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A New Family of Quality Loss 
Functions  
 
Taguchi first developed the quality loss function to better estimate the 
economic losses incurred by manufacturers and customers caused by 
quality characteristics being off-target. The quality loss function measures 
the quality loss caused by a deviation of a quality characteristic from its 
defined target value. Several researchers have proposed different revised 
loss functions for overcoming some flaws of the Taguchi loss function. This 
paper recommends a new family of quality loss functions, which is very 
flexible, simple, and easy to implement. Three real case studies 
demonstrated the usability and capabilities of the proposed new loss 
function for quantifying and predicting quality losses. 
Keywords: quality loss function, Taguchi method, multi-response optimi–
zation, weighted sum method, Pareto frontier 

 
 

1. INTRODUCTION  
 

The quality loss function (LF) expresses the economic 
consequences (in monetary units) when a quality char–
acteristic deviates from the nominal (optimal) value. 

Many different LFs have been extensively studied 
over the last few decades and have been used in a wide 
range of applications, including quality assurance, busi–
ness decision-making, reliability settings, as well as 
process safety assessment, process optimal control, sys–
tem performance monitoring, and many other discip–
lines [1-3]. 

The loss function approach has attracted a lot of 
attention from quality-assurance researchers and practi–
tioners after the introduction of Taguchi’s quality philo–
sophy and his quality monitoring/improvement concept. 

Contrary to an abstract concept of quality, Taguchi 
was the first to introduce the concept of LF, which 
provides a framework for continuous and effective imp–
rovement of products and processes. 

The LF suggested by Taguchi was later generally 
accepted by most researchers and has been used for 
many decades. 

Although the Taguchi LF is the simplest mathe–
matical function that possesses the desired qualitative 
properties and can meaningfully approximate the quality 
loss in many situations [2], over time, many authors 
have suggested that the Taguchi LF is inadequate and 
unrealistic for quality improvement.  

To overcome some obvious drawbacks of the 
quadratic loss function (QLF), Spiring [4] introduced a 
new LF called reflected normal loss function (RNLF), 
which provides a more reasonable assessment of the 
losses. Since the RNLF is essentially an inverted normal 
probability density function, this LF is also known as 
the inverted normal loss function (INLF). The INLF is 
continuous and bounded from the above function, while 
the introduced shape parameter is proportional to the 

distance from the target to the point where the maxi–
mum loss first occurs. The shape parameter, similar to 
QLF, defines the general shape of the INFL curve but 
allows a smooth function rather than a piece-wise func–
tion. This author derived a formula for expected loss 
(risk) associated with the INLF, which is a relatively 
simple function of its parameters and assumed normal 
distribution, attaining its minimum at the target for fixed 
shape parameters and standard deviation. Spiring also 
created a class of asymmetric INLFs, for situations 
where the loss is not symmetric around the target. The 
asymmetric INLF allows practitioners to customize the 
LF on each side of the target. 

Sun et al. [5] developed an augmented RNLF, which 
is marked as the modified reflected loss function 
(MRNLF). This LF has a user-determining shape para–
meter. By using the different values of the shape para–
meter, a family of curves is obtained in a range from 
uniform LF (with a discontinuity at the target) to quad–
ratic LF. Sun et al. [5] also derived the expected loss for 
the MRLF for normal distribution. Additionally, these 
authors recommended a non-linear procedure for deter–
mining a reasonable value for the shape parameter. 
Some industrial examples are employed to illustrate the 
associated properties of the MRLF. The properties of 
the MRLF to reflect the user's actual loss moved the 
INLF from a research curiosity to a usable methodology 
in the area of loss. 

Drain and Gough [6] introduced an upside-down 
normal loss function (UDNLF), which is quite similar to 
the INLF. A multivariate upside-down normal loss fun–
ction (MUDNLF) was also proposed, and a closed-form 
solution for expected loss for optimizing a product 
/process with many quality characteristics. 

Fathi and Poonthanomsook [7] suggested a quartic 
loss function (QuLF) in order to overcome some of the 
disadvantages and inflexibility of the Taguchi loss 
function. It is a class of continuous symmetric/ asym–
metric loss functions with some degrees of flexibility 
defined by the values of shape parameters. The disad–
vantages of this loss function include its complexity and 
the number of parameters to be determined. 

Pan and Wang [8] developed another piece-wise 
extended variant of INLF based on a request that there 
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is no loss in cases where a quality characteristic is near 
the desired target value.  

Spiring and Yeung [9] suggested the inverted 
gamma loss function (IGLF), which can reflect pro–
cesses with continuous asymmetric losses. The different 
shape parameters allow researchers and practitioners in 
the industry to customize the IGLF in order to 
realistically represent the losses associated with depar–
tures from the target. The associated expected loss was 
derived. 

Later, Lueng and Spiring [10] created the inverted 
beta loss function (IBLF) based on the general pro–
erties of the probability density functions (pdfs). The 
IBLF can be used in asymmetric cases where the loss 
due to deviation from the target on the one side is diffe–
rent from the loss for the same deviation on the opposite 
side. The IBLF contains two shape parameters with a 
linear relationship between them. Likewise, the form of 
the IBLF curve is scale-invariant under a linear trans–
formation. In addition, multivariate IBLF was defined 
according to the multivariate beta probability density 
function. IGLF and IBLF have some nice properties, but 
applying these LFs may be problematic for some 
researchers and practitioners in the industry due to their 
complexity. 

Recently, Abdeen et al. [11] recommended a new 
loss function, called IWeLF, in the family of the 
inverted probability loss function (IPLF), based on 
inversions of probability density functions for the 
Weibull three-parameter distribution. Unfortunately, the 
authors did not provide any insight into the properties 
and usability of this LF. 

Overall, most of the abovementioned LFs have 
similar performances. The selection of the best LF and 
its associated expected loss in the sense of reflecting the 
true loss depends, in some measure, on the process 
characteristic distribution. 

In general, each LF based on Spiring's concept of the 
inverted probability density function depicts the loss 
quite satisfactory if the quality characteristic follows its 
conjugate distribution. Otherwise, difficulties may arise 
in determining the functional form of the expected loss 
function for some distributions [12]. 

