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Early Environmental Assessment of 
Products Using Behavior Models and 
the Impact of their Inaccuracy on 
Environmental Product Performance 
 
The decisions made during the preliminary design phases considerably 
impact the development of a product's lifecycle, acting on its 
environmental performance, cost, and duration of its realization. However, 
the lack of relevant information during these phases does not allow for the 
accurate evaluation of design solutions. In addition, it generates schedule 
delays and overruns in the budget allocated to developing a given solution. 
In this perspective, the present work aims to assess the accuracy of the 
behavior models used for exploring solutions during the embodiment 
phase. This was based on two measures of different nature, namely 
objective accuracy, which is evaluated by referring to real prototyping of a 
given solution, and the subjective accuracy measure, which allows to the 
expression of the degradation of the first measure in relation to the 
reference point. This combination will lead to a measure that can be 
generalized on all the design space. In a second step, the current work 
suggests an estimation of the effect of these models' accuracy on the 
proposed solutions' environmental impact. To this end, a sensitivity study 
was carried out on the input data of the model (design parameters) in 
order to deduce the effect of the results obtained (performance parameters) 
on the mass and, consequently, the environmental impact of the solution. In 
order to highlight the approach adopted in the present study, it was 
applied to a real industrial case, ultimately leading to the most optimized 
solution in terms of accuracy and environmental impact. 

 
Keywords: Model behavior, objective accuracy, subjective accuracy, 
environmental impact, embodiment design. 

 
 

1. INTRODUCTION 
 
Nowadays, the main concern of manufacturers is 
oriented toward the design of eco-friendly products with 
the lowest cost and the lowest lead time. Indeed, it tur–
ned out that all these elements must be taken into ac–
count from the first phases of the design process [1], 
especially since 80% of environmental decisions are 
made in this stage [2] and have an impact of 70% on the 
overall cost of the product, notably during the embo–
diment design phase [3]. However, several problems 
can confront the designer during these phases due to the 
need for more necessary information and the unava–
ilability of data, including the data that allows for eva–
luating the environmental impacts of a given solution, 
mainly the mass. Nevertheless, in order to determine 
this parameter (mass), the designer must go through the 
pre-dimensioning stage. This stage is often carried out 
using behavior models, mostly based on approximate 
assumptions that question their accuracy, resulting in 
uncertain solutions [4]. In this regard, taking into ac–
count these uncertainties from the beginning of the 

design process remains a crucial decisive step, espe–
cially since the proposed design solutions in this phase 
are partially designed.  

 
2. LITERATURE REVIEW 

 
Several multi-criteria decision support approaches have 
been proposed in the literature using various methods, 
including inter alia the fuzzy set method, which is 
frequently used in the treatment of inherent imprecision 
and uncertainties in the preliminary phases [5, 6, 7] 
including the choice of alternatives in terms of envi–
ronmental performance.  

In this regard, Alemam, A. et al. [8] proposed an 
approach to estimate concepts' environmental impacts, 
taking into account the uncertainty of design informa–
tion based on the Fuzzy interval arithmetic method. This 
latter is used to specify and identify imprecise infor–
mation. In the same vein, the fuzzy group method is 
applied to Eco-QFD for product development plan–ning 
to reduce the imprecision and uncertainty in a group 
decision-making process. One of the primary objectives 
of the fuzzy model is to encourage companies to 
produce environmentally friendly products[9]. It was 
also utilized to choose the best alternative of the 
compromises in a stage where the consideration of 
environmental performance is a decisive factor for 
developing an ecological product [10]. 
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    Moreover, the fuzzy set method is often applied at the 
beginning of the design process, especially the con–
ceptual phase, where most of the information is 
imprecise, in contrast to the embodiment phase, in 
which the designer receives more detailed information. 
Therefore given their relevance in the field of decision-
making, it is important to develop objective-type met–
hods. In this sense, several works have been proposed 
which have developed numerical indicators allowing us 
to evaluate and quantify the uncertainties during the 
preliminary phases, such as the confidence indicators 
proposed by Sylla, A. et al. [11], which are mainly 
based on subjective and factual indicators. 

