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Mobile Manipulators Using Machine
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Integrated robotic systems combining manipulators with mobile robots
provide outstanding improvement opportunities for semi-automatic
assembly processes leveraged by Industry 4.0. Factory operations are
released from the rigid layout constraints imposed by conventional fixed
robots. Thus, they introduce new challenges in managing the recharge
cycles as the energy consumption of mobile manipulators is not simply
related to the travelled distance but to the overall tasks executed. Its
estimation requires a systemic approach. In the proposed solution, an
intelligent monitoring system is implemented on board. Data gathered
online, and Key Performance Indicators (KPIs) calculated during the
working tasks are exploited by Machine Learning (ML) to optimize energy
recharging cycles. Although the development of an intelligent monitoring
framework for a mobile manipulator was the original objective of the
research, the monitoring system is exploited here for energy management
only, leaving space for other future applications.

Keywords: Mobile robots, Collaborative manipulators, Machine Learning,

Energy consumption, Online Monitoring, Industry 4.0.

1. INTRODUCTION

Currently, robotic technologies such as collaborative and
mobile robots are considered enabling technology for
deploying Industry 4.0 (I14.0) [1]. Multi-robot systems in
Figure 1 composed of one or more mani—pulator arms
mounted on a mobile robot can offer new employment
possibilities for industry automation, gre—atly increasing
the flexibility of factory layout definition [2].
Unfortunately, there are also negative fallouts. Among
them autonomy of the mobile robot is lowered by the
energy consumption of the manipulator; there—fore, it is
no more related to the travel distance (or the operating
time, as mobile robots usually travel at constant speed).

The limited autonomy of the batteries mounted
onboard mobile robots is the main constraint limiting
the operational time of the robot inside the factory. It
negatively affects potential employment on the line.
When the battery charge is low, the robot must quit
work, locate the nearest charging station and dock to it.

The estimate of energy level in order to schedule the
time and frequency of recharging cycles is still an open
problem, as it is scarcely correlated with the operating
time of either of the two robots. Furthermore, the
common method of estimation of the State Of Charge
(SOC) by integrating the ampere-hour was demon—
strated to be both inaccurate and unreliable [3].

It is possible to gather a huge amount of data to
monitor the mobile manipulator through the application
of the Internet of Things (IoT) [4]. Many of them are
directly or indirectly related to energy consumption [5]
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and can be exploited to estimate the need for recharging.
In small production, the future tasks of the robot could be
unknown. It is difficult to build a consumption model
analytically as it depends on uncountable parameters. On
the contrary, ML presents advanced analytical capa—
bilities for processing and analyzing large amounts of
production data without requiring an underlying con—
sumption model. ML allows predicting with reasonable
accuracy the energy consumed based on an approximate
description of the working tasks described only in terms
of their effect on some Key Performance Indexes (KPIs).

Figure 1. Mobile manipulator

Energy management belongs to the production
control as far as robot halts during recharging can have
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a significant impact on production performances. The
recharging stops should be chosen and scheduled to
optimize the production throughput. In turn, optimal
scheduling relies on an accurate and reliable estimate of
SOC. To provide such an estimate, the necessary actions
include the selection of appropriate indicators of the
impact of each work task on energy consumption and
the continuous monitoring of the mobile manipulator.
Simulating the future missions of the mobile
manipulator, it is possible to validate the optimized
recharging sequence and to predict the future energy
demand. The present research aims at providing a robust
and effective estimate of SOC for mobile manipulators.
In conclusion, the research questions the study
proposes to answer are:
RQ1: classify robot work tasks according to energy
consumption by using measurable KPIs.
RQ2: measure the mentioned KPIs on a mobile
manipulator, during its work, by continuous monitoring.
RQ3: provide a reliable estimation of battery con—
sumption, given a programmed work sequence.

2. STATE OF THE ART

The above-defined RQs have already been considered in
the literature. The answer to RQI1 requires defining
meaningful KPIs that are used not only to monitor and
display energy consumption but also for planning,
scheduling, predictive maintenance, quality control, etc.
ISO 22400 defines standardized KPIs, of which 34 KPIs
may be utilized in manufacturing ([6] and [7]). Among
them, there are 5 that significantly affect the working
performance of mobile and collaborative robots emp—
loyed in the factory ([8]). They are reported in Table 1.