Finally, it should be mentioned that several rese–
archers in the last decade have developed a concept of 
quality gain-loss function [13, 14], which is based on 
endowing the constant term in the expansion of the 
Taylor series with quality compensation. 

 
2. LOSS FUNCTION 

 
An important issue of science and engineering practice 
is the analysis and quantification of quality losses. 

The LFs quantify economic losses associated with 
departures of a quality characteristic from the desired 
target value.  

The quality characteristic is a product/process res–
ponse that is observed for quantifying the quality level 
for (single) optimization (for several responses, it is 
multiple optimizations). 

In manufacturing, the LFs define a set of economic 
consequences due to the variation around the target or 

specification limits, which may be different for different 
quality characteristics. 

Any quality characteristic that satisfies the menti–
oned requirement is equally good for manufacturers but 
not necessarily for customers [2]. According to Ta–
guchi's philosophy, the smallest deviation of a quality 
characteristic from its target value produces a loss in 
quality, increasing as the distance from the target inc–
reases. This is an essential difference from the old tra–
ditional approach, which was based on the premise that 
no loss at all in quality occurs until the quality cha–
racteristic drifts within its specification limits. 

Taguchi suggested a continuous quadratic loss func–
tion (QLF) as follows [1, 2]:  

2)()( TyByL −=    (1) 

where L(y) is the actual loss when the quality charac–
teristic is equal y, y is the value of the quality charac–
teristic (response), T is the target value of the quality 
characteristic specified by the customer or quality 
expert, B and is the proportionality constant called the 
quality loss coefficient.  

The Taguchi LF is essentially an analytical approxi–
mation of the true LF using Taylor series expansion.  

As the QLF is not upper-bounded and therefore ina–
dequate for estimating and quantifying losses in the real 
manufacturing environment, Taguchi developed a mo–
dified form of QLF: 
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where K the estimated maximum lossΔ  is the distance 
from the target to the specification limits (points) where 
the maximum loss first occurs.  

The bilateral QLF is plotted in Figure 1. Under the 
ideal quality, the loss would be zero; consequently, the 
LF is a non-negative function. 

The borders T+Δ, T-Δ represent the upper specifi–
cation limit (USL) and lower specification limit (LSL), 
respectively. The estimated maximum loss K is a con–
stant, representing the additional costs for repair or 
replacement of the product being outside the speci–
fication limits and all other associated losses.  

Consequently, one important question in industrial 
practice has become how to find the flexible LFs that 
accurately describe the actual economic losses. 

A new loss function proposed in this paper, the 
polynomial loss function (henceforth referred to as 
PLF), is defined in general form:  
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where δ1, and δ2 are the lower and the upper inner dis–
tance from the target value, respectively, β is the pre–
determined shape parameter ( 0R∈ m >ββ ). 

 
Figure 1. Taguchi loss function (QLF)  

The parameters K1, K2 in PLF have the same 
meaning as in the Taguchi LF (see Eq. (2)).  

When a quality characteristic falls within the target 
interval  [δ1, δ2], the quality loss will not incur from the 
customer’s point of view [8]. However, it should be 
noted that the size of the inner distances does not have 
the same meaning for the manufacturer. In this sense, 
they should satisfy the desire of the customer and the 
need of the manufacturer; in other words, inner tole–
rances should be chosen so as not to cause high addi–
tional costs for the manufacturer without the customer 
being able to notice any difference in product quality 
due to the variation of the given quality characteristic 
within the target interval. 

So, the proposed PLF is zero at the target point, T or 
target interval (“optimal platou”), and asymptotically 
reaches the maximum losses, as can be seen from  
Figure 2. 

 
Figure 2. General form of the proposed polynomial loss 
function (PLF)  

The shape parameter β adjusts the penalty for de–
partures of a quality characteristic from the desired 
target T.  

Note: In the following sections of this paper, it will 
be assumed that for responses outside the acceptable 
specification limits (LSL, USL), is always L(y) = K1 and 
L(y) = K1, where K1 < K2 or K1 > K2. 

In the general form, the PLF is an asymmetric LF. It 
means that the maximum losses and/or shape parameter 
β are different on each side of the target and/or the 
target is not at the center of specification limits. 

Formula (3) is easily applied to possible sub-variants 
of asymmetric PLF, for instance: 

a) ;,, 212121 KK ≠Δ≠Δδ=δ=δ  
b) ;≠,==,≠ 212121 KKΔΔΔδδ  
c) .==,≠,≠ 212121 KKKΔΔδδ  

A fully symmetric PLF with a 'target interval' is 
often expected in practice. Its analytical expression is 
represented by equation (4), while the proposed family 
of PLFs with a 'target point' can be expressed in the 
form of equation (5), respectively: 
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A graphical interpretation of Eq. (5) is given in 
Figure 3.  

Equation (5) can easily be applied to the following 
subvariants:    

a) ;≠,== 2121 KKΔΔΔ  

b) ;==,≠ 2121 KKKΔΔ  

In practice, some quality characteristics (such as the 
amount of soft drink in a bottle, drug dose, etc.) have an 
asymmetric loss with respect to their target values. In 
such cases, Eq. (5) or its subvariants should be applying. 

 
Figure 3. Typical form of the proposed asymmetric PLF   
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 A completely symmetric PLF from this family is 
shown in Figure 4. 

 
Figure 4. Typical form of the proposed symmetric PLF  

This type of loss function is expressed mathe–
matically by a simple formula: 
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The symmetric LFs are special cases of asymmetric 
LFs and, thus, simpler for practical engineering rese–arch.  

However, in some situations, it is quite necessary to 
employ asymmetric LFs, for instance, when the devi–
ation of the quality characteristic from the target in one 
direction is more harmful than in the opposite direction 
and/or the estimated maximum losses on specification 
limits are really different. In manufacturing practice, the 
costs associated with rework and scrap may not be the 
same. As a rule, the repair of a product causes fewer 
costs than its replacement. For instance, if the diameter 
of a bearing is less than the LSL, it can still be reworked 
relatively easily and cheaply and brought to its target 
/nominal value. Conversely, if the diameter is greater 
than USL, the product may be functionally defective or 
must be discarded as scrap. 