For a long time, the tools adopted by designers for 
decision-making are mainly based on their experience and 
know-how [12]. However, today most companies invest 
their efforts in the development of tools that rely on 
numerical calculations using behavior models. These 
models are based on assumptions and approximations, 
which often lead to less representative (invalid or unre–
liable) findings compared to the real product behavior [13], 
including environmental performance. For this reason, the 
verification of the confidence level of the candidate 
solution is an unavoidable step. This can be achieved 
through the sequencing of iteration cycles and the 
fabrication of numerous verification prototypes. Yet, this 
process remains very long and usually leads to over–runs 
in time and budget allocated for product development. 
This, consequently, evokes the need to develop tools 
aiming at the evaluation of the accuracy of these models in 
order to have products with the best cost, in the shortest 
possible time, and with good environmental performance. 

In fact, there have been very few attempts to address 
the evaluation of behavior models in the literature, 
prominent among which are as follows:  

-  Collignan, A. et al. [14] proposed a method called 
OIA (observation-interpretation-aggregation), which 
allows one to explore the global design space and to 
qualify at the same time the explored solutions by 
comparing them with the reference solution. This 
requires the use of functions, namely confidence 
functions, granted by the designer. However, one of its 
limitations is that it proposes functions encompassing 
any uncertainty. Yet, it is important to determine the 
exact source of the inaccuracy of the behavior models in 
order to be able to reduce it. 

-  Malak, R. J. et al. [15] suggested in a conceptual 
framework a new approach that goes through three 
complementary processes for the validation of a model, 
including the characterization of the validity, compati–
bility assessment, and suitability assessment. This de–
composition is informed by a formal representation of 
relevant knowledge for the validation, which allows 
acquiring, transferring, and effectively using this 
knowledge and validating the reusable behavior models. 
In the same perspective, Mocko, G. et al. [16] developed 
an interface that facilitates the reuse of behavior models. 
It allows for the reduction of the knowledge gap between 
the technical design and the analysis. Nevertheless, this 
process requires the availability of knowledge and 
specific information to reusable models. Therefore, the 
application of this type of procedure is only valid for 
reusable models and cannot be applied to new models. 

- Vernat,Y et al. [17] proposed a tool to evaluate the 
accuracy of behavior models using the acronym PEPS 
(Parsimony, Exactness, Precision, and Specialization). 
In addition, the author proposes to measure the accuracy 
by determining the distance between the envisaged 
solution and a reference solution. This measure has been 
implemented in the study of El amine, M et al. [18], 
along with other subjective indicators called "confi–
dence indicators," in which the author takes into 
consideration the degradation of the measure proposed 
by Vernat, Y  when the proposed solution moves away 
from the reference solution. 

Given the findings obtained in the aforestated re–
search studies, the present study is an attempt to address 
three issues : (i) the use of behavior models as a means 
of identifying the necessary parameters for an early 
environmental assessment, (ii) the estimation of the 
impact of inaccuracies of these behavior models on the 
environmental performance of the product, and (iii) 
evaluation of the accuracy of these models based on the 
notion of hypothesis, in particular the notion of classi–
fication of hypotheses. 

The current work adopts behavior models for a 
number of reasons. First, to explore possible solutions 
during the embodiment phase, on the other hand, to 
have the necessary dimensions for estimating the mass, 
which remains a key factor in assessing the product's 
environmental impact.  Second, an approach is proposed 
to evaluate their accuracy: subjective and objective 
indicators. Finally, it shows the effect of these models' 
uncertainty on the product's environmental impact thro–
ugh an overall accuracy indicator. The application case 
chosen for the proposed approach is the supporting 
structure of a Fresnel solar collector. 
 
3. PROPOSED APPROACH 

 
The embodiment design defines the choices to be made 
in relation to the form, the components, the materials, 
and the structural/architectural dimensions [17]. These 
choices are usually made using behavior models, which 
allow prediction and evaluation of design solutions' 
performance. However, most of the time, these models 
generate deviations from the real behavior of the 
product because of two main factors: the hypotheses 
used during the construction of the model and the 
imprecision of the model's input variables [19]. The 
study proposes the treatment of the problem of the 
accuracy of behavior models following four steps: The 
identification and classification of the hypotheses used 
during the development of these models, according to 
three levels (strong, weak, mode–rate). The second step 
consists of objectively assessing the model's accuracy 
using a numerical indicator. It is a measure that 
determines the distance between the performance 
parameters of a candidate solution (solution predicted 
by behavior model) and a reference solution (solution 
tested and physically prototyped by the company). The 
third step, it consists in integrating the designer's 
experience developed through the manufacturing of 
several prototypes, a subjective element but considered 
very important in assessing the accuracy of these 
models. The final step stipulates the use of an overall 
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indicator that measures the effect of inaccuracy on the 
product's environmental impact. Figure 1 shows all the 
steps followed in evaluating behavior models, going 
from the classification of hypotheses to having the 
overall accuracy indicator. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Procedure for assessing the accuracy of behavior 
models 

