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Nonlinear Free Vibration Analysis of 
Non-uniform Axially Graded Beam on 
Variable Elastic Foundation 
 
The present work investigates the nonlinear free vibration of an axially 
functionally graded (AFG) beam supported on the variable foundation. 
The beam geometry is non-uniform, with a linear cross-section variation 
along the length. The beam material is graded along the axial direction 
following the power-law relation. A Winkler type of variable elastic 
foundation is taken, in which variation of stiffness is considered along the 
length of the foundation. Geometrical nonlinearity produced by the beam's 
large-amplitude deflection is also considered. To attain the desired 
objectives, the problem is divided into two parts. The static problem is 
solved first, then a subsequent free vibration analysis is executed on the 
statically deformed beam configuration. The governing differential 
equations of the system are derived using suitable energy methods. A 
numerical technique of direct substitution with relaxation is utilized to 
obtain the solution of the derived nonlinear differential equations. A 
suitable validation study is presented to ensure the appropriateness of the 
present methodology. Benchmark results are also presented by means of 
natural frequency, backbone curve, and mode shape plot to investigate the 
influences of elastic foundation, material gradation, and non-uniform 
geometry on nonlinear vibration. 
 
Keywords: Nonlinear vibration, AFG beam, Variable elastic foundation, 
Energy principle. 

 
 

1. INTRODUCTION 
 

Modern technology needs sophisticated advanced mate–
rials to fulfill the demand of civilization. Functionally 
graded materials (FGM) fall in this advanced materials 
category in which smooth and functional transition of 
material properties is possible to obtain suitable volume 
fraction. Traditional homogeneous and isotropic 
materials cannot meet practical needs as they lack the 
refinement of material property distribution. The main 
advantages of FG materials are high strength, 
lightweight, and heat resistance. Koizumi [1] in detail 
investigated the characteristics and material properties 
of FGMs. FGMs are one kind of composite material 
with a microscopic inhomogeneous character [2]. Un–
like traditional composite, FGM does not suffer from 
the problem of delamination, which is caused due to 
high-stress concentration at the interface of two layers 
of dissimilar materials [3-6]. On the other hand, the 
foundation's structure plays an important role in 
engineering. It has extensive applications in road, 
railroad, bio-mechanics, geotechnics, and marine engi–
neering to design highway pavement, railroad tracks, 
and continuously supported pipelines, buildings, flo–
ating decks, etc. [7]. Its applications in various engi–
neering problems have attracted researchers over the 

years. Its journey can be traced from the year 1867 to 
the classical textbook by Emil Winkler. In which a 
simplified model was proposed. At a later time, the 
effort was extended by several researchers to develop 
various foundation models. Various researchers 
throughout the years extensively explore FG beams on 
elastic foundations. 

Pradhan and Murmu [8] presented a thermo-
mechanical formulation and utilized the principle of 
differential quadrature approach to carry out a compa–
rative study to analyze the dynamic characteristics of 
FG sandwich beam. Attar et al. [9] modeled a cracked 
beam using the lattice spring technique to calculate the 
beam's natural frequencies. Yaghoobi and Torabi [10] 
performed a vibration and stability study of FG beams. 
Mohanty et al [11] presented a FEM model to study the 
buckling of thick FG and FG sandwich beams. Murin et 
al. [12] considered the axial force effect on FGM beams 
to study the free vibrational behavior of the beam. 
Mohanty et al [13] conducted stability analysis on a la–
yered non-uniform beam subjected to the action axially 
varying load. The prediction of natural frequency and 
nonlinear frequency response behavior of FG beam was 
carried out by Kanani et al. [14]. Cubic nonlinearity for 
the beam was taken into account. Niknam and Aghdam 
[15] presented a quasi-analytical approach to determine 
the loaded frequency and critical buckling behavior of 
FG nonlocal beams. Tossapanon and Wattanasakulpong 
[16] used the Chebyshev collocation technique to 
predict vibrational frequencies and buckling load of FG 
sandwich beam. Deng et al. [17] predicted the 
frequencies and buckling loads of a bidirectional varied 
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FG thick beam system under the action of axial load, 
considering Hamilton's principle. Babaei et al. [18] 
conducted dynamic analysis on a curved FGM beam 
(arch) to determine loaded/unloaded vibrational 
frequencies. Fallah and Aghdam [19-20] carried out a 
large amplitude dynamic and thermo-mechanical stabi–
lity study on FG beams. Calim [21] studied the dynamic 
behavior of AFG thick beams. Lohar et al. [7, 22] 
performed large amplitude dynamic analysis on AFG 
non-uniform thin and thick beams utilizing Hamilton's 
principle. Trabelssi et al. [23] investigated the dynamics 
of a nonlocal thick FG nanobeam to obtain the free 
vibrational frequencies and frequency-dependent 
responses of the system. Mohamed et al. [24] 
considered a numerical analysis to predict curved 
beams' large amplitude dynamic behavior. Akgöz and 
Civalek [25], with the help of the strain gradient 
elasticity technique, studied the flexural stability of FG 
microbeams. Fazzolari [26] utilized various generalized 
theories to investigate the critical buckling behavior and 
force-free vibrational behavior of three-dimensional 
spongy FG sandwich beams. 