Figure 5 illustrates the flexibility of the PLF and 
the effect of the shape parameterβ  by showing the fa–
mily of the curvesβ  ranging from 0.5 to 6 (from bottom 
to top). 
  As the shape parameter decreases, the PLF beco–
mes increasingly convex and asymptotically approac–
hes the quadratic LF  (β = 1) and then the so-called step 
LF  (β = 0). Therefore, it is reasonable and expe–dient 
to choose the shape parameter in the interval 1 ≤ β ≤ 5. 

Everything previously shown indicates the high 
flexibility of this LF (which will be confirmed in the 
analysis that follows). 

As seen from Figure 5, small β yields small eco–
nomic losses for slight departures from the target, while 
large β causes larger losses for the same departures from 
the target. In other words, the shape parameter value 
adequately adjusts the penalty for each deviation from 
the desired target. 

Likewise, from this figure, it is apparent that the 
curve for the shape parameter β = 2 separates the set of 

concave from the set of convex PLFs, so in that sense, it 
can be adopted as the initial (‘default’) shape parameter 
value for each calculation.   

 
Figure 5. The appearance of the PLF depends on the shape 
parameter values (only for the right-hand side) 

2.1 Determination of the shape parameter  
 
The most frequent situation that occurs in the engine–
ering practice is the case where the maximum loss and 
target are known in advance. 

The shape of the curve that graphically displays the 
LF can be predicted by the appropriate choice of the 
shape parameter. Namely, assuming the target to be 
fixed, various shapes of the LF can be created for 
various shape parameter values. 

The shape parameter allows researchers and/or 
practitioners to customize an LF in order to accurately 
reflect economic losses associated with characteristic 
quality deviations from the target. 

The shape parameter β can be chosen by the sub–
jective judgment of the decision maker (DM). However, 
this parameter can be determined less subjectively. 

Suppose the target T, the maximum loss K, and the 
actual loss Li for the given quality characteristic 
(response) yi are known. In that case, the value of the 
unknown shape parameter can be easily computed from 
the simple formula:  
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Namely, the LF is completely defined by just one 
point on the corresponding curve (see Figure 6). That 
point, say Mi{yi,Li}, represents the value of a response 
and its actual loss. 

However, when two or more points are known 
(which is certainly a better option), the value of the 
shape parameter should be determined using the 
ordinary least squares method in the following way: 
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2

1
)(minmin ∑

=
−=

n

i
ii yLLSS                                (8) 

Equation (8) can be solved by using any traditional 
optimization method or a graphical approach. 
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 Two above-described possibilities for determining 
βwill be shown in an example discussed by Taguchi 
[15] and Sun et al. [5].   
 In this example, the following data are known: T = 
10, K = 150, Δ =4 (as primary information), also (y1,L1) 
= (7, 125), and (y2,L2) = (9,17) (as secondary infor–
mation).  
 By applying Eq. (7) were obtained: 

•  β =2.167, for point M1 (7, 125); 
•  β =1.864, for point M2 (9, 170). 

 
Figure 6. Influence of secondary points on the form of PLF 
curve 

A more realistic result is obtained by using both 
points. In this case, as could be expected, an 
intermediate value for the shape parameter was 
obtained, namelyβ = 2.126. Figure 7 shows a graphical 
approach for determining the shape parameter based on 
Eq. (8). 

For the same input data, the proposed PLF and other 
well-known LFs are plotted in Figure 8, along with two 
secondary points.  

It is worthwhile to note that the points are very close 
to, but not exactly, the fitted curve. 

 As can be seen, the proposed PLF fits the data best, 
while the Taguchi and other LFs underestimate or over–
estimate the losses at the given reference points. 
Consequently, in this sense, the proposed PLF is supe–
rior to the other LFs. 

 
Figure 7. Graphical method for determining the shape 
parameter 

A high value of the response (far from the target 
value) corresponds to a high value of the loss, and vice 
versa. In any way, the different shape parameters for 
different loss functions will be obtained. 

Certainly, the different values of shape parameters 
produce different forms of the loss function curve, as 
shown in Figure 5. 

 
Figure 8. Comparison of the proposed PLF with some 
known LFs drawn for the same data   
 

3. EXPECTED LOSS  
 
It is well known that over time the quality charac–
teristics of a product may vary from unit to unit. A pro–
bability distribution function can represent these vari–
ations. 

The expected loss is defined as the average loss one 
would expect over a long period of a stable working 
process [6].  

The expected loss is determined mathematically by 
evaluating the definite integral of the product of the LF 
as a random variable and the probability density func–
tion of its distribution as follows: 

[ ] dyyfyLLE ∫
+∞

∞−
= )()()(y   (9) 

The expected loss can predict and quantify the eco–
nomic loss as a consequence of typical manufacturing 
disturbances.  

The application of LFs combines the double requi–
rement, the desire of the customer L(y, and the need of 
the manufacturing f(y), which are all combined by 
computing the expected loss value of the LF with 
respect to the probability distribution that represents the 
performance of a product or process.  

In general, the expected loss associated with a par–
ticular LF can be evaluated for most distributions, such 
as uniform, normal, and others, that the quality 
characteristic may follow. 

Usually, it is assumed that the product or process 
quality characteristics follow the normal distribution, 
denoted as N(μ,σ2). In such cases, the expected loss 
function can be expressed analytically. On the other 
hand, numerical integration can always determine the 
expected loss.  
 The expected loss for any LF, by definition, is 
keeping a process characteristic on target and, at the 
same time, reducing its variability.  
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 For the proposed PLF, if the shape parameterβ  is a 
positive integer, the expected loss function (here 

denoted simply as βL ) can be expressed in closed form 
with a finite number of terms, as follows:   
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4. PROPERTIES OF THE PROPOSED LOSS 
FUNCTION 

 
The proposed PLF has the following properties: 

 

• It is a continuous and differentiable function over 
the whole defined domain; 

• It has a minimum of zero at the target point for all 
target values within the specification limits, 

• It is defined for all types of LFs (two-sided (NTB) 
and one-sided (LTB or STB)), for symmetric or 
asymmetric shapes, as well as for LFs that have a 
target interval or only a single target point; this 
functional form can be employed to represent either 
symmetric or asymmetric PLFs, 

• For a known maximum loss and tolerance, the pro–
posed PLF is fully defined by only one parameter, 
 

Since the proposed PLF is a continuous function, it 
can be approximated by its Taylor series expansion 
about the target up to the desired number of terms. 
Taylor's polynomial with five terms is quite an appro–
priate choice in this case. For instance, after omitting 
higher-order terms, the expected loss for the proposed 
PLF with rational values (half-integers) of the shape 
parameter can be expressed as: 

128/)52870140( 43212/1 EEEEE −+−≅   (10f) 

128/)3209060( 43212/3 EEEEE +−+≅    (10g) 

As stated earlier, the proposed PLF for β = 1 dege–
nerates in Taguchi’s quadratic loss function, so the same 
is true for its expected loss function. 