Table 1. Implemented KPIs on the monitoring framework

KPI Formulation Description
Cycle time sequence start time - | -
previous sequence
start time
Cycles Number of cycles Increment every time a
completed completed cycle finish
Wait time Sum of robot wait Robot idle or waiting
times
Utilization use time / total time How long is the robot
used against the
potential use time
Efficiency cycle time/ use time % of productive work

The answer to RQ2 requires setting up a remote
monitoring system providing the data needed to cal-
culate the aforementioned KPIs. In [9], an intelligent
monitoring framework has been implemented on a
mobile robot, allowing the measurement of the consi—
dered KPIs [10]. Mobile manipulators could be con—
nected with the factory network through WIFI once the
connectivity is guaranteed by adopting proper strategies
as described in [4].

Therefore, the first two RQs have found a solution in
the literature and require only the implementation of the
present case study. On the contrary, to the author's
knowledge, RQ3 has not yet been answered.

Estimation of battery consumption is necessary to
adjust the scheduling of work tasks with battery
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management. The scheduling problem is not trivial and
requires global optimization, but it already has a number
of solutions in the literature.

As an example, [11] recurs to the Theory of
Inventive Problem Solving (TRIZ) and the multiagent
system (MAS). Other authors find the optimal travel
route that considers additional charging stops. [12]
propose a general constrained optimization algorithm by
modeling the problem as an extension of the classic
Travelling Salesman Problem.

In the present case study of the mobile manipulator,
none of the existing solutions can be adopted
straightforwardly because all of them rely on an
estimate of SOC as a function of the length of traveled
routes. On the contrary, in the present case, the battery
could run out while the mobile robot is stationary at a
workstation and only the manipulator arm is working.
This prevents access to a charging point. Therefore, it is
necessary to monitor the battery level and predict in
advance when robotic arm operations will lead to a low
battery situation. SOC and temperature for the battery of
mobile robots can be monitored with the Internet of
Things (IoT), as described by [13]. In literature already
exist efficient predictive models of energy consumption
for mobile robots, given the known state of charge, like
the one employed by [14]. No model applicable to
mobile manipulators was found.

Machine Learning (ML) was already used in mobile
robotics to assist navigation [15] or to control the
trajectories [16,17], while regression analysis assists
predictive maintenance of the robot [18,19].

The advantage of ML is the possibility to include
numerous input data from production in the learning
phase, leading to a quality prediction even in the absence
of a reliable analytical model of the process. Therefore, in
the present study, ML assists in deve—loping a predictor
for energy consumption in a mobile manipulator.

3. DEVELOPED METHODS

In former research [10], KPIs of the robotic cell and
robot data were measured in real-time on the mobile
manipulator and made accessible through a dashboard,
as can be seen at the top of Fig. 2.

The framework's application layer integrates and
visualizes ML results, status and battery data, and KPIs.
A Node-RED program calculates KPI metrics from the
onboard robot's data by user-defined functions. To com—
pute KPIs, Node-red requests data (status, start time,
uptime, downtime, etc.) using the MODBUS TCP/IP and
RTDE protocols. The raw data received are trans—formed
into human-readable data, and robot KPIs are computed.

Starting from this monitoring framework, a set of
experiments was conducted to classify the robot's ope—
rative tasks in terms of impact on energy consumption.

3.1 Experiment with a monitoring framework

The monitoring framework is composed of several
interconnected pieces, including data acquisition from
robots, communication layers, ML and KPI deployment,
and dashboard integration. Figure 2 depicts the propo—
sed framework of the ML-based monitoring system.
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Figure 2. Intelligent Manufacturing Monitoring Framework
Table 2. Evaluation metrics and descriptions of the classification models
Metric Formulation Description
Log loss 1 Y N is the total number of observations in the
Logloss = N Z w; ( yiln ln( Pi ) + (l - )ln (1 - p; )) equation; @ is the per-row user-defined
i=1 weight; p is the predicted value, and y is the
actual target value.
N The mean squared error averages the squares
MSE MSE = i Z( y; — 5/)2 of the mistakes or variances. N, the total
N i ' number of observations; y; actual target
value; y predicted target value
The root means square error measures a
1Y 2 model's ability to predict a continuous value.
RMSE RMSE = |—> (yi-7) o
N part N, the total number of observations; y actual
target value; ¥ predicted target value
VAR 1 N 5 The statistical significance of each variable in
VAR = —Z( yi— 5/) the dataset in terms of its effect on the model.
i=l The variables are presented in descending
order of relevance.