Research articles found in the existing literature on 
structural elements placed on the variable elastic 
foundation are limited in number. Zhang et al. [27] 
conducted buckling stability and vibrational frequency 
analysis on a tapered beam utilizing Hencky bar-chain 
technique. Kacar et al. [28] predicted the dynamic 
behavior of a homogeneous beam with the help of the 
differential transform method. Eisenberger and 
Clastornik [29] investigated the buckling and vibration 
characteristics of a homogeneous beam. Mirzabeigy and 
Madoliat [30] predicted the loaded free vibrational 
response of an axially loaded beam. Yas et al. [31] 
introduced the generalized differential quadrature 
method to observe the free vibrational characteristics of 
the FGM beam. Kumar [32] utilized the Rayleigh-Ritz 
principle to predict the vibrational frequency of the 
AFG beam. 

From the literature survey, it is observed that a 
substantial amount of research articles is present in the 
literature in which various aspects of FG beam placed 
on the elastic foundation are explored. But the domain 
of variable elastic foundation is relatively newer, and a 
limited number of research works are found in this 
domain. The problem involves variable foundation, 
which is more realistic and general as most of the 
foundations practically behave in a non-homogeneous 
and anisotropic manner. On the other hand, axially 
functionally graded (AFG) material has gained popu–
larity as an important material in designing cantilever 
and rotating components such as turbine and helicopter 
rotor blades, spacecraft with flexible appendages, etc. 
[33]. AFG material can be useful in the chemical in–
dustry to design the connecting pipe between two che–
mical containers maintained at a high thermal gradient. 
To enhance the thermal dissipation rate pin fin's geo–
metry is often tapered. AFG material can be utilized to 
design such elements to maintain desired conductivity 
and strength along its length [34]. So, from an 
application point of view investigation of the domain is 
needed. Thus, the present study is conducted on an AFG 
taper beam supported on a variable elastic foundation to 

investigate the nonlinear free vibration behavior. It is 
also to be mentioned that backbone curves for the 
system have been generated in the present paper, which 
has yet to be reported in the existing literature. 

 
Figure 1. Non-uniform AFG beam model with variable 
foundation and loading. 

 

2. MATHEMATICAL FORMULATION 
 

Figure 1 represents an AFG beam with tapered geo–
metry of dimensions length L, width b, and non-uniform 
thickness t(x), resting on variable foundation KFN(x). 
The linear thickness profile of the beam is selected in 
which thickness changes along the x-axis, 

( ) 0 1 α⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

xt x t
L

 

The beam taper parameter (α) is used here to adjust 
the tapering. It is to be observed that the thickness is 
gradually decreasing from the root side (t0) to the other 
side. The smooth transition of modulus of elasticity E(x) 
and material density ρ(x) in the AFG beam is considered 
in the axial direction following the power-law relations, 

( ) ( )0 1 0

nxE x E E E
L

⎛ ⎞= + − ⎜ ⎟
⎝ ⎠

 

( ) ( )0 1 0

nxx
L

ρ ρ ρ ρ ⎛ ⎞= + − ⎜ ⎟
⎝ ⎠

 

Here, n is the gradient index which controls the 
volume fraction of both constituents involved. E0 and ρ0 
are the property values at the root (x = 0), whereas E1 
and ρ1 are the corresponding values at the other end of 
the beam. The foundation is modeled considering a 
sequential parallel arrangement of linear helical springs 
connected at the bottommost layer of the beam. The 
springs are of variable stiffness values, and the variation 
is considered along the axial direction, 

( ) 0 1FN
xK x K
L

β⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

here, K0 is root side stiffness, and β is the stiffness 
variation parameter. 