 

3.1 Classification of hypotheses 
 
The development of a behavior model requires a 
multiplicity of hypotheses and approximations that can 
be subsequently verified in the real behavior of the 
product. The verification is carried out according to 
three levels: a complete verification of the hypotheses 
used, a moderate verification, and another weak 
verification distinguished as follows: 
- Level 1 (L1) : weak hypothesis; these hypotheses have 
a high chance of being verified in reality, at this level, 
the designer defined the interval of the design 
parameters, which proved during certain prototyping 
results very close to the real behavior of the product. 
- Level 2 (L2): moderate hypothesis; these hypotheses 
are more or less strong, but with a lower level, the design 
parameters that define this type of hypothesis lead to 
results that can approach the product's real behavior. 

- Level 3 (L3) : strong hypothesis, these are hypotheses 
that are far from being verified in real behavior; this 
level is characterized by the design parameters leading 
to results that have a low chance of being verified. 

Each hypothesis corresponds to a well defined 
interval of design parameters constituting the input 
variables of the model Figure 1.These are used to find 
possible design alternatives. The behavior model is also 
influenced by control variables that correspond to fixed 
data related to the hypotheses and are used to define the 
models and their framework. At the model's output, we 
obtain the performance parameters representing the 
design objectives to be achieved. Figure 2 highlights the 
three types of variables constituting the behavior model: 

 
Figure 2. Formalization of a behavior model for product 

In reality, the impact of hypotheses on performance 
parameters varies from one level to another according to 
the interval of design parameters that define them. To 
this end, we proceed to use a method frequently used in 
decision-making [20, 21], the AHP method [22]. This 
method is mainly based on a pairwise comparison of the 
criteria which correspond to the suggested levels of 
hypotheses. Generally, this comparison is carried out 
using a semantic scale ranging from 1 to 9. This 
pairwise comparison process permits constructing a 
judgment matrix to estimate the weights associated with 
each level of the hypothesis. A consistency coefficient 
that varies between 0 and 1 was proposed by Saaty [23] 
in order to check for inconsistencies in pairwise 
comparisons. This mode of expression is characterized 
by its simplicity and allows for a cardinal type of 
weighting [24]. 

In fact, the weights associated with each level of 
hypotheses serve to classify them according to their 
degree of importance and their impact on the 
performance parameters. For example the weak 
hypothesis level is the most important level, as it 
represents the interval of the design parameters allowing 
to have more exact results. This suggests the reason why 
a designer must assign the highest score at this level. 
The scores (shi) assigned to each level (Li) are based on 
the designer's opinion and their experiences with 
prototyping and tests already carried out. A significant 
color was assigned for each level (Li) as shown in 
Table1. 
Table 1. Hypotheses levels considered 

 Li Type of hypothesis shi 

Hypothesis 
(Hi) 

L1 Weak hypothesis 1 
L2 Moderate hypothesis 0.6 
L3 Strong hypothesis 0.4 
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3.2 Objective accuracy 
 

The objective evaluation of the behavior models 
accuracy consists of comparing the performance of the 
candidate solution predicted by the behavioral model 
along with those of the reference solution. This evalu–
ation was in the form of a numerical indicator, which 
measures the distance between the performance value of 
the behavior model and the performance value mea–
sured on the reference solution [17, 25]. Indeed, the 
objective accuracy indicator is a normalized value that 
is obtained by the relative difference between the 
performance parameter of the candidate solution and 
that of the reference solution Eq. (1) :  

 
( )*

*

i i
p

i

P P
E

P

−
=                                (1) 

• Pi: the performance parameters of the candidate 
solution. 

• Pi
*: the performance parameters of the reference 

solution. 
However, this measure is only valid for a particular 

solution (prototype solution), and the accuracy measure 
degrades as soon as the proposed solution moves away 
from the prototyped solution. Therefore, a subjective 
accuracy evaluation of these models has been proposed 
in order to generalize this measure to the whole design 
space. 
 
