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Adaptation of the Simulated Evolution 
Algorithm for Wind Farm Layout 
Optimization 
 
Wind energy is a potential replacement for traditional, fossil-fuel-based 
power generation sources. One important factor in the process of wind 
energy generation is to design of the optimal layout of a wind farm to 
harness maximum energy. This layout optimization is a complex, NP-hard 
optimization problem. Due to the sheer complexity of this layout design, 
intelligent algorithms, such as the ones from the domain of natural 
computing, are required. One such effective algorithm is the simulated 
evolution (SE) algorithm. 
This paper presents a simulated evolution algorithm engineered to solve 
the wind farm layout design (WFLD)optimization problem. In contrast to 
many non-deterministic algorithms, such as genetic algorithms and 
particle swarm optimization which operate on a population, the SE 
algorithm operates on a single solution, decreasing the computational 
time. Furthermore, the SE algorithm has only one parameter to tune as 
opposed to many algorithms that require tuning multiple parameters. A 
preliminary empirical study is done using data collected from a potential 
location in the northern region of Saudi Arabia. Experiments are carried 
out on a 10 × 10 grid with 15 and 20 turbines while considering turbines 
with a rated capacity of 1.5 MW. Results indicate that a simulated 
evolution algorithm is a viable option for the said problem. 
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1. INTRODUCTION  
 

The ever-increasing need for energy has put a tremen–
dous burden on traditional power generation resour–
ces.These resources mainly include oil, gas, and coal. 
The high level of utilization of these resources has not 
only resulted in their rapid depletion but has also caused 
environmental pollution. Therefore, for the last many 
years, efforts have been put into utilizing renewable 
energy sources. One effective and established source of 
renewable energy stems from the power of the wind. 
The use of wind energy for power generation serves 
many purposes. The energy is cost-effective and envi–
ronmentally friendly [1]. In addition, wind energy is 
least affected by geo-political and transportation/logistic 
issues [1]. 

A major technical concern in the process of wind 
farm development is the pre-deployment feasibility 
study. The concern is that if the wind farm layout is not 
designed optimally, then the turbines generate less 
power than the expected output threshold. As a result, 
the cost-to-output ratio increases, which is not desired. 
Therefore, it is of utmost importance that the wind farm 
layout is designed to its optimal structure. However, the 
layout design process depends on the optimality of the 

wind turbine system. An efficient wind turbine system 
heavily relies on harmonizing several processes, as 
highlighted by Rašuo et al. [2]. These processes include 
design, materials and technology, manufacturing, verifi–
cation testing, and regulations & standards [2]. All these 
processes work in conjunction with each other. From 
the viewpoint presented by Rašuo et. al. [2], it can be 
clearly implied that if the above processes are not 
harmonized, and any one of them is not carried out 
optimally, the overall performance of the wind farm is 
degraded, and the farm does not generate power to its 
maximum threshold.   

The optimal layout of a wind farm is concerned with 
placing turbines in their most appropriate positions 
relative to each other within the wind farm. Studies [3-
5] have shown that this is an optimization problem with 
hard (non-deterministic polynomial) complexity. It is 
opined that for NP-hard problems, algorithms with 
polynomial complexity (for that sake, less complex 
algorithms with linear or logarithmic complexity) can 
not solve the problem. While simple algorithms, such as 
linear search, are efficient in terms of execution, they 
can not produce the best layout. In some cases, where 
other technical factors constrain the problem, simple 
algorithms may fail to produce a feasible solution. In 
contrast, algorithms from the domain of natural 
computing, such as genetic algorithms (GA), differential 
evolution (DE), simulated annealing (SA), particle 
swarm optimization (PSO), and many others, have 
effectively solved the WFLD problem [3]. These 
algorithms can search the huge solution space associ–
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ated with the underlying problem in a fairly reasonable 
execution time. 