A displacement-based semi-analytical type of for–
mulation, which is executed in a normalized domain, is 
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used to mathematically represent the present system. 
Determination of loaded vibrational frequencies is 
carried out by considering two well-defined steps. In the 
first step, the static part is solved under external load, 
which predicts the initial deflected shape of the beam. In 
the following step, a dynamic analysis is conducted on 
the statically deformed system to predict the loaded 
vibrational frequency. Both static and vibration analysis 
utilize the suitable principle of energy methods to 
formulate the governing differential equations. The 
solution of the governing nonlinear differential equa–
tions in matrix form is carried out by the consideration 
of an appropriate numerical technique. 

For simplicity, the beam is selected as ‘Euler-Ber–
noulli’s beam’, in which thickness is considerably sma–
ller than other dimensions. Hence, the influences of ro–
tational inertia and shearing deformation are negligible. 
The present study considers the stretching deformation of 
the beam along with the bending deformation under large 
amplitude loading. Hence, the strain-displacement 
relation for bending ( b

xxε ) and stretching ( s
xxε ) can be 

expressed as, 

2

2
b
xx

d wz
dx

ε
⎛ ⎞

= − ⎜ ⎟⎜ ⎟
⎝ ⎠

  (1a) 

21
2

s
xx

du dw
dx dx

ε ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (1b) 

Equation (1b) clearly shows nonlinear relation 
between strain and displacement, which furthermore 
results in nonlinear governing equations.  

The strain energy of the whole system has two 
separate terms. The first one (I) is due to beam def–
lection, and another one (II) is due to the presence of a 
foundation. So total strain energy (U), 

( )( ) ( )( )

( )

2 2

I

2

0 II

1 1
2 2

1
2

b s
xx xxvol vol

L

f

U E x dv E x dv

K x w dx

ε ε⎡ ⎤
= +⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥+
⎢ ⎥⎣ ⎦

∫ ∫

∫
 (2) 

Substituting suitable expressions, (2) can be rewri–
tten as 

( ) ( )

( ) ( )

( )
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L

L
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f
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dx dx dx dx

K x w dx

⎛ ⎞
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⎝ ⎠
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+

∫

∫

∫

 (3) 

The expression of potential energy (V) under the 
action of external uniformly distributed load p(x) can be 
obtained as, 

( )
0

L
V p x wdx= ∫   (4) 

Kinetic energy (T) resulting from vibration in the 
system can be written as, 

2 2

0

1 ( ) ( )
2

L dw duT x A x dx
d d

ρ
τ τ

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞= +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∫   (5) 

The foundation springs are considered massless and 
hence do not affect the kinetic energy. 
Table 1. List of start functions for bending (w(ξ)) and 
stretching (u(ξ)) displacement field. 

Displacement 
field 

Support 
Conditions Start functions 

w(ξ) 

CC ( ) ( ){ }2
1 1φ ξ ξ ξ= −  

CS ( ) ( )2 2
1 2 5 3φ ξ ξ ξ ξ= − +  

SS ( ) ( )1 sinφ ξ πξ=  

CF ( ) ( )2 2
1 4 6φ ξ ξ ξ ξ= − +  

u(ξ) 

CC 

( ) ( )1 1ψ ξ ξ ξ= −  CS 
SS 
CF 

 
2.1 Static Analysis 
 
The principle of minimum potential energy is used to 
formulate the static problem, which follows, 

( ) 0U Vδ + =         (6) 

The present analysis is a whole domain analysis. To 
carry out the detailed computation, a suitable number of 
computational points (which are familiar as gauss 
points) are created within the normalized domain (ξ = 
x/L). The static displacement fields (w and u) on 
generated points are assumed following the Rayleigh-
Ritz approximation, 

( ) ( )
1

nw

i i
i

w dξ φ ξ
=

= ∑   (7a) 

( ) ( )
1

nw nu

i i nw
i nw

u dξ ψ ξ
+

−
= +

= ∑  (7b) 

here, di are unknown constants. φi and ψi are the fun–
ctions for w and u, respectively, with orthogonal cha–
racteristics. These functions are also said to be admi–
ssible as they are selected from satisfying certain 
conditions. They must be continuous and differentiable 
in the computation domain and fulfill the kinematic end 
conditions of the beam. nw and nu are the selected 
number for these functions φi and ψi, respectively. The 
first member of these function sets (φ1 and ψ1) for 
various end conditions, i.e., CC, SS, CF, and CS, are 
furnished in Table 1. Here, C, S, and F are clamped, 
simply-supported and fixed boundaries, respectively. 
With the help of φ1 and ψ1, functions up to nw and nu 
numbers are created by implementing the Gram-
Schmidt orthogonalization technique [35]. Substituting 
equation (3) and equation (4) along with equation (7) 
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into equation (6), the governing equations of the static 
problem can be represented in matrix form. 