3.3 Subjective accuracy 

 
The knowledge of the designer developed over years of 
experience and the manufacture of several prototypes in 
the company, particularly the current product, are im–
portant points in evaluating the accuracy of behavior 
models. Given this, an indicator that combines the 
objective evaluation and the experience feedback of the 
designer in relation to the performance parameters 
envisaged has been proposed. 
 
3.3.1 Confidence indicators for performance para–

meters 
 
The performance parameters are strongly influenced by 
the hypotheses addressed in the present study as well as 
the levels to which they belong.That is, the stronger the 
hypothesis, the less the performance parameters will be 
affected. For this reason, confidence indicators have 
been proposed for each performance parameter for 
which the designer must assign scores to each of them 
using the AHP method. These scores reflect the desig–
ner's opinion regarding the effect of each level of 
hypotheses on the performance parameters. Indeed, the 
designer's opinion is based mainly on feedback from 
experiences with prototypes already made for the deve–
lopment of a given solution. This helps to compare the 
degree of influence of the hypothesis on the per–
formance considered. Each confidence indicator (ICi) is 
defined as the sum of the multiplication of the weights 
of the performance parameters (wij) obtained according 
to the studied hypothesis and the weight (shi) of each 

hypothesis level (Li) (weak, moderate, strong). These 
indicators are presented in a matrix format. 
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3.3.2 Subjective indicator of behavior models 

accuracy 
 
In order to generalize the objective measurement over 
the entire design space, each objective indicator is mul–
tiplied by a corrector factor. This latter represents the 
level of reliability of the performance parameters of the 
candidate solution compared to the performance para–
meters of the reference solution. 
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• ICi: the confidence indicator for the performance 
parameter Pi of the candidate solution.  
• ICi

*: the confidence indicator for the performance 
parameter P*

iof the reference solution. 
If: ki = 1, the candidate and the reference solutions 
have the same reliability. 

ki > 1, the reliability of the candidate solution is 
greater than that of the reference solution. 

                    ki < 1 , the reliability of the reference solution is 
greater than that of the candidate solution. 
 

3.4 Overall assessment of the behavior model's 
accuracy  

 
The behavior models used during the embodiment phase 
allow not only to explore of possible design solutions 
but also to determine important parameters, namely 
(thickness, width, length, etc.), which will subsequently 
enable to determine the mass, which is an essential ele–
ment for the assessment of the environmental impact of 
the solutions explored, in particular for the calculation 
of several environmental indicators, such as midpoint, 
endpoint and single score [26]. 

The main objective of evaluating the behavior mo–
dels was to find the effect of the accuracy of these mo–
dels on the mass and, consequently, on the product's 
environmental impact. Moreover, it may be that a 
performance parameter with a high level of accuracy but 
with a low effect on the mass. It is also possible to have 
a performance parameter with a low level of accuracy 
however its impact on the mass was considerable. In 
this case the performance parameter induces a risk on 
the environmental performance compared to the first 
possibility, which may require more attention from the 
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designer. For this reason, we propose an overall accu–
racy indicator (OAI), that represents the effect of each 
performance parameter (Pi) on the mass using the coef–
ficients (Ai) Eq. (5) multiplied by the subjective accu–
racy indicators of each performance parameter Eq. (6). 

n
i iiOAI A SAI= ∗∑    (5) 

/
i

i
i i

m
A

p p
Δ

=
Δ

   (6) 

Indeed, in order to optimize the environmental im–
pact of the considered alternative, it is necessary to op–
timize its mass. To this end, optimizing the design 
parameters used in the proposed behavior model is 
important to have the most optimized mass value. This 
optimization should have a direct impact on the per–
formance parameters. Therefore, the current step helps 
to determine the variation of the mass as a function of 
the design parameters and to show its effect on the 
performance parameters. 

 
3.5 Estimation of the environmental impact using 

LCA 
 

Through this step, we seek to estimate the environ–
mental impact of the solutions proposed using the Life 
Cycle Analysis Method (LCA) [27, 28], using quanti–
tative indicators such as midpoint (global warming, 
ozone depletion, etc.), endpoint (loss of human life, loss 
of ecosystems, etc.) or even single score which is a 
combination of midpoint and endpoint indicators) [29]. 
The main purpose of these eco-indicators is to convert 
the design properties of a given solution, including the 
mass and materials used into environmental indicators. 

Several LCA assessment methods can estimate these 
indicators, including the Recipe method, which is a 
complete assessment method [30].  This latter proposes 
constantly updated models and suggests exhaustive in–
dicators at the midpoint and endpoint levels. 