Nature-inspired algorithms are broadly classified 
into population-based and non-population-based algo–
rithms [6]. Traditionally, most studies on the use of 
nature-inspired algorithms for the WFLD problem have 
focused on population-based algorithms [3]. Genetic 
algorithm (GA) so far is the most employed algorithm 
[3]. Other well-known algorithms from the population-
based category include the PSO [7-9], cuckoo search 
[10,11], and differential evolution [12,13]. Some recent 
applications of natural computing algorithms to the 
WFLD problem have focused on biogeography-based 
optimization (BBO) [9] and ant colony optimi–zation 
(ACO) [9]. In contrast, only a simulated annea–ling 
algorithm has been used from the non-population-based 
domain [12]. A major drawback of population-based 
algorithms is that their execution time is generally 
higher than that of non-population-based algorithms. 
The reason is that the former maintains a set of solutions 
in an iteration and performs algorithmic operations on 
this set of solutions, while the latter maintains a single 
solution per iteration and perturbs this solution in every 
iteration. Generally, population-based algorithms pro–
duce better results than non-population-based algorit–
hms but require higher execution times. However, there 
are instances where algorithms from both categories 
produced comparable results when mutually compared 
[13], which signifies the advantage of the lower 
execution time of non-population-based algorithms, thus 
saving computational resources. 

Among all nature-inspired non-deterministic algo–
rithms, whether population-based or non-population-
based, simulated evolution[14] is one such algorithm 
that makes it distinct from the rest. All nature-inspired 
algorithms work on the concept of fitness evaluation of 
a solution. A solution is comprised of individual ele–
ments. For example, in GA, the solution is called a 
‘chromosome’ and the individual elements are called 
‘genes’. While evaluating a solution, a fitness function 
does not measure the impact of individual elements but 
evaluates the solution as a whole. In contrast to this 
approach, a distinctive attribute of the SE algorithm is 
that in addition to measuring the fitness of the whole 
solution, the algorithm also measures the fitness of each 
individual element within the solution. This allows the 
algorithm to perform a better search within the solution 
space. This element-level fitness is formally referred to 
as goodness. Despite this unique feature, the SE 
algorithm has received limited attention from resear–
chers, and only a few studies have reported its use to 
solve NP-hard problems [15-18]. 

Another important factor to consider in a nature-
inspired algorithm is the algorithmic parameters. These 
parameters strongly impact the search capabilities of 
nature-inspired algorithms, leading to efficient 
solutions. Therefore, it is necessary to tune these para–
meters to the best values. The number of algorithmic 
parameters is a reason to prefer SE over several other 
algorithms (whether population-based or non-population 
based). Typical algorithms that have been used for 

WFLD problems (such as genetic algorithms, particle 
swarm optimization, differential evolution, and 
simulated annealing, among others) have several 
parameters to tune to obtain optimal results. Finiding, 
the best combination of these parameters, is 
cumbersome and is itself classified as an NP-hard 
problem. In contrast, SE has only a single parameter 
known as bias that requires tuning. This significantly 
reduces the computational effort in the optimization 
process.  

Motivated by the aforementioned observations, this 
paper aims to use the SE algorithm for the WFLD 
problem. Accordingly, the main contributions of this 
study are enumerated as follows:  

1) The Simulated Evolution algorithm is adapted for 
the WFLD problem. More specifically, the simulated 
evolution algorithm's evaluation selection and allo–
cation phases are modified to incorporate the WFLD 
problem model.  

2) A problem-specific goodness function is deve–
loped. This goodness function, which serves as the core 
of the evaluation phase, evaluates the performance of a 
turbine within the wind farm. The goodness function 
calculates the ratio between the power generated by the 
turbine in its current location compared to the turbine's 
rated power.  

3) Simulations are done using data obtained from a 
site in Saudi Arabia. These simulations focus on the 
impact of the SE algorithmic parameter called bias on 
the quality of the final configuration generated.  

The rest of the paper is organized as follows. Section 
2 provides a literature review. This is followed by a 
description of the problem model in Section 3. The 
proposed simulation evolution algorithm is explained in 
Section 4. Results are presented and discussed in 
Section 5. The paper ends with a conclusion and future 
directions in Section 6.  

 
2. LITERATURE REVIEW 
 
Mosetti et al. [5] were the first to model and study the 
WFLD problem, which they solved using GA. They 
assumed a number of hypothetical wind scenarios and 
evaluated the performance of their adapted GA using 
these scenarios. Grady et al. [4] also employed GA 
using the same wind conditions as Mosetti et al. In 
another study, Emami and Noghreh [19] proposed a 
binary the GA, which generated quality results and 
reduced execution time. Gonzalez et al. [20] also 
utilized a GA while assuming investment risk as the 
optimization objective. The GA adopted by Wang et al. 
[21] considered physical landownership as the 
optimization objective. The purpose of the said Rehman 
et al. [11] adapted the cuckoo search (CS) algorithm to 
solve the WFLD problem while considering power and 
cost as the optimization objectives. The objective 
function was the minimization of the cost/power ratio. 
The objective was to show that in case of multiple 
ownership for a piece of land where a wind farm is to be 
developed, this approach effectively helps deal with 
infeasible solutions. 
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Table 1. Summary of previous studies. 