In the proposed framework, the ML best-trained
model classifies robots' different conditions, such as if the
mobile robot is "ON". The cobot is "OFF" if the mobile
robot moves with the cobot "ON" and if the mobile robot
is moving. The cobot program is running if the multi-
robot system is moving with different weights, such as
30kg, 60 kg, and 90 kg, and to visualize the condition of
the intelligent monitoring system in real-time.

754 = VOL. 50, No 4, 2022

The main components of the framework are the UR3-
collaborative robot and MIR 100 mobile robot, which are
connected through an ethernet cable. The MIR100 has
WiFi and, therefore, can connect to gateways to get
access to the Internet network. It supports the MQTT
protocol since it allows direct access to the MQTT
broker. MODBUS and RTDE protocols and interfaces
are used for communication with robots. The RTDE
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protocol is used to acquire UR3 status data such as
POWER OFF/ON, Emergency Stop, Protective Stop, the
status of program-is it running, paused, or stopped, and
other parameters necessary to compute KPIs. The
received data are delivered to the cloud using an MQTT
broker. Mobile robot registers contain discrete variables
such as the On/Off status, emergency, battery status,
distance run, uptime, length of missions, and PLC
registers are used to calculate cycle, average times, etc...

3.2 Machine learning model

The Automatic machine learning (AutoML) approach is
used to identify the robots' behavior and condition based
on the data acquired. According to recent research,
H20 AutoML outperforms other competing automated
ML systems [20]. AutoML's robustness and efficiency
were examined by [21]. According to them, in contrast
to other automated models such as TPOT [22] and
AutoKeras [23], AutoML is the quickest tool for
training machine learning algorithms to generate a large
number of ML models in a short period of time.

H20 AutoML provides supervised training of
regression, binary classification, and multi-class classi—
fication models on datasets [24]. The H20 AutoML
platform key models include Generalized Linear Models
(GLM), Distributed Random Forests (DRF), XGBoost,
Gradient Boosting Machines (GBM), and Deep
Learning. The H20 AutoML platform chooses one of
three different models. The assessment metrics used for
the classification models are listed and described in
Table 2. Logarithmic loss (Log loss), mean squared
error (MSE), root mean square error (RMSE), and
variable importance (VAR) metrics were used to assess
the performance of multinomial classification models.

ML classification models predict multi-robot system
behavior and condition according to the battery, status
data, and KPIs.

In the multi-robot system, the mobile robots' default
dashboard does not provide information about
manipulator power consumption. For this reason, ML
models classify multi-robot systems' conditions and
status according to the battery data of the mobile robot.
Predicted ML class names are MIR 0, MIR 30,
MIR 60, MIR 90, MIR ON, MIR UR P R (mobile
robot is steady while manipulator is doing some tasks),
MIR _UR ON (both mobile robot and manipulator are
actively performing tasks).

3.3 Robotic cell monitoring and KPI integration

The dashboard deployment and integration constitute
the application layer (top layer in Fig.2), presenting
robot data, KPIs, and ML prediction results.

The dashboard is intended for a wider utilization
apart from energy management. It may be utilized to
analyze robot performance in production lines and for
predictive maintenance applications. Furthermore, pro—
duction managers can receive remote alarm signals for
emergency stops, warnings, protective stops, etc.

KPI metrics are implemented utilizing user-defined
functions in the Node-RED program. To compute KPIs,
Node-red requests data (status, start time, uptime, down—

FME Transactions

time, etc.) using the MODBUS TCP/IP and RTDE proto—
cols.

The raw data received are transformed into human-
readable data and integrated into KPIs. The following
results are provided: Figure 3 shows the dashboard of
the mobile robot, whereas Figure 4 depicts the
dashboard of the manipulator's arm.