The estimation of the environmental impact of a 
product requires three main parameters: mass, materials 
used, and manufacturing processes. In this study the third 
parameter is not included because only the assem–bly 
processes are treated (bolting, riveting, clinching... etc) 
which are not treated by LCA except for "wel–ding"[31]. 

In fact, the environmental impact induced by the 
materials remains easy to estimate during the preli–
minary phases. Nevertheless, the estimation of the mass 
is more complicated [26]. Due to this the behavior 
models are used to determine the dimensions needed to 
estimate the mass. 

The estimation of the product's environmental 
impact was calculated using Eq. (7), where (M) is the 
estimated mass and (Ir) is the RECIPE indicator which 
is taken from the database Ecoinvent 2013. 

rEi M I= ∗    (7) 
 

4. APPLICATION CASE 
 
The chosen application case is the support of a solar 
collector (CSP). Its main function is to concentrate and 
redirect sunlight onto absorber tubes to heat up the 

working fluid. The recovered heat is then used to 
generate high pressure steam which drives a turbine in 
order to produce electricity. The solar collector is 
composed of a reflecting surface and a metal structure, 
whose function is to give and maintain reflecting glass 
shape Figure 3. In our study, only the design of the 
supporting structure is treated. 

 
Figure 3. Schematization of solar collector 

Given the company’s requirements, the supporting 
structure to be designed must achieve two primary ob–
jectives: (i) have high optical performance, (ii) 
withstand the external environment. 

In fact, optical performance refers to the ability of 
the reflector to concentrate and reflect the sun's rays 
correctly on the absorber tubes. These tubes directly 
influence the thermal efficiency of the plant. In order to 
limit the percentage of rays deviating from their target, 
it is necessary to limit the deformations of the reflecting 
mirrors as much as possible and, therefore, specifically 
of the reflecting support. 

The objective of optical performance is then 
decomposed into two  sub-objectives which are: "having 
a low torsion of structure" and "having a low deflection 
of structure". 

Furthermore, the reflective support must withstand 
the climatic conditions that characterize the installation 
site. The more resistant the reflector support is, the more 
varied the possibilities of implantation sites will be. In 
our case, the objective of "resisting the external envi–
ronment" is mainly linked to resistance to extreme wind. 

A performance parameter was associated with each 
design objective, which will be evaluated subsequently 
on the solution of the reflective support considered. 
These variables are noted as follows: 
- P1 : Torsion angle 
- P2 : Deflection 
- P3 : Wind resistance 

Continuing the previous study on three concepts 
during the conceptual phase led to keeping two con–
cepts, including the truss concept, and eliminating anot–
her concept deemed less relevant [32]. The present work 
continues the study of the truss concept and, this time, 
verifies its behavior during the embodiment phase. 
 

 Concept A: truss concept 
 
The truss structure presented in Figure 4 is composed of 
upper and lower diagonal bars, upper chords, and the 
lower chord. The assembly process used to assemble all 
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these components is "clinching", it is usually fixed at 
the beginning of the project, and this is also the case for 
the width ( l) and length (L) of the reflector. 

 
4.1 Assessment of behavior model accuracy 
 
The behavior model used for the truss concept is based 
on three main hypotheses (Hi): 
- 1sthypothesis (H1): neglect the peeling phenomenon 
which is due to the assembly process used "clinching". 
- 2nd hypothesis (H2): assume that the joints between the 
truss bars are perfect. 
- 3rd hypothesis (H3): admit that the diagonal bars of the 
structure are concurrent with the nodes. 

These hypotheses are classified into three levels (L1: 
strong, L2: moderate, L3: weak), according to the interval 
to which each design parameter belongs Table 2. We 
indicate that it is enough that a single design parameter 
belongs to a moderate (orange) or a weak (red) level for 
the hypothesis to be considered from one of these levels. 
In fact, certain (Li) were not considered for the case of 
the truss structure as well as the  

(PCi) parameters because they do not have a direct 
effect on the studied hypothesis. 
Table 2.The hypotheses considered for the TRUSS struc–
ture, their classification, and their weights 

Hi Li shi PC1 PC2 PC3 PC4

H1 
L1 1 [2,5-5] [3-5,2] [3-5,2] ** 
L2 0.6 [2-2,5] [2-3] [2-3] ** 
L3 0.4 ** ** ** ** 

H2 
L1 1 [2-3,5] ** ** ** 
L2 0.6 [3,5-4] ** ** ** 
L3 0.4 [4-5] ** ** ** 

H3 
L1 1 ** [3-5,2] [3-5,2] [900-

1200] 

L2 0.6 ** [2-3] [2-3] [1200-
1500] 

L3 0.4 ** ** ** ** 
 
The design parameters that were considered for this 

application case are: the thickness of the diagonal bars  
(PC1), the thickness of the upper and lower chords (PC2, 
PC3) and the height of the structure (PC4) Figure 4. 