Reference  Year  Algorithm(s)  Optimization objective(s) 
Mosetti et al. [5] 1994 Genetic Algorithms Power, Cost 
Grady et al. [4] 2005 Genetic Algorithms  Power, Cost 
Huang [22]  2009 Genetic Algorithms  Annual profit 
Emami and Noghreh [19]  2010 Genetic Algorithms  Power, Cost 
Gonzalez et. al. [20]  2010 Genetic Algorithms Net present value 
Song et al. [23]  2010 Genetic Algorithms  Power, Constraint reduction 
Rašuo et al. [12][13] 2010 Differential Evolution Power efficiency, Investment costs 
Eroğlu and Seçkiner [24] 2013 Ant colony optimization  Expected energy output 
Wang et al. [21]  2015 Genetic Algorithms  Land ownership 
Rehman et al. [11] 2016 Cuckoo Search Power, Cost 
Afanasyeva et. al. [10]  2018 Cuckoo Search,  Genetic Algorithms Net present value 
Chahrouni et. al. [25]  2019 Genetic Algorithms  Power, Cost 
Wang [26]  2019 Genetic Algorithms  Power, Cost 
Gao et al. [27]  2020 Genetic Algorithms  Power, Cost, Wind Farm efficiency 

Wu et. al. [28]  2020 

Particle Swarm Optimization, 
Augmented Particle Swarm 
Optimization Power 

Shin et al. [8]  2021 
Evolutionary Algorithm, Particle 
Swarm Optimization  Wake loss, AEP 

Aggarwal et al. [9] 2021 

Biogeography-based optimization, 
Genetic algorithms, Particle Swarm 
Optimization, Ant Colony 
Optimization Energy output 

Al Shereiqi [29] 2021 Genetic Algorithms  energy production, cable routing 
Kirchner-Bossi [30]  2021 Genetic Algorithms, Hybrid GA energy production, cable length 
 
A hybrid GA was proposed by Huang [22], who 

incorporated the hill-climbing property in GA. Song et 
al. [23]adapted the PSO algorithm and proposed a 
sensitivity index while evaluating power generation 
variation relative to wind direction variation. Their test 
scenarios considered both complex and flat terrains. 
Eroğlu and Seçkiner [24] used ACO with expected 
energy output as the optimization objective. In two 
separate studies, Rašuo et al. [12][13] used the 
differential evolution (DE) algorithm while considering 
the power efficiency and investment costs as the 
optimization objectives. 

In two independent studies, Charhouni et al. [25] 
and Wang et al. [26] adapted GA with power and cost as 
the optimization objectives. Shin et al. [8] proposed a 
PSO-based approach as well as an evolutionary 
algorithm while optimizing wake loss and annual ene–
rgy production. Al Shereiqi et al. [29] proposed a bi-
objective GA with energy production and cable routing 
as the optimization objectives. 

Afanasyeva et al. [10] adapted GA and CS 
algorithms while optimizing the Net Present Value. The 
results indicated that CS was able to produce better 
results than GA. Gao et al. [27] utilized a multi-
population genetic algorithm with cost, power, and 
efficiency as the optimization objectives. A PSO algo–
rithm and a modified variant were proposed by Wu et 
al. [28] with power as the objective to be optimized. 
Results indicated that the modified PSO performed 
better than the basic PSO, with better power output and 
a reduced runtime. 

Aggarwal et al. [9] adapted numerous algorithms 
from the domain of evolutionary computation and 
swarm intelligence while optimizing the energy output.  
Kirchner-Bossi et. al. [30] developed severalhybrid 
GAs. Two optimization objectives were used: energy 

production and cable length. Results indicated that 
among the selected algorithms, BBO demonstrated the 
best performance. 

Table 1 summarizes the previous studies with res–
pect to the year of publication, algorithms used, and 
optimization objectives. 