Quality experts always aim to eliminate quality loss. 
If the main goal is to reduce the expected loss to zero, 
then the basic task is to reduce the variation to zero. 
That is why variation reduction has become synony–
mous with quality improvement [1,16]. 

According to the so-called 3σ rule, the tolerance 
range (allowable manufacturing deviation) for conside–
red quality characteristics in a properly designed and 
realized product/process should satisfy the following 
relation: t = 2Δ = 6σ.  
 By tightening the tolerance, manufacturing costs 
usually increase rapidly, while at the same time, the 

amount of scrap increases. Therefore, quality and cost 
should be well balanced [1].  

 

• It is very flexible; in this sense, it can simulate the 
properties of most known LFs (Step LF, Taguchi's 
LF, Fathi's LF, Spiring's LF, Sun's LF, etc.), 

• In terms of its performance, it does not lag behind 
the previously proposed LFs; 

• In optimization problems, adjusting the shape para–
meter value, it can improve the initial solution, 

• Unlike some other LFs, the proposed PLF is sim–
ple, easy to implement and interpret, and likewise 
understandable for practitioners with a basic know–
ledge of mathematics (statistics).  

 Equations (10) guarantee good and realistic results 
if tolerance is chosen around the indicated limit. 

Figure 9 shows the expected loss associated with 
the PLF for various levels of ratio σ2/Δ2, for the case 
where the quality characteristic is centered at the target 
(i.e., μ=T). 

Obviously, Figure 9 confirms the fact that the QLF 
is only a special case of the PLF family (for β=1) 
because the expected loss for the QLF is linear in 
(σ/Δ)2. At the same time, the curves in this figure 
indicate a significant effect of variance reduction in the 
sense of expected loss reduction, especially in the 
domain of its small values. 

 Spiring [4] and Sun et al. [5] derived similar 
conclusions for their loss functions (INLF, MINLF). 

 
Figure 9. Expected loss for the PLF vs. relative variance 
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5. MULTI-RESPONSE OPTIMIZATON 
 
The choice of the optimization method and executive 
algorithm depends on the particular problem. 

For the multi-response optimization problems, the 
total loss function, as an aggregation function, may be 
defined as the weighted sum of the individual loss 
functions:   

[ ] [ ]∑ 1
)()( m

j jjjT yLL
=
ω= xxy                                   (11) 

where m is the number of responses, yj(x) is the j-th 
response, ωj is the j-th relative weight 
( ∑ 1,0R∈ m =ω>ωω jjj ), Lj and is the j-th indivi–
dual LF.  

When it is a case of a dual-response problem (m = 
2), then ω1 = ω and ω2 = 1 – ω can be written.   

The choice of relative weight is based on the impor–
tance of the various responses to be simulta–neously 
optimized. In real circumstances, it is quite likely that 
there is a difference in the importance deg–rees (prio–
rities) of various responses, i.e., that one response has a 
greater impact on the system/ product/ process in 
comparison with the others.  
 Aggregation means formulating a single-response 
optimization problem such that optimal solutions to the 
single-response optimization problem are so-called Pareto 
optimal solutions to the multi-response optimization pro–
blem. In other words, this approach converts the original 
optimization problem with multiple res–ponses into an 
optimization problem with a single response. 

According to the above, it is clear that the DM 
(design/process engineers, quality control experts, end 
users, etc.) plays an important role in conducting the 
optimization procedure.  

When the DM has preference information about the 
importance of individual responses, then the optimal 
solution can be determined by solving Eq. (11) directly. 
If the DM does not have any information in advance (a 
priori), he/she should be supported to subsequently (a 
posteriori) choose the most appropriate optimal solu–
tion, according to his/her subjective judgment. For this 
purpose, it is necessary to determine a larger number of 
optimal solutions for different relative weights in 
proportion to the importance (priority) of the response, 
that is, to collect a representative set of Pareto optimal 
solutions. Then the DM must choose one of them. 

When the optimization procedure is performed 
without the DM articulating any preferences among the 
responses, then researchers, as a rule, attribute the same 
importance to all responses, i.e., choose the same 
relative weights for each response. In this case, all 
Pareto optimal solutions are treated as equally good. 

The Pareto optimal approach for multi-response 
optimization problems means solving such a problem is 
more complex than it is for a traditional single-response 
optimization problem.  

 
6. ILLUSTRATIVE EXAMPLES 
 
Three real examples appearing in the literature were 
employed to illustrate the properties and possibilities of 
the proposed PLF. 

6.1 Example 1: Roman-style catapult study  
 
A well-known and well-studied experiment called the 
Roman-style catapult has been studied by several 
researchers [17-22].   

This experiment aimed to investigate the influence 
of three design factors, arm length (x1), stop angle (x2), 
and pivot height (x3), on the prediction of the distance 
(y) from the point where the projectile landed to the 
position of the Roman-style catapult. 

 A central composite design (CCD) with three 
replicates at each factor combination and six replicates 
at the center point were selected and conducted.  