 
Figure 4. The supporting structure of CSP and the design 
parameters considered for the truss structure 

Design parameters (PCi) were used in the chosen 
behavior model in order to estimate the performance 

already mentioned: angular deformation of structure 
(P1), elastic deflection of structure (P2) and maximum 
wind pressure supported (P3). These performances are 
evaluated using a 'materials resistance' behavior model, 
which is subsequently programmed in Matlab to auto–
mate the calculations.  

Optimization by the design expe–riment method was 
made to have the most optimized design parameters in 
terms of mass; this method has been used in several 
works, including the work of Edo–uard, R et al. [33], 
who used this method to study the influence of 
geometrical parameters on mechanical res–ponses. In 
addition, the results obtained concerning the 
performance parameters (Pi) were compared with the 
performance parameters of a reference solution (P*

i) in 
order to assess the objective accuracy of the behavior 
model used Table 3.  
Table 3. The design and performance parameters of 
solution A and the reference solution 

Solution A Reference solution Objective 
accuracy 

PCi 
(mm) Pi 

PC*
i 

(mm) P*
i Epi 

PC1 2.5 P1 
(°) 0.02 PC*

1 
 3 P*

1 
(°) 0.03 Ep1 0.21 

PC2 3.5 P2   
(mm) 2.51 PC*

2 
 4 P2 

(mm) 2.54 Ep2 0,28 

PC3 3.5 P3 0.27 PC*
3 4 P*

3 0.72 Ep3 0.6 PC4 920 PC*
4 930 

 
The design parameters of solution A and the refe–

rence solution belong to the interval of (PCi) which de–
fines the level of hypothesis (L1) and which corres–
ponds to a score (shi) equal to 1. The weights (wij) of the 
performance parameters obtained according to the stu–
died hypotheses were also estimated using the AHP 
method Table 4. 
Table 4. Levels of hypotheses considered and ( ) of the 
performance (P1) parameters 

Hi shi w1 w2 w3 
H1 1 0,71 0,16 0,13 
H2 1 0,12 0,36 0,51 
H3 1 0,10 0,24 0,64 
 
Refer to (2) and (3) the confidence indicators of the 

reference solution and solution A and the subjective 
accuracy were calculated respectively Table 5. 
Table 5.The confidence indicators (IC1,IC*

1) and the sub–
jective indicators (SAI1) of solution A 

Confidence indicator of reference 
solution    Subjective accuracy  

IC*
1 IC*

2 IC*
3 

0.99 0.99 0.98 SAI1 SAI2 SAI3 
Confidence indicator of solution A  

0.21 0.24 0.61 IC1 IC2 IC3 
0.99 0.75 1 

 
The evaluation of solution A was carried out using 

the overall accuracy indicator (OAI) and the envi–
ronmental impact indicator (Ei). The results obtained for 
this solution are presented in Table 6. 
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Table 6. Indicators (OAI) and (Ei) of solution A 

Solution A Ei  (%) OAI (%) 
67.6 37.5 

 
5. RESULTS AND DISCUSSION 

 
The use of the method of design experiment allowed to 
generate of 10000 solutions, resulting from all possible 
combinations between the different values of design 
parameters. The main objective of this step is to have 
the best combination that leads to the most optimized 
mass. This will also permit us to deduce the effects of 
each subjective accuracy indicator on the mass and, 
consequently, on the environmental indicator; these 
effects were represented in the form of coefficients, 
each of which signifies: (i)A1: the impact of P1 on the 
mass, (ii)A2: the impact of P2 n the mass, (iii) A3: the 
impact of P3 on the mass. 

Since the number of solutions obtained is very high, 
a "Pareto front" analysis was performed to limit the 
number of solutions evaluated to facilitate the choice of 
the optimal solution, a "Pareto front" analysis was per–
formed. The design parameters that were evaluated 
correspond to small variations of the initial parameters 
of solution A. Actually, we took an interval of 10 values 
for each design parameter with a step of 0.1. 

