e) 1/7 power low scatter plot of estimated WS at 50 m (f) Sample of measured and estimated WS at 50 m 
Figure 6. Performance of RELM, RegTree, and 1/7 power law on the estimation of WS at 50 m based on measurements between 
10-40 m

(a) RELM estimated WS at heights 50-100 m (b) RegTree estimated WS at a height 50-100 m 
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(c) RELM Scatter plot of estimated WS at 100 m (d) RegTree Scatter plot of estimated WS at 100 m 
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(e) 1/7 power low scatter plot of estimated WS at 100 m (f) Sample of measured and estimated WS at 100 m  
Figure 7. Results for estimation of WS at 100 m based on WS measurements at heights 10-40 m and estimated at 50-90 m.  
 

(a) RELM estimated WS at heights 50-180 m (b) RegTree estimated WS at a height 50-180 m 
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Figure 8. Results for estimation of WS at 180 m based on measurements WS at heights 10-40 m and estimated at 50-170 m. 

Table 3. Estimated WSs at 50-180 m heights based on measurements at 10-40 m heights using the second dataset 

Heights 
(m) 

MSE MAPE (%) R2 (%) 
RELM RegTree 1/7 PL A-PL RELM RegTree 1/7 PL A-PL RELM RegTree 1/7 PL A-PL 

50 0.03 0.06 0.16 0.07 2.48 3.15 5.63 3.56 98.95 98.07 98.02 98.02 
60 0.12 0.21 0.54 0.23 4.41 5.63 9.83 6.00 96.83 93.98 94.38 94.38 
70 0.24 0.44 1.07 0.46 5.96 7.90 13.12 8.01 94.23 88.41 90.54 90.54 
80 0.43 0.79 1.83 0.72 7.52 10.23 16.15 9.47 90.66 81.37 85.68 85.68 
90 0.61 1.15 2.61 0.99 8.65 11.80 18.52 10.62 87.87 75.35 81.97 81.97 
100 0.86 1.62 3.59 1.35 9.83 13.49 20.73 11.86 84.38 68.77 77.65 77.65 
110 1.08 2.03 4.53 1.67 10.66 14.70 22.51 12.70 81.64 63.80 74.49 74.49 
120 1.37 2.53 5.63 2.04 11.52 15.90 24.20 13.57 78.45 58.68 70.97 70.97 
130 1.60 2.96 6.65 2.36 12.03 16.69 25.60 14.08 76.24 54.84 68.43 68.43 
140 1.89 3.47 7.82 2.74 12.67 17.58 26.94 14.71 73.58 51.01 65.52 65.52 
150 2.12 3.91 8.96 3.06 13.04 18.18 28.14 15.16 71.96 48.20 63.47 63.47 
160 2.41 4.49 10.24 3.47 13.52 18.99 29.28 15.70 69.88 44.80 61.05 61.05 
170 2.62 4.85 11.32 3.76 13.77 19.30 30.29 16.05 68.62 42.68 59.50 59.50 
180 2.89 5.31 12.53 4.12 14.10 19.73 31.24 16.46 66.84 40.26 57.53 57.53 

 
4. CONCLUSION 
 
Wind turbine hub heights are usually available up to 
180 m. Therefore, the WS should be measured or 
extrapolated to the desired height with the smallest 
possible error. However, due to cost and expertise 
limitations, WS measurements are only carried out at 
much lower heights. This is because the cost of wind 
measurement masts increases significantly when the 
height is increased. This paper examined the 
extrapolation of WS to a certain turbine mast height 
using the WS values measured at lower heights. The 
model is trained to estimate WS at the next level of 
heights. The extrapolated data and measurement data at 
lower altitudes are used to estimate the WS at the next 
altitude level. The procedure was carried out up to WS 
at the height of 180 m. The estimated WS values are 
compared with the actual measured values in terms of 
MSE, MAPE, and R2 performance measures. 
Experimental results showed that RELM produces more 
accurate estimates than the RegTree and the standard 
1/7 Power Law in all three measures. The MAPE 
between extrapolated and measured WS from the first 
dataset at the height of 180 m was obtained using 
measurements of 10-40 m, and RELM, RegTree, 1/7 
Power Law, and A-PL methods are 13.36%, 16.76%, 
33.50%, and 15.73 %, respectively. The corresponding 
MSE values are 3.17, 4.84, 14.90, and 4.05, while the 

corresponding R2 scores are 61.65%, 46.38%, 55.96%, 
and 55.96%. The numerical results from the second 
dataset showed a similar trend where the RELM 
outperforms the other methods. Similar results are 
expected at any climate and location where WS is 
measured at 10-40 m heights by following the same 
method explained in this paper. The training of the 
developed networks may be updated every few years to 
follow any meteorological cyclic change. 

COMPUTER PROGRAMS  

The program is written using Matlab and is available at 
(https://github.com/hilalnuha/RELMverticalWS).  
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NOMENCLATURE 

A-PL Adaptive Power Law 
WS  Wind speed 
RELM Regularized extreme learning machine 
RegTree Regression tree 
SLFN Single-hidden layer feed-forward neural net 
MSE Mean squared error 
MAPE Mean absolute percentage error 
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R2  Coefficient of determination 
LiDAR Light detection and ranging 
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ЕКСТРАПОЛАЦИЈА ВЕРТИКАЛНЕ БРЗИНЕ 
ВЕТРА КОРИШЋЕЊЕМ РЕГУЛАРИЗОВАНЕ 

МАШИНЕ ЗА ЕКСТРЕМНО УЧЕЊЕ 
 

Х. Нуха, М. Мохандес, С. Рехман, А. А-Шеики 
 

Цена мерења брзине ветра (ВС) значајно расте са 
висином јарбола. Због тога је потребно имати метод 
за процену ВС на висини главчине без потребе за 
коришћењем мерних стубова. Овај рад испитује 
коришћење Регуларизоване машине за екстремно 
учење (РЕЛМ) за екстраполацију ВС на већим 
висинама на основу мерења на нижим висинама. 
РЕЛМ користи измерени ВС на висинама 10-40 м да 
би проценио ВС на 50 м. Резултати процене од 50 м 
се даље користе заједно са измереним ВС на 10-40 



FME Transactions VOL. 50, No 3, 2022 ▪ 421
 

за процену ВС на 60 м. Овај поступак се наставља 
до процене од 180 м. Перформансе РЕЛМ-а се 
упоређују са методом стабла регресије (РегТрее) и 
стандардним законом 1/7. 

Предложени алгоритам обезбеђује економичан 
метод за проналажење брзине ветра на висини 
чворишта и, последично, потенцијалне енергије 
ветра која се може генерисати из турбина 
инсталираних на висини чворишта на основу 
мерења на много нижим висинама. Штавише, 

екстраполиране вредности ових метода се пореде са 
стварним измереним вредностима коришћењем 
ЛиДАР система. Средња апсолутна процентуална 
грешка (МАПЕ) између екстраполованог и 
измереног ВС на висини од 180 м коришћењем 
мерења на висини од 10-40 м коришћењем РЕЛМ, 
РегТрее, 1/7 Повер Лав и Повер Лав са адаптивним 
коефицијентима је 13,36%, 16,76%, 33,50% и 
15,73%, респективно. 

 

 