Data from this experiment necessary for further 
calculation are given in Table 1. 
Table 1. Experimental results for the Roman-style catapult 
problem   

n yμ1 yμ2 yμ3 μy  yσ 

1 39 34 42 38.3 4.0 
2 80 71 91 80.7 10.0 
3 52 44 45 47.0 4.4 
4 97 68 60 75.0 19.5 
5 60 53 68 60.3 7.5 
6 113 104 127 114.7 11.6 
7 78 64 65 69.0 7.8 
8 130 79 75 94.7 30.7 
9 59 51 60 56.7 4.9 

10 115 102 117 111.3 8.1 
11 50 43 57 50.0 7.0 
12 88 49 43 60.0 24.4 
13 54 50 60 54.7 5.0 
14 122 109 119 116.7 6.8 
15 87 78 89 84.7 5.9 
16 86 79 85 83.3 3.8 
17 88 81 87 85.3 3.8 
18 89 82 87 86.0 3.6 
19 86 79 88 84.3 4.7 
20 88 79 90 85.7 5.9 

 
 The fitted second-order regression functions from 

Kim and Lin [18] are as follows:    

    x x4.42- x x3.60+ x x0.22+

 x0.39+ x11.80- x0.52- x18.80

+ x0.24+ x15.29+84.88=ŷ
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 x x3.49+ x x0.73+ x x1.20

+ x0.94+ x4.40+ x1.16+

 x3.73+ x4.28+ x1.84+4.53=ŷσ

  
(13) 

Note that the subscriptsμ σ  in Eqs. (12) and (13) 
represent the sample mean and sample standard devi–
ation, respectively. 

The considered problem requires that the target 
value for the mean response be 80, while the desired 
value for the standard deviation should be at most 3.5. 
(Theoretically, the minimum value of standard deviation 
is always zero).  

The response yμ yσ is nominal-the-best (NTB) and 
smaller-the-better (STB) type responses, respectively. 

In Figure 10 are displayed the corresponding LFs. 
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a) 

 
b) 

Figure 10. Loss functions for Example 1: a) bilateral LF, b) 
unilateral LF 

Assuming the regression functions are adequate, this 
paper puts more emphasis on the optimization proce–dure 
and the pure finding of a potentially satisfactory solution. 

In this example, by using the proposed PLF under 
given conditions and constraints, the dual-response 
optimization problem can be stated as: 
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14) 

By using Eq. (14), the simultaneous dual-response 
optimization procedure (by taking the various value of 
shape parameter ω) yields the optimal factor setting x*, 

with corresponding responses *ˆμy  and *ˆσy , and the re–

sulting loss values )(* yTL .  
A subset of Pareto optimal (non-dominated) solutions 

for the Roman-style catapult problem is shown in Table 2.   
Note that by using the symmetric LF the constant K 

is generally ignored because it does not affect the 
optimization result.  

According to Table 2, both responses μŷ and σŷ  
increase as the relative weight ω grows. A trade-off 
curve (in the cases of two or three responses) that 
connects the non-dominated (efficient) points on the 
border of the feasible region are often referred to as the 
Pareto frontier. The decision of which of the two 
adjacent solutions on the Pareto frontier is favorable 
must be made by the DM, since it is known that there is 
no unique optimum solution for all responses 
simultaneously (in fact, there are potentially infinitely 
many optimal solutions). 

On the other hand, a large number of Pareto optimal 
solutions may cause an excessive burden to the DM in 
his/her attempts to choose the most preferred solution 
among a set of equivalent alternatives. To facilitate the 
decision-making process, the obtained (near) optimal 
solutions in this example are arranged in the Pareto frontier 
in the responses space, which is displayed in Figure 11.  

In general, such plots can be very useful since they 
present the trade-offs between two different responses. 

It is worth noting here that evenly distributed rela–
tive weights must not necessarily produce a uniformly 
distributed presentation of the Pareto optimal points. 

The graph shown in this figure suggests that there is 
a conflict between the two responses. As the standard 
deviation decreases, the predicted distance proportio–
nally moves away from its target value and vice versa. 

In this example, the Pareto frontier can be divided 
into two zones since this graph has the shape of a stra–
ight line (in the first zone) and the shape of a bent line 
(in the second zone). In the first zone, the predicted 
mean response (distance) is too far from the target va–
lue, while the standard deviation has its lowest values.  

                             Table 2. Final results from the optimization procedure   

jω   1x   2x   3x   μŷ   σŷ  

0.00 0.047633 -0.100816 -0.809467 70.00000 2.08102 
0.25 0.105415 -0.234039 -0.430801 77.14227 2.83286 
0.50 0.123869 -0.273729 -0.317209 79.35916 3.07890 
0.60 0.125752 -0.277926 -0.305183 79.59449 3.10535 
0.70 0.127226 -0.280594 -0.297516 79.74860 3.12271 
0.75 0.128126 -0.281464 -0.294907 79.80698 3.12929 
0.80 0.128235 -0.282456 -0.292109 79.85708 3.13494 
0.85 0.130246 -0.282409 -0.291411 79.89987 3.13978 
0.90 0.121100 -0.286462 -0.281494 79.93897 3.14427 
0.92 0.135905 -0.280995 -0.292860 79.96150 3.14682 
0.94 0.124736 -0.285686 -0.282814 79.96981 3.14769 
0.96 0.127109 -0.285296 -0.284125 79.97983 3.14880 
0.98 0.125700 -0.286594 -0.282249 79.98735 3.14967 
1.00 0.124992 -0.237370 -0.300000 80.00000 3.16123 
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Figure 11. Pareto frontier obtained by following 
optimization of the two responses (The inserted box shows 
the Pareto frontier in the second zone)   

It seems unlikely the decision-maker can accept 
these solutions. In the second zone, the mean response 
reaches its topmost values, while the standard deviation 
also increases but acceptably.   

The DM may need help in choosing the best comp–
romise solution among the responses considered.  

In this example, although both responses are supp–
lemented to each other, bearing in mind the type of pro–
blem at hand, it is appropriate to attach greater impor–
tance to the mean response. 

In such circumstances, the DM could seek a suitable 
final solution in the second zone of the Pareto frontier 
(with any weight close to but not equal to one). That 
seems to be a rational choice.   

 Regardless of the satisfactory result, as in this exa–
mple, the DM may require one potentially better solu–
tion. An improved solution can be found by using the 
shape-based approach.  

Namely, the expected loss functions according to the 
method recommended in this paper are derived for 
different shape parameters (see equations (10)). 