The analysis was conducted based on two indicators: 
the global exactitude indicator and the environmental 
indicator. Indeed, the Pareto front permits to the de–
signer to have a certain readability of the dominant and 
dominated solutions and to choose according to the ob–
jectives of the company, which has the best compromise 
between these two indicators. This, of course, in the 
case where the two indicators converge towards dif–
ferent objectives (e.g., high accuracy and high environ–
mental impact indicator).Otherwise, the choice of the 
solution is easier to make by the decision maker. 

Figure 5 represents the 10000 solutions evaluated using 
the behavior model, including the optimal solution. 

 
Figure 5. (OAI)  and (Ei) for each candidate solution for the 
solution A 

According to the analysis performed on the Pareto 
front graph, the optimal solution was the one that cor–
responds to a high accuracy indicator (OAI) and, at the 
same time, a minimal environmental indicator (Ei) 
(Table 7). 

The results obtained show that the optimal solution 
corresponds to the solution  that has the optimal design 
parameters that allowed to have the most optimized 
mass as well as the most performing parameters. 
Tableau 7. The accuracy and environmental impact 
indicators of the optimal solution 

Optimal solution 
Design parameters OAI Ei 
PC1 2.5 mm 

 
 

41.4% 

 
 

67.5% 

PC2 3.5mm 
PC3 4.4 mm 
PC4 920 mm 

 
6. CONCLUSION  
 
In this work, a method for evaluating the accuracy of 
behavior models during the embodiment phase has been 
proposed and tested on a collector for a solar thermal 
power plant with Fresnel mirrors « truss structure ». 
This method proposes two types of indicators; the first 
one corresponds to a numerical indicator of objective 
type relatively linked to a reference solution. A subj–
ective indicator that represents the designer's opinion 
and experience, and that allows the objective measure 
obtained to be generalized to the entire design space. 
The evaluation of these two indicators then will allow 
the designer to have a general vision on the environ–
mental performance of the product through the esti–
mation of the effect of the accuracy of these models on 
the product environmental impact. 

 Indeed, one of the main objectives of this work was 
to show the importance of taking into account the envi–
ronmental constraint from the beginning of the design 
process, and to urge companies to follow an eco-design 
approach to achieve their design objectives. Although 
our approach facilitates this integration, other consi–
derations must be integrated into our decision-support 
approach. To this end, we propose a very interesting 
perspective to accomplish this work: the consideration 
of robustness in the environmental assessment of design 
solutions. 
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РАНА ЕКОЛОШКА ПРОЦЕНА ПРОИЗВОДА 
КОРИШЋЕЊЕМ МОДЕЛА ПОНАШАЊА И 

УТИЦАЈ ЊИХОВЕ НЕТАЧНОСТИ НА 
ПЕРФОРМАНСЕ ПРОИЗВОДА ПО ЖИВОТНУ 

СРЕДИНУ 
 

Х. Бујармане, М. Ел Амине, М. Салау  
 

Одлуке донете током фаза идејног пројектовања 
значајно утичу на развој животног циклуса 
производа, утичући на његов еколошки учинак, цену 
и трајање његове реализације. Међутим, недостатак 
релевантних информација током ових фаза не 
омогућава тачну процену пројектних решења. Поред 
тога, генерише кашњења у распореду и прекорачења 
буџета додељеног за развој датог решења. У овој 
перспективи, овај рад има за циљ да процени 
тачност модела понашања који се користе за 
истраживање решења током фазе реализације. Ово 

се заснивало на две мере различите природе, однос–
но објективној тачности, која се оцењује позивањем 
на реалну израду прототипа датог решења, и 
субјективној мери тачности која омо–гућава да се 
изрази деградација прве мере у односу на рефе–
рентну. тачка. Ова комбинација ће довести до мере 
која се може генерализовати на цео простор дизајна. 
У другом кораку, садашњи рад предлаже процену 
утицаја тачности ових модела на утицај предло–
жених решења на животну средину. У том циљу је 
спроведена студија осетљивости на улазним пода–
цима модела (дизајнерски параметри) како би се 
закључио ефекат добијених резултата (параметри 
перформанси) на масу и, последично, утицај решења 
на животну средину. Да би се истакао приступ 
усвојен у овој студији, примењен је на прави индус–
тријски случај, што је на крају довело до нај–
оптимизованијег решења у смислу тачности и 
утицаја на животну средину. 

 
 
 