[ ][ ] { }K d f=   (8) 

here, [K], {f} and {d} are stiffness matrix, force vector 
and vector of unknown parameter, respectively. The de–
tailed elements of [K] and {f} are furnished in the 
Appendix segment. It can be observed that some ele–
ments of [K] are a function of the unknown coefficient 
(di). So, a direct solution to the problem is not possible. 
A numerical scheme of the direct substi–tution method 
is used to obtain the solution with suitable relaxation 
parameters [36]. 

 
2.2 Dynamic Analysis 

 
The dynamic problem is formulated through the 
implementation of Hamilton's principle, 

( )
2

1

0T U d
τ

τ

δ τ
⎛ ⎞
⎜ ⎟− =
⎜ ⎟
⎝ ⎠
∫   (9) 

here, τ is the time variable. The expression of U is the 
same as that of the expression of U in static analysis. 
The dynamic analysis is carried out on the pre-deformed 
configuration of the beam, and no external load is 
applied. Hence, potential energy (V) due to external 
loading must be zero here. 

The dynamic displacement fields w and u are 
assumed as, 

( ) ( )
1

,
nw

i
i i

i
w d e ωτξ τ ϕ ξ

=
= ∑  (10a) 

( ) ( )
1

,
nw nu

i
i i

i nw
u d e ωτξ τ ψ ξ

+

= +
= ∑  (10b) 

Table 2. Validation of adopted formulation and solution 
procedure. 

BCs Kf 
Natural frequencies ( 1ω  ) 

Uniform foundation Kacar et al. [28] 

CC 10 4.7448 4.7535 
100 4.9427 4.9504 

SS 10 3.2193 3.2193 
100 3.7484 3.7484 

CF 10 2.1745 2.1746 
100 3.2558 3.2558 

  Linear Foundation (β = 0.2) Kacar et al. [28] 

CC 10 4.7424 4.7512 
100 4.9219 4.9297 

SS 10 3.2118 3.2118 
100 3.6999 3.6999 

CF 10 2.1342 2.1343 
100 3.1320 3.1319 

  
Parabolic Foundation (β = 

0.2) Kacar et al. [28] 

CC 10 4.7435 4.7522 
100 4.9314 4.9392 

SS 10 3.2150 3.2150 
100 3.7212 3.7212 

CF 10 2.1410 2.1410 
100 3.1532 3.1530 

The displacement fields in the dynamic analysis are 
a function of space and time. The former (space) part is 
the same as that of static analysis. Here, ω indicates the 
natural frequency of vibration, and di represents the 
eigenvector. Substituting equation (3) and equation (5) 
along with equation (10) into equation (9), the 
governing equations of the dynamic analysis can be 
rewritten in matrix form, 

[ ]{ } [ ]{ }2 0M d K dω− + =  (11) 

here, [M] represents the mass matrix. The detailed ele–
ments of [M] are provided in the Appendix. It can be 
noted that the elements of [K] in the dynamic problem 
are the same as those of the static problem. 
 
3. RESULTS AND DISCUSSIONS 
 
The main objective of the present analysis is to study 
the effects of variable foundation on loaded natural 
frequencies of AFG beam. The present study's 
externally applied load is considered a uniformly 
distributed load. Alongside the elastic foundation, three 
different classical supports are selected: CC, SS, and 
CS. To present the results, the following normalized 
terms are used for natural frequency (ω) and root 
foundation stiffness (Kf), 