In this example, the shape-based approach in the 
tightening mode was implemented; that is, the expected 
loss 3E  was chosen.   

After repeating the optimization procedure, the new 

vector of optimal responses =}ˆ,ˆ{=ˆ ***
σμ yyy {79.64998,  

3.11159} was obtained. 
It can be said that the new solution is somewhat 

better than the initial one. Also, it seems that in this 
case, a significantly better solution cannot be obtained.  

Using the expected loss approach, Köksoy and Fun 
[19] found a similar optimal solution. Both solutions are 
summarized in Table 3. 

Mean squared error (MSE) [21] can be used as a 
criterion for comparing the obtained results. In this case, 
it is evident that the proposed method provides a very 
good balance between the two considered responses.   

Figure 12 displays the overlaid contour plot of the 
PLF estimated mean and standard deviation responses 
when keeping the value of 3x  (pivot height) at its 
optimal level.  

Table 3. Comparison of the optimal results based on 
expected loss for the catapult problem   

 
Method 

Köksoy - Fan [19] 
[Expected  loss based 
on INLF (σL=17)] a 

Proposed method 
[Expected  loss based 

on PLF] b 

1x  0.126215 0.126709 

2x  -0.27890 -0.27871 

3x  -0.30238 -0.30279 

μŷ  79.64979 79.64998 

σŷ  3.11157 3.11159 
 a MSE=  9.804534 ; b MSE=  9.804506  
 

In real manufacturing practice, a system operating 
behavior over a long period of time can only be 
predicted by employing the expected loss approach.  

The Roman-style catapult problem is a suitable 
example to illustrate the application of the expected loss 
approach. 

By using the expected loss 2E  proposed in this paper 
and the constraints in Eq. (14), the simultaneous optimi–
zation procedure yields the following optimal solution 

}.111583,.6498979{=}ˆ,ˆ{=ˆ ***
σμ yyy . 

The existing optimization methods, among them also 
the methods based on loss function, can predict the 
appropriate optimal conditions in the actual state of a 
system (product or process).  

 
Figure 12. Contour plot for the estimated mean and 
standard deviation for Example 1 

Once again, the catapult study requires precon–
ditions according to which the target value should be at 
80 and the standard deviation less than 3.5. 

This graphical presentation may be helpful for a 
better understanding of the situation. 

It is important to note that there is a serious draw–
back in the application of the expected loss based on 
INLF [4], related to the choice of the so-called scale 
factor (σL), which can significantly affect the optimi–
zation result [19]. In fact, there are no theoretically 
based recommendations for choosing the scale factor [6, 
9, 19].   
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 Other researchers have also studied the Roman-
style catapult problem. Their results can hardly be com–
pared in a straightforward way since they have applied 
different methods and optimization criteria and different 
underlying assumptions. 
 Since each optimization method has its own merits 
and limitations, one can employ different methods to 
find the potentially best optimal solution and then 
choose the favored alternative.  In this sense, the results 

of different optimization methods can be compared 
without any specified criterion, as done in Table 4 for 
Example 1. 
 It is interesting that (approximately) all the different 
optimal solutions from Table 4 can be found in Table 2. 
Based on the relative weight values, it can be noticed 
that some optimization methods favor the response of 
sample mean , while others favor the response of sample 
variance . 

                                          Table 4. Comparison of the optimal results obtained by different methods   

Approach 1x  2x  3x  μŷ  σŷ  

Köksoy - Fan  [19] 0.126215 -0.27890 -0.30238 79.64979 3.111573 
Kim-Cho [22] 0.115 -0.256 -0.369 78.352 2.966 
Costa [26]  0.152 -0.321 -0.285 80.00000 3.158 
Kim-Lin [18] 0.12 -0.27 -0.32 79.2300 3.0600 
Ding-Lin-Wei [20]  0.1290 -0.2848 -0.2856 79.9813 3.1490 
Lin-Tu [21]  0.12621 -0.27890 -0.30238 79.64964 3.111557 
Vining–Myers [23]  0.129129 -0.28511 -0.28461 80.0000 3.151077 
Proposed method 0.126709 -0.27871 -0.30279 79.64998 3.111590 

 
6.2  Example 2: Television process  

In this example, Spiring and Yeung [9] considered the 
expected loss in the production of a television set in 
Factory A (located in Japan) and in Factory B (located 
in America).  

Both factories made television sets using identical 
designs and tolerances. Besides, these factories belong 
to the same manufacturing company.   

The distribution of quality characteristic of interest 
(color density) for Factory A was approximately 
normal, while the distribution for Factory B was 
approximately uniform [1, 2] .  

The maximum cost (loss) of repairing a failed 
television set in the factories was $2 per unit.  

This cost was incurred once the quality characteristic 
exceeded the two-sided tolerance (Δ) of  ±5 units from 
its target value equal to zero. 

For Factory A, it is assumed that the quality 
characteristic follows the normal distribution with 

0=μR and 42 =σR .  
The expected loss associated with INLF [4, 9] has a 

form of the exponential function (15), while the expec–
ted loss associated with INLF [9] and a uniform distri–
bution is expressed as an erf function (16), respectively: 
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where dttzerf z )(exp/2)( 2
0

−π= ∫  
Using Eq. (15), the expected loss per television set 

for K = 2, and σL = 1.25 would be $0.94. 
For Factory B, it is assumed that the quality charac–

teristic follows the uniform distribution over the interval 
(a, b), with a = -5 and b = 5. 

 Using Eq. (16), the expected loss per television set 
for all the same conditions would be $1,373. 

Relative expected loss (cost) can be defined as the 
ratio: 

[ ] KLERE /)(y=    (17) 

 In this example, by using the UNLF the following 
ratios are obtained:  

• RE = 0.94 / 2 = 0.47 (for Factory A), 
• RE = 1.373 / 2 = 0.687 (for Factory B). 

Using the proposed PLF and associated expected 
loss (see equation (10b)), the expected value of the loss 
caused by deviation in the production of the television 
set in Factory A would be $0.486.  

The expected loss associated with the proposed PLF 
and uniform distribution for response is expressed as a 
simple function: 
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Using Eq. (18), the expected value of the loss caused 
by deviation in the production of the television set in 
Factory B would be $0.933. 