The dashboard displays basic information (battery
level, robot condition, mission/task distance, and dura—
tion), cycle time (number of completed tasks, previous
and average cycle time, beginning mission time), and
selected KPIs (utilization, efficiency, and wait time).

3.4 Robotic cell simulation

The robotic cell simulation was developed to evaluate
the mobile robot's energy consumption during the task
execution and to provide the same simulation
environment for the case study. MATLAB, Simulink,
and the Robotics System Toolbox are used to simulate a
robotic cell and case study environment.

As illustrated in Figure 5, five main blocks have
been defined in the simulation environment (Simulink):
Robot Scheduler, Planning, Control, Plant Model, and
Visualization.

Robot Scheduler is the initial block. In this block,
the robot's position on the map is updated, and the
robot's mission is controlled using a Finite State
Machine. The scheduler's input data are the positions
of the Charging, Loading, and Unloading stations. The
goal of the control block is to determine whether or not
the robot is at the target position. The output data
consists of the mobile robot's start and final positions,
as well as a stop signal indicating that the robot is in
the charging station position. The Finite State Machine
describing the logic of charging management is
integrated into the robot scheduler. The Planning block
is a roadmap path planner object for the supplied
environment map. The map of the mobile robot is used
to produce a roadmap in the shape of a graph of
feasible pathways based on free and occupied areas in
the map.

The Planner block receives three inputs, start
position, target position, and mobile working map, and
generates a set of waypoints on the trajectory. The
Control block utilizes the Pure Pursuit algorithm (PPA)
[26] to simulate the trajectory of the mobile robot on the
map. The control block calculates linear and rotational
velocity signals based on the waypoints and the robot's
current position.

If the robot reaches the goal, the zero velocity at the
goal simulation block will halt it. The PPA simulation
block has two inputs and two outputs. The pose
indicates the robot's location on the xy-plane of the
simulation map. The Lookahead distance is set in the
simulation to fine-tune how closely the robot follows
the trajectory. Path tracking of the robot is improved
with a decreased Lookahead distance, which in our case
study is 0.3 meters.

The plant model block consists of the Differential
Drive Kinematic Model (DDKM), which is used to
generate a vehicle model that may be used to simulate
reduced mobile robot kinematics. Using the Differential
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Drive Kinematics object, the differential drive kine—matics
equations simulate a vehicle in which the wheels on the left
and right may spin separately, as shown in Figure 6.

General Parameters

Robot State

Error Status

Battery

16 %
0 100

Figure 3. Mobile robot’s dashboard

Running Mission

Finally, the robot visualizer simulation block receiv—
es as inputs the robot position (from the plant model
simulation block) and waypoints (from the Control

block) and visualizes robot movements on the map.

Cycle Time

Previous Cycle Time 168.1 seconds
Cycles Completed 4
Average Cycle Time 185.5 seconds
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Figure 4. Manipulator’s dashboard
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Task Time

Previous Task Time 42,6 seconds
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Average Task Time 41,6 seconds
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Figure 6. A simplified view of differential drive

4. EXPERIMENTAL SETUP

The robotic cell is located inside the Mind4Lab labora—
tory of the Turin Polytechnic. MIR learns the map of
Mind4Lab during preliminary navigations. Forbidden
areas are added by hand. Figure 7 shows the final map
of the experimental area.

The use case consists of an assembly operation on a
desk followed by the transportation of assembled parts
to a target unloading position.

The process is repeated until the battery of MIR
decreases below 5%. After that point, the MIR is prog—
rammed to go to the charging point and wait until it is fully
charged. The mobile robot repeats the same work—flow for
the loading/unloading tasks of 30kg, 60kg, and 90 kg
weights. During the experiment, different condi-tional data
of the MIR battery were acquired in the database. The
acquired dataset is driven by ML classification.

FME Transactions

The same case study is simulated using Matlab
Simulink. In the simulation case, the Charging state is
the robot’s initial state on the map. MIR’s battery is
fully charged at the beginning. In the simulation, the
battery level is managed by a Finite State Machine to be
reduced by a constant value as it moves between states.
Transitions between the Loading and Unloading states
occur until the battery goes below 5%.