2 0 0

0 0

A
L

E I
ρ

ω = Ω ; 
4

0

FN
f

K L
K

E I
=  

Four different non-dimensional root stiffness values 
(Kf) are considered for the variable elastic foundation, 
which is 0, 10, 102, and 103, respectively. Four different 
stiffness variation parameters (β) are also considered to 
control the foundation stiffness variation, which are 0.0, 
0.2, 0.4 and 0.6 respectively. Here, Kf = 0 resembles the 
beam with no foundation, whereas β=0.0 indicates the 
case of constant elastic foundation. For AFG beam the 
selected materials are Aluminium (Al) and Zirconia 
(ZrO2), having material properties as, Al: E0 = 70 GPa, 
ρ0 = 2702 kg/m3; ZrO2: E1 = 200 GPa, ρ1 = 5700 kg/m3. 
It is to be noted that at the beam's root side (ξ = 0), the 
material is pure Aluminium. Due to continuous 
gradation transforms, the material into pure Zirconia at 
the extreme end (ξ = 1). Four different material gradient 
parameters (n) are selected, which are 0, 1, 2, and 3, 
respectively. It is to be noted here that n = 0 indicates 
homogeneous beam material. To consider the taper 
effect of the beam geometry four different taper 
parameters (α) are selected, which are 0.0, 0.2, 0.4, and 
0.6, respectively. Here, α = 0.0 indicates the beam with 
uniform geometry. In the present study geometrical 
dimensions of the beam are selected as L = 1.0 m, b = 
0.02 m and t0 = 0.005 m. 

To carry out a detailed computation a suitable 
number of orthogonal functions (nw/nu) and gauss 
points (ng) are to be selected. Improper selection of 
these parameters may adversely affect the outcomes. So, 
a suitable convergence study is of utmost importance to 
select the correct values of these parameters. After 
performing a suitable convergence study, these values 
are chosen as ng =24 and nw= 8. 
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To justify the present methodology's appropriateness 
the present article's generated results are compared with 
the results of a published article by Kacar et al. [28]. For 
that purpose, the present system is reduced to an 
equivalent system of the published article to generate 
the results. The results are tabulated in Table 2. The 
table shows that the results match satisfactorily. 

Non-dimensional natural frequencies of the first two 
modes are furnished in Table 3 for different combinations 
of root foundation stiffness (Kf), stiffness variation 
parameters (β), and material grada–tion index (n). The 
beam is selected as linear taper with α = 0.5. From the 
table, it can be observed that for all possible 
combinations, the system's natural frequency increases 
with an increase in foundation stiffness. But with the 
increase of stiffness variation parameter, the natural 
frequency decreases. It can also be noticed that natural 
frequency increases when the gradation index is varied 
from 1 to 3. Whereas at n = 0, the natural frequency 
attains its maximum value. The reason is quite 
understandable that at n = 0, the material behaves as a 
homogeneous material, which is Zirconia. The high 
density of zirconia results in high natural frequency. 
Among all the support conditions, the highest value of 
natural frequency is observed for the CC beam, whereas 
the lowest value is for the SS beam. This happens due to 
the rigidity concern of the support ends. 

The variation in backbone curves for different values 
of root foundation stiffness (Kf) is shown in Figure 2 for 
various support conditions. Four non-dimensional root 
foundation stiffness values are selected, which are 
varied from 0 to 103. For all cases, the taper parameter, 
stiffness variation parameter, and gradation index are 
kept constant, which are 0.5, 0.5, and 1, respectively. 
For all cases, it is found that the slope of the backbone 
curve increases with the increase in root foundation 
stiffness, which clearly indicates that the system is 
exhibiting a hardening type of nonlinearity. It can also 
be observed that curves are close to each other in the 
case of the CC beam (Figure 2(a)), but for the SS beam 
(Figure 2(c)), curves are relatively widely spaced. 

The variation in backbone curves for different values 
of stiffness variation parameter (β) is shown in Figure 3 
for various support conditions. To generate the plots, the 
taper parameter, gradation index, and root foundation are 
kept constant, which are 0.5, 1, and 102, respectively. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Backbone curves for different values of root 
foundation stiffness for (a) CC beam, (b) CS beam, (c) SS 
beam 

 
(a) 
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(b) 

 
(c) 

Figure 3. Backbone curves for different values of stiffness 
variation parameter for (a) CC beam, (b) CS beam, (c) SS 
beam. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Backbone curves for different values of material 
gradation index for (a) CC beam, (b) CS beam, (c) SS beam. 

 
(a) 
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(b) 

 
(c) 

Figure 5. Backbone curves for different values of taper 
parameter for (a) CC beam, (b) CS beam, (c) SS beam. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Higher order backbone curve of (a) CC beam, (b) 
CS beam, (c) SS beam. 