 In this example, by using the proposed PLF the 
following ratios are obtained:  

• 243.02/486.0 ==ER (for Factory A), 
• 467.02/933.0 ==ER (for Factory B). 

The computation results obtained by employing two 
different LFs (INF, PLF) lead to the same general conc–
lusion, except that the proposed PLF predicts smaller 
losses for both factories and explicitly favors Factory A 
compared to Factory B. 

The different results for the two factories are due to 
two different perceptions of quality; in Factory B, the 
engineers paid all their attention to meeting the tole–
ran–ces, whereas in Factory A, they were focused on 
meeting the target. 
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6.2 Example 3: Printing ink process  
 
In this example, the proposed method is illustrated using 
the printing ink problem taken from Box and Draper 
[23]. Many other authors also discussed the printing ink 
problem [18,20,21,24-28] as an ideal example for pre–
senting the properties of their approaches.  

The selected experiment in this study was the three-
level full factorial design (FFD), with three replicates at 
each run, i.e., combination of design factor levels (low, 
intermediate, high). 

This type of factorial design was discussed exten–
sively by Ozoemena et al. [29]. Box-Behnken design 
(BBD) [30] or Taguchi's orthogonal array L16 [31] are 
also very useful for this type and size of experiment sin–
ce they provide a good balance between the cost of the 
experiment (including time) and the required accuracy 
of the results.  

The original experimental data set for the printing 
ink problem is displayed in Table 5.  
  Table 5. Experimental results for the printing ink process   

n yμ1 yμ2 yμ3 μy  yσ 

1 34 10 28 24.0 12.49 
2 115 116 130 120.3 8.39 
3 102 186 263 213.7 42.80 
4 82 88 88 86.0 3.46 
5 4 178 188 136.7 80.41 
6 322 350 350 340.7 16.17 
7 141 110 86 112.3 27.57 
8 259 251 259 256.3 4.62 
9 290 280 245 271.7 23.63 
10 81 81 81 81.0 0.00 
11 90 122 93 101.7 17.67 
12 319 376 376 357.0 32.91 
13 180 180 154 171.3 15.01 
14 372 372 372 372.0 0.00 
15 541 568 396 501.7 92.50 
16 288 192 312 264.0 63.50 
17 432 336 513 427.0 88.61 
18 713 725 754 730.7 21.08 
19 364 99 199 220.7 133.80 
20 232 221 266 239.7 23.46 
21 408 415 443 422.0 18.52 
22 182 233 182 199.0 29.45 
23 507 515 434 485.3 44.64 
24 846 535 640 673.7 158.20 
25 236 126 168 176.7 55.51 
26 660 440 403 501.0 138.90 
27 878 991 1161 1010.0 142.50 

 
The purpose of this experiment was to examine the 

effect of speed (x1), pressure (x2), and distance (x3) on 
the ability of the printing machine, as an experimental 
response (y), to apply colored inks to package labels.   

Supposing second-order models were adequate, the 
fitted responses for the mean and standard deviation of 
the characteristic of interest were given by Vining and 
Myers [24]:   

  x x43.6 x x75.5+ x x66.0

+ x29.1- x22.4- x32.0 x131.5

+ x109.4+ x177.0+327.6=ŷ
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 x x14.1+ x x5.1+ x x7.7

+ x16.8+ x1.3- x4.2+

 x29.2+ x15.3+ x11.5+34.9=ŷσ

 
 (20) 

In both the fitted models, the group means and the 
group standard deviations as responses were used (rat–
her than using all the experimental data).  

This process requires that the target value for the 
mean be 500 and a standard deviation less than 60. 

The optimization procedure was completely the same 
as in Example 1. Using the default expected loss 2E and 
bearing in mind given data (Tμ = 500, K = 1, Δ = 100), the 
optimal solution { }* * *ˆ ˆˆ ,y yμ σ= =y {494.778, 44.475} was 

obtained.    
The results of the proposed method, based on a cu–

boidal experimental region, are summarized and com–
pared with those of other authors in Table 6. As can be 
seen in Table 6, the optimal results obtained by different 
methods are similar and comparable, with the exception 
of the results presented by Vining and Myers [24].   

Figure 13 displays the overlaid contour plot of the 
PLF estimated mean and standard deviation responses 
when keeping the value of 2x (pressure) at its optimal 
level. 

 
Figure 13. Contour plot for the estimated mean and 
standard deviation for Example 2   

There are many different criteria for comparing the 
optimization results. For that purpose, the relative target 
deviation (RTD) can also be used [32,33]. The RTD is a 
test of the ''goodness-of-target prediction'' type. The 
RTD value should be as small as possible (zero is the 
most favorable value). It can be easily proved that the 
application of this test confirms the rank of each method 
listed in Table 6.  

 
7. DISCUSSION 
 
The most important step in any multiple-response opti–
mization procedure is to establish a functional relation–
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ship between the responses and the design factors. 
Based on the fitted models, many optimization schemes 
have been proposed by many researchers. 

The dual response (DRS) approach is a special case 
of the response surface methodology (RSM) with two 
responses, in this case, the mean and the standard 
deviation of the characteristic of interest. The DRS 
approach first builds the empirical models for both 
responses separately and then optimizes one of these 
responses subject to an adequate constraint on the 
other's value (typically keeping the standard deviation 
below a specified value).  

Unfortunately, the DRS approach has certain limita–
tions and drawbacks. For instance, this approach always 
assumes a second-order mathematical model for both 
the mean and standard deviation, and accordingly, fitted 
models are derived. Also, a normal distribution is assu–
med in the DRS approach. However, such assumptions 
may not be valid in practice. Lastly, the DRS approach 
cannot be applied to unreplicated factorial designs.  

Following these considerations, the printing ink 
process has been the subject of an investigation by se–
veral researchers (Das [34],  Zeybek et al. [35], Boylan 
and Cho, [36]). These authors found in their studies that 
a normal distribution cannot properly model printing ink 
process data. This process data rather follows skew-
normal distribution or (approximately) right-skewed 
gamma distribution.     