The Planner MATLAB function block uses the
mobileRobotPRM route planner, which receives three
inputs: a start location, a goal position, and the
Mind4Lab laboratory map. The Pure Pursuit controller
block employs the scheduled waypoints downstream by
generating linear and rotational velocity signals based
on the waypoints and the robot's current position. The
Differential Drive Kinematic Model block creates a
mobile robot model that is used to simulate simple
vehicle kinematics.
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Figure 7. Map of the experimental area

5. RESULTS

In the proposed framework, H20 AutoML is used to
determine which robot is operating based on the battery
and status data of the robots. The AutoML function in
H20 automates the process of identifying the best
suitable models for a given dataset.

As the dataset is categorical, the multinomial distri—
bution technique is utilized for training it. To assess the
best performing models, error metrics were selected.
Table 3 displays the results of the top ML models used
to identify different robot conditions.

According to Table 3, the best models for the
present dataset are GBM 2 and DRF 1. Gradient
Boosting Machine (GBM) and Distributed Random
Forest (DRF) models are powerful classification and
regression techniques that forward-learn ensemble
models and progressively construct regression trees on
all aspects of the dataset in a completely distributed
manner - each tree is constructed in parallel.

Table 3. Results of metrics on different ML models

A P 3 n |
_ Un loading
¥ position
Chargingt . — ' 3
- position i 4 E
T L) 3

e

..} Assembly
+..+ position

Modelid | Mean | Log | RMSE | MSE Training
error loss time(ms)
GBM 2 0 1.46 | 0.014 | 2.11x 149
5 10*
DRF_1 0 2.53 0 7.13x 74
10"
XRT 1 0 2.48 0 6.85x 110
10*
Stacked 0 1.03 0.01 4.62x 4664
Ensemble 10°®
GLM_1 0 994 | 0.03 1.288X 5900
10
DL 1 0.09 475 | 0.17 3.048X 41280
107

The models' performance is excellent with low to null
values for RMSE. The variables that impact more on the
GBM model prediction more are robot battery capacity
(rbcap), battery voltage (battvolt), and robot battery
discharge time in seconds (rbtimesec). Figure 8 displays
the variable importance determined by AutoML.

rbcap

battvolt

rbtimesec

Variable

bamps

cpu_temp_11

cpu_temp_21

0.

(=1
=

025

Figure 8. Variable importance for the GBM prediction model
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In the case study, the majority of battery consum—
ption occurred when the mobile robot was performing
transportation procedures and the cobot software was
operating. As a result of the case study, the battery goes
from 100% to less than 5% after 4 hours and 13
minutes. The robotic cell completes 60 assembly opera—
tions with a fully charged battery during this timeframe.
During the real case study, the robot runs a total
distance of 2.61 km.

Most of the battery consumption occurred during the
transportation processes rather than assembly opera—
tions. Furthermore, because the mobile robot's battery
depletes quicker than 5%, it is suggested that a higher
threshold level be used to recharge the battery,
depending on the distance between the charging and
unloading positions.

The simulation model provides the battery consum—
ption rate as a constant number. The map of the real
case study is uploaded to Simulink. In the simulation
scenario of the robotic cell, the robot performed 58
assembly operations in 4 hours and 11 minutes. The
simulation distance of the robot for the given setup is
2.25 km. The simulation and case study experiment
results are quite similar. In the simulation, the battery
consumption is reduced constantly. In the actual case,
the battery consumption differs throughout the
processes and operations. This might explain why the
number of assembly procedures differs in the two
scenarios. Figure 9 shows a comparison between the
case study and simulation results.

70
60
50
40
30
20
10
0 [ | —
Number of . Distance
Assembly = Time (hour)
. Run (km)
Operation
B Actual case 60 421 261
Simulation 58 4.18 2.25

Figure 9. Comparison simulation vs. experiment

6. DISCUSSION AND CONCLUSIONS

The paper describes the possible exploitation of an
intelligent monitoring system based on machine lear—
ning, as recommended by [27]. The framework is
organized into four layers: the smart devices (robots)
layer, the network layer, the cloud layer, and the
application layer. On the application layer, machine
learning algorithms are applied to classify various
conditions and behaviors of the robots.