Four stiffness variation parameters are considered, 
which are selected as 0.0, 0.2, 0.4 and 0.6. For all cases, 
it is observed that the increment of the stiffness 
variation parameter results in decrements in the slope of 
the backbone curve. This type of trend is quite expected 
from the adopted variable foundation model, in which 
foundation stiffness gradually decreases from the root 
side. The stiffness variation parameter's increased value 
results in more foundation stiffness decrement. As a 
result, the slope of the backbone curves further 
decreases. 

The variation in backbone curves for different values 
of material gradation index (n) is shown in Figure 4 for 
various support conditions. To generate the plots, the 
taper parameter, root foundation stiffness, and stiffness 
variation parameter are kept constant, which are 0.5, 
102, and 0.5, respectively. Four gradation indexes are 
considered, which are selected as 0, 1, 2, and 3. For all 
cases, the increasing slope pattern in the backbone curve 
is observed with the increment of the gradation index. 
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Table 3. Effect of foundation stiffness (Kf), stiffness variation parameter (β), and material gradation index (n) on the natural 
frequency of the system, CC, and CS boundary conditions. 

Kf β 
n 

0 1 2 3 

1ω  2ω  1ω  2ω  1ω  2ω  1ω  2ω  

CC 
0 - 4.3519 7.2201 4.1684 6.9787 4.2005 6.9572 4.2257 6.9441 

10 

0 4.3716 7.2245 4.1980 6.9852 4.2349 6.9648 4.2632 6.9524 
0.2 4.3695 7.2240 4.1949 6.9845 4.2313 6.9640 4.2592 6.9515 
0.4 4.3673 7.2235 4.1918 6.9838 4.2277 6.9632 4.2553 6.9507 
0.6 4.3651 7.2230 4.1887 6.9831 4.2241 6.9625 4.2514 6.9498 

100 

0 4.5384 7.2638 4.4397 7.0425 4.5122 7.0322 4.5626 7.0259 
0.2 4.5189 7.2588 4.4132 7.0359 4.4822 7.0245 4.5303 7.0175 
0.4 4.4991 7.2539 4.3863 7.0293 4.4515 7.0169 4.4974 7.0091 
0.6 4.4790 7.2489 4.3888 7.0226 4.4202 7.0092 4.4636 7.0007 

1000 

0 5.6410 7.6258 5.8459 7.5513 6.0537 7.6188 6.1851 7.6587 
0.2 5.5387 7.5824 5.7270 7.4972 5.9255 7.5585 6.0518 7.5937 
0.4 5.4294 7.5384 5.5993 7.4421 5.7875 7.4969 5.9079 7.5272 
0.6 5.3121 7.4939 5.4612 7.3859 5.6378 7.4341 5.7514 7.4593 

CS 
0 - 3.7801 6.6028 3.5512 6.3434 3.5460 6.3050 3.5485 6.2755 

10 

0 3.8114 6.6086 3.5987 6.3520 3.6018 6.3152 3.6101 6.2867 
0.2 3.8076 6.6079 3.5932 6.3510 3.5954 6.3141 3.6030 6.2854 
0.4 3.8038 6.6072 3.5877 6.3501 3.5889 6.3130 3.5958 6.2843 
0.6 3.7999 6.6065 3.5821 6.3492 3.5823 6.3119 3.5886 6.2832 

100 

0 4.0628 6.6606 3.3597 6.4208 4.0157 6.4048 4.0592 6.3849 
0.2 4.0313 6.6538 3.9177 6.4189 3.9683 6.3943 4.0081 6.3735 
0.4 3.9991 6.6470 3.8744 6.4098 3.9191 6.3838 3.9549 6.3620 
0.6 3.9660 6.6401 3.8295 6.4006 3.8679 6.3733 3.8994 6.3505 

1000 

0 5.4524 7.1254 5.6609 7.0717 5.8569 7.1441 5.9895 7.1823 
0.2 5.3222 7.0682 5.5135 7.0027 5.6986 7.0687 5.8245 7.1019 
0.4 5.1798 7.0101 5.3515 6.9320 5.5241 6.9913 5.6423 7.0192 
0.6 5.0224 6.9511 5.1713 6.8597 5.3296 6.9116 5.4385 6.9341 