Zeybek et al. [35] fitted both the mean and standard 
deviation responses for the printing ink process also in 
the form of quadratic (second-order) models as follows: 

  x x43.6 x x75.5+ x x66.0

+ x29.1- x22.4- x32.0 x131.5

+ x109.4+ x177.0+327.6=ŷ
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 x x7.24+ x x2.62+ x x4.29

+ x9.0+ x1.6- x1.8+

 x15.17+ x8.11+ x6.0+20.1=ŷσ

 

 
(22) 

                     Table 6. Comparison of the optimal results obtained by different methods   

Approach 1x  2x  3x  μŷ  σŷ  MSE 
Kim-Lin [18] 1.000 0.0860 -0.2540 496.080 44.630 2007.1 
Vining-Myers [23] 0.614 0.2280 0.1000 500.000 51.778 2681.0 
Ding-Lin-Wei [20] 1.000 0.0890 -0.2550 496.473 44.671 2007.9 
Lin-Tu [21] 1.000 0.0740 -0.2520 494.440 44.430 2005.1 
Copeland-Nelson [25] 0.975 0.0589 -0.2139 495.000 44.730 2025.8 
Castilo- Montgomery [24] 1.000 0.1184 -0.2590 500.000 45.097 2033.7 
Costa [26] 1.000 0.2049 -0.3180 500.000 45.132 2036.9 
Köksoy-Doganaksoy [27] 1.000 0.1643 -0.3085 495.980 44.650 2009.8 
Proposed method 1.000 0.0525 -0.2358 494.778 44.475 2005.3 

 
Applying the optimization procedure described pre–

viously, and the new equations (21) and (22), a comp–
letely different optimal solution was obtained. It is evi–
dent from Table 7, that the proper modeling of expe–
rimental data yields a larger mean and remarkably lower 
variance. 
Table 7. The optimal solution for the printing ink problem 
with improved modeling by Zeybek et al. [35]     

Approach Proposed method 

1x  1.00000 

2x  -0.08743 

3x  -0.10231 

μŷ  500.001 

σŷ  25.142 
 

Das [34] has recommended the use of generalized 
linear models (GLMs) [37], which are known as joint 
GLMs (JGLMs), to derive the joint mean and variance 
models instead of separate mean and variance models as 
in the DRS approach. In general, the GLM can improve 
the fit of the mathematical model to the given data and 
produce less variance (shorter confidence interval on the 
mean response). 

This author applied GLM approach in order to de–
rive the non-linear models, instead of the quadratic 
polynomials, for both the mean and the standard devi–

ation.  In this case, these models have the form of sim–
ple exponential functions, namely: 

)xx0.25xx0.10x-x0.07x-x0.10x-

0.46x0.42x0.62x(5.51 exp=ŷ

321323121

321
+

+++μ  (23)   

)23.0-37.0-0.76x-2.45 (- exp=ŷ 3131 xxxσ        (24) 

The optimal solution for new conditions is given in 
Table 8. In this case, it is clear that the proposed PLF 
and appropriate mathematical models can ensure that 
the process characteristic of interest reaches the target 
value with a negligibly small standard deviation. 
Table 8. The optimal solution for the printing ink problem 
with improved modeling by Das [34]    

Approach Proposed method 

1x  0.91190 

2x  -0.27970 

3x  0.64155 

μŷ  499.999 

σŷ  0.030 

 
The real problem considered in the present example 

suggests that the different mathematical models may 
give completely different estimated responses and, con–
sequently, the optimal settings even when applying the 
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same optimization approach. These observations should 
be taken into account when applying and analyzing the 
optimization methods presented in this paper.  

From the above examples, it is clear that the inherent 
performance of the proposed method enables an adequate 
response to the quality of the model predictions. 

 
8. CONCLUSION 
 
The new family of the symmetric and asymmetric poly–
nomial loss functions proposed in this paper represents 
the realistic and representative LFs that provide a reaso–
nable assessment and prediction of the actual losses 
associated with the variability of the process/product 
quality characteristics. 

The proposed LFs have some good properties and 
capabilities. The main advantage of this family of LFs is 
flexibility in the sense that it allows a researcher or qua–
lity practitioner to choose a specific LF that can best 
reflect the problem at hand.  

In contrast, Taguchi LF and some others do not ref–
lect actual losses within specification limits [LSL, USL] 
(when these data are known). That's why these LFs al–
ways underestimate or overestimate the actual losses. 
Therefore, the choice of some LF should be based on the 
process/product behavior and availability of loss data. 

Additionally, the developed PFLs provide a chance 
to find a potentially improved solution compared to the 
initial one.   

It is also shown that the method based on a new 
family of PLFs is insensitive (robust) with respect to 
empirical data, which do not deviate significantly from 
the normal distribution. 

The application of the proposed PLF has been de–
monstrated in three well-known examples that have 
been analyzed in previously published papers.  

The results show that the new LFs can be compe–
titive with other known LFs and serve as an alternative 
choice that quality experts, industrial statisticians, and 
quality practitioners may utilize to solve particular 
optimization problems.     

Certainly, the family of LFs proposed in this paper 
covers only some of the spectrum of potentially new 
and different loss functions.  

The focus in this work was on symmetric PLF, while 
the properties of asymmetric PLF were not considered 
to a sufficient extent. Future research is going to address 
this issue. 
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НОВА ФАМИЛИЈА ФУНКЦИЈА ГУБИТКА 
КВАЛИТЕТА 

В. Маринковић 

Функција губитка квалитета је мера губитка 
квалитета изазваног одступањем карактеристике 
квалитета од њене дефинисане циљне вредности. 
Тагучи је први развио функцију губитка квалитета 
како би обезбедио бољу процену економских 
губитака које би претрпели произвођачи и купци 
због одступања карактеристика квалитета од циљне 
вредности. Неколико истраживача је предложило 
различите ревидиране функције губитка за 
превазилажење неких недостатака Тагучијеве 
функције губитка. У овом раду се препоручује нова 
фамилија  функција губитка квалитета, која је веома 
флексибилна, једноставна и лака за имплементацију. 
Три стварне студије случаја су показале 
употребљивост и могућности предложене нове 
функције губитка за квантификацију и предвиђање 
губитака  квалитета.   

 
 
 

  