The simulation model controls the SOC and
predicts the battery consumption of the mobile robot
when the manipulator is connected. The prediction
model, trained by ML, guarantees the reliability of the
system. The proposed system can be advantageous to

FME Transactions

manufacturers who are willing to integrate mobile and
manipulator robotic cells in their production lines,
specifically in logistics. Data acquisition systems and
data sets acquired from the experiments can be utilized
for predictive maintenance tools and algorithms. To
prove the applicability and reliability of the framework
experiment has been conducted on a case study in the
laboratory.

ML model predicts robotic cell conditions if a
mobile robot is working alone or with a manipulator
based on the data coming from the robotic cell. The
automatic ML platform tool AutoML H2O is used to
classify different conditions, and according to the
multinomial classification models, the DRF model is the
best-performed model for our case study.

During the experiment, most of the battery
consumption occurred while the mobile robot was
executing transportation tasks, and the manipulator was
in use. The robotic cell completed 60 assembly
operations with a fully charged battery in this period. In
the simulation scenario, the robotic cell performed 58
assembly operations. Current research fills a gap in
modeling mobile manipulators, specifically addressing
energy management. Nevertheless, there are several
significant limits to this study, which are as follows: in
terms of the ML monitoring framework for robotic
cells, the framework 1is quite limited. Future
investigations are required to add more labeling to the
robotic cell's conditional dataset and integrate other ML
tools such as unsupervised or reinforcement learning, as
well as evaluate the system's integration with other
production lines to assess robotic cell reliability,
repeatability, robustness, and ease of use. Future
research will focus on developing a digital twin of the
mobile manipulator to adapt the production manage—
ment to the actual working conditions continuously.
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HUHTEJIMT'EHTHO YIIPAB/BAIBE EHEPTJOM
3A MOBMJIHE MAHUITYJIATOPE KOJA
KOPUCTE MAIIMHCKO YYEILE

J. Autonenu, K. Anujen

Wuterprcann poOOTCKH CHCTEMH KOjH KOMOWHYjY
MaHHMITyJIJaTOPe ca MOOWIHHUM po0OTUMA MpPYKajy
U3BaHpEHE MoryhHocTH no0oJbIIaba 3a
NOJyayTOMaTCKe IMpollece CKJalama Kojeé KOPHUCTH
Wnnycrpuja 4.0. ®adbpuuke onepanuje cy ociobdoheHe
PUTHIHUX OrpaHHYeHha pacmopesa koje Hamehy
KOHBEHIIMOHATHU (PUKCHH poboTu. [lakie, oHH yBoOIe
HOBE HM3a30BE y YIPaBbakby LUKIyCHMa IyHEHa jep
MOTPOIIFha €HEprije MOOWIHHX MAaHHWITyJIaTopa HHje
TmoBe3aHa caMo ca mnpeheHoM pasnmasbuHOM Beh u ca
YKyIIHUM M3BpIICHMM 3ajanuMa. IbeHa mporeHa
3aXTeBa CUCTEMCKH HPUCTYIL. Y NPeIyIOKEHOM pelley,
Ha OpoNy je UMIUICMCHTHUPaH WHTCIUICHTHU CUCTEM
npahema. [lomauy NpUKyNJbEHU HAa MPEXKH U KIbYYHH
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naankaropu yauaka (KIIM) n3padyHaTé TOKOM pagHHUX MOOWJIHM  MAaHWITyJaTop OHO TPBOOWTHH  LUJb

3ajaTaka ce KOPHUCTE Of CTpaHe MAIIHHCKOT ydema HCTPaKHUBAa, CHCTEM 3a HAI30pP CE OBJIE KOPUCTH CaMO
(MJI) 3a onTummu3anMjy HUKIyca MyHhCHa CHEPruje. 3a yIOpaBJbalkbe¢ CHEPrUjoM, OCTaBJbajyhu mpocTop 3a
Hako je pa3BOj MHTEIMICHTHOT OKBHpa 3a npaheme 3a npyre oyayhe amnukanuje.
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