SS 
0 - 2.8789 5.8043 2.8391 5.6551 2.7939 5.5690 2.7612 5.5227 
10 0 2.9443 5.8128 2.9298 5.6674 2.9073 5.5837 2.8872 5.5389 
 0.2 2.9375 5.8118 2.9208 5.6661 2.8944 5.5822 2.8749 5.5372 
 0.4 2.9307 5.8109 2.9117 5.6648 2.8834 5.5807 2.8625 5.5356 
 0.6 2.9239 5.8099 2.9025 5.6635 2.8722 5.5792 2.8499 5.5339 

100 0 3.3975 5.8810 3.5114 5.7739 3.5790 5.7113 3.6197 5.6791 
 0.2 3.3530 5.8785 3.4580 5.7618 3.5194 5.6972 3.5562 5.6634 
 0.4 3.3065 5.8688 3.4018 5.7497 3.4564 5.6830 3.4888 5.6477 
 0.6 3.2578 5.8591 3.3425 5.7374 3.3896 5.6688 3.4171 5.6319 

1000 0 5.1601 6.5215 5.5305 6.6106 5.7477 6.6743 5.8770 6.7121 
 0.2 5.0373 6.4474 5.3897 6.5294 5.5973 6.5866 5.7227 6.6180 
 0.4 4.9009 6.3718 5.2334 6.4464 5.4298 6.4969 5.5498 6.5219 
 0.6 4.7476 6.2948 5.0578 6.3614 5.2410 6.4049 5.3538 6.4236 

 
Backbone curves generated from different values of 

taper parameters (α) are shown in Figure 5. To generate 
the plots root foundation stiffness, stiffness variation 
parameter, and gradation index are kept constant, which 
are 102, 0.5, and 1, respectively.  

Four taper parameters are considered, which are 
selected as 0.0, 0.2, 0.4 and 0.6. For all cases, the figure 
shows that the slope of the backbone curve is reduced 
by the increased value of the taper parameter. These 
results can be justified by the adopted taper pattern, in 
which the thickness of the beam gradually decreases 
from the root side to the other ends. Furthermore, the 
increased value of the taper parameter decreases the 
overall volume of the beam, which implies a decrement 
in the total mass of the beam system. As a result, the 
above-mentioned trend is found.  

Higher mode backbone curves are also important for 
the nonlinear analysis of the continuous system. The 
amount of nonlinearity involved at higher mode can be 
predicted from these plots. Backbone curves for modes 
2-4 corresponding to four different boundary conditions 
are shown in Figure 6. To generate the results root 
foundation stiffness, stiffness variation parameter, 
gradation index, and taper parameter are kept constant, 
which are 102, 0.5, 1, and 0.5 respectively. It is to be 
noted that backbone curves beyond mode 4 are also 
possible to represent. But those curves are not shown 
here to maintain the clarity of the plots. 

The first three mode shapes for three various support 
conditions are shown in Figure 7. For each vibration 
mode, two distinct mode shapes are shown. One is a 
linear mode shape, obtained at no load condition 
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(wmax/t0 = 0), and another one is a nonlinear mode shape, 
obtained at loaded condition (wmax/t0 = 2). The 
difference between these two measures the amount of 
nonlinearity present in the system. To generate the 
results root foundation stiffness, stiffness variation 
parameter, gradation index, and taper parameter are kept 
constant, which are 102, 0.5, 1, and 0.5, respectively. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. First three Linear and nonlinear mode shapes of 
(a) CC beam, (b) CS beam, (c) SS beam. 

 

4. CONCLUSIONS 
 

The present study is carried out on a tapered AFG beam 
to determine the effect of variable foundation on the 
large amplitude free vibrational behavior of the system. 
Geometric nonlinear type of system behavior is 
introduced into the present formulation through the 
consideration of higher order nonlinear terms in strain-
displacement relation. The axial gradation of the beam 
material is considered to follow the power law 
expression. A variable Winkler type of elastic 
foundation is introduced in the present system. Whole 
domain analysis is performed in a normalized 
coordinate system, which is formulated by the Rayleigh-
Ritz principle and solved by using a numerical tool. The 
adopted methodology is validated with the results of 
existing literature. Benchmark results are also obtained 
in terms of natural frequency, backbone curve, and 
mode shape plot for a different set of parameters which 
are considered in the present study.  

The key outcomes of the study can be summarized as, 
• For all possible combinations, the natural frequency 

of the system increases with an increase in 
foundation stiffness. But with the increase of 
stiffness variation parameter, the natural frequency 
decreases. 

• It can also be noticed that natural frequency inc–
reases when the gradation index is varied from 1 to 3. 

• Among all the support conditions, the highest value 
of natural frequency is observed for the CC beam, 
whereas the lowest value is for the SS beam. 

• It is observed that the system shows a hardening 
type of nonlinear behavior under large amplitude 
loading. 

• For all possible combinations, it is noticed that the 
slope of the backbone curve increases with the 
increase of root foundation stiffness, whereas the 
increment of stiffness variation parameter results in 
decrements in the slope of the backbone curve. 

APPENDIX 

The elements of [K] are, 
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NOMENCLATURE  

L, b, t Length, breadth and thickness of the beam 
geometry, respectively 

KFN, Kf 
Dimensional and non-dimensional stiffness 
value of the elastic foundation, respectively 

α Taper parameter of beam geometry 

E , ρ Elastic modulus and density of beam of beam, 
respectively 

n Material gradation index 
t0 Root thickness of beam 
K0 Root stiffness of the foundation 
β Stiffness variation parameter 
E0 , ρ0 Root side value of  E and ρ, respectively 
E1,  ρ1 E and ρ at the extreme end of beam, respectively 

b
xxε , s

xxε  
Axial strain due to bending and stretching, 
respectively 

w, u Bending and stretching displacement fields, 
respectively 

U, V, T Strain energy, potential energy, and kinetic 
energy, respectively. 

A, I 
Beam cross-section and area moment of inertia 
of the beam cross-section about neutral axis, 
respectively. 

A0, I0 Root value of A and I, respectively. 
δ   Variational operator 
di   Unknown coefficients 
φi , ψi 
  

Set of orthogonal functions for w and u, 
respectively 

φ1 , ψ1 
  

Start functions for w and u, respectively 

Ω, ω
 

Dimensional and non-dimensional natural 
frequency 

[K] Stiffness matrix 
[M] Mass matrix 

{f} Load vector 
{d} Vector of unknown co-efficient 
τ   Time coordinate 

nw, nu  
Number of constituent functions for w and u 
respectively 

ng Number of Gauss points 
p(x) Magnitude of uniformly distributed load 
wmax Maximum deflection of the beam 
ξ Normalized axial coordinate 
ω1  First natural frequency 
ωnf   Nonlinear frequency 

ACRONYM LIST 

FGM Functionally Graded Material 
AFG Axially Functionally Graded  
BC Boundary Condition 
CC Clamped-Clamped 
CS Clamped-Simply supported 
SS Simply supported- Simply supported 
CF Clamped-Free 
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АНАЛИЗА НЕЛИНЕАРНИХ СЛОБОДНИХ 

ВИБРАЦИЈА НЕУЈЕДНАЧЕНЕ АКСИЈАЛНО 
СТЕПЕНОВАНЕ ГРЕДЕ НА ПРОМЕНЉИВОЈ 

ЕЛАСТИЧНОЈ ОСНОВИ 
 

Х. Лохар, А. Митра 
 

Овај рад истражује нелинеарне слободне вибрације 
аксијално функционално степеноване (АФГ) греде 
ослоњене на променљиву основу. Геометрија греде 
је неуједначена, са линеарном варијацијом 
попречног пресека по дужини. Материјал греде се 
степенује дуж аксијалног правца пратећи однос 
степена и закона. Узима се Винклер тип 

променљиве еластичне основе, у коме се разматра 
варијација крутости по дужини темеља. Такође је 
узета у обзир геометријска нелинеарност изазвана 
скретањем греде велике амплитуде. Да би се 
постигли жељени циљеви, проблем је подељен на 
два дела.  
Прво се решава статички проблем, а затим се врши 
накнадна анализа слободних вибрација на статички 
деформисаној конфигурацији греде. Водеће 
диференцијалне једначине система су изведене 
коришћењем одговарајућих енергетских метода. 
Нумеричка техника директне замене са 
релаксацијом се користи за добијање решења 
изведених нелинеарних диференцијалних једначина. 
Представљена је одговарајућа студија валидације 
како би се осигурала прикладност садашње 
методологије. Резултати бенчмарка су такође 
представљени помоћу природне фреквенције, криве 
кичме и дијаграма облика облика да би се 
истражили утицаји еластичне основе, градације 
материјала и неуједначене геометрије на нелинеарне 
вибрације.

 