 
3. PROBLEM MODEL 

 
As mentioned in Section 1, the complexity of the WFLD 
problem is NP-hard. In most studies, the problem is 
modelled as a discrete optimization problem. The 
problem requires placement of turbines in the best 
possible configuration so that the generated power is 
maximized. Asadopted by most previous studies on the 
WFLD problem (as cited in the literature review), the 
land in which the turbines are placed is marked as a 
square-shaped area, where this area is typically divided 
into 100 equal size sub-areas (also called cells) divided 
into a 10×10 grid, as shown in Figure 1. Each cell can 
accommodate a turbine in its center. This leads to having 
a maximum of 2100 possibilities of turbine place–ment. 

 
Figure 1.  Wind farm layout is divided into 10 x 10 grid with 
100 cells, with each location identified by a number. 
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An important consideration in evaluating the wind 
power generated by a turbine is the impact of the wake 
generated by other turbines. Turbines that are directly in 
front of the prevailing wind (such as locations 1 to 10 in 
Figure1) are not subjected to any wake. However, if 
turbine i has one or more turbines (directly in front or at 
an angle), then the wake generated by other turbines on 
the turbine i affects the absorption of wind by turbine i. 
Consequently, the power generated by turbine i is 
reduced. Therefore, it is important to calculate the wake 
as accurately as possible. Numerous wake effect models 
are used in relevant studies. One established method is 
the Jansen’s wake effect model, which has been adopted 
by several studies [4,5,19-21]. The same model is 
assumed in this study. The model treats single and 
multiple wakes separately and addresses both scenarios 
through two different mathematical representations. A 
detailed discussion of the Jansen model can be found in 
Mosetti et al. [5]. 

According to Mosetti et al., we have 

0iu u=    (1) 

If the turbine encounters a single wake, the wind 
speed is calculated as follows: 
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In the presence of multiple wakes, the resulting wind 
speed is determined as follows: 
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The radius rdo of the downstream wake immediately 
after a turbine is calculated using 
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The following equation is used to calculate the 
radius rd1 of the wake at a distance xij downstream of any 
wind turbine 

1 0d ijr x rdα= +    (5) 

The relationship between the axial induction factor 
and thrust coefficient is given by 

( )4 1tC a a= −    (6) 

The thrust coefficient is normally known for the 
system. Therefore, the axial induction factor a can be 
calculated instead of Ct. The solution of Eq. (6) gives 

two values of a. The value which gives a real number 
for rd0 in Eq. (4) is selected. 

Finally, the entrainment factor α is found using: 

( )0
0.5

ln z z

α =    (7) 

If N turbines are placed in the grid, then the total 
power generated by these turbines under multiple wakes 
is calculated as follows 

3
0

N
actual iiP z u= ∑    (8) 

The total power generated by N turbines without any 
wake is calculated as follows 

3
0 0

N
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i

P z u= ∑    (9) 

The objective function requires maximization of 
efficiency of the wind power generation and is given by 
the following equation. 
 

Maximize    
Efficiency = Pactual / Pideal  (10) 

 

4. PROPOSED SIMULATED EVOLUTION 
ALGORITHM 

 
This section discusses the SE algorithm for the WFLD 
problem. An overview of the basic SE algorithm is pro–
vided first. This is followed by the proposed adaptation 
of the SE algorithm for the underlying problem. 

 
4.1 Basic Simulated Evolution Algorithm 
 
SE was originally proposed by Kling and Banerjee[16]. 
Inspired by the theory of evolution, the algorithm has 
several distinctive features as mentioned in Section 1. 
Despite its distinctive features and excellent perfor–
mance, the algorithm and its hybrid variants have rece–
ived little attention from researchers in some domains 
such as healthcare[31], internet traffic engineering [18], 
network design optimization [6,32], microelectronics 
[33-35], and cloud computing [17,36,37]. 

The basic SE algorithm has three main phases, 
which are executed iteratively until the stopping crite–
rion is met. These phases are evaluation, selection, and 
allocation. In addition to the three phases, initialization 
occurs once an initial solution is generated. Each of the 
three main phases has a specific task to perform. Note 
that the SE algorithm evaluates a given solution both in 
terms of the individual element as well as a whole. The 
evaluation phase evaluates the individual elements usi–
ng a goodness function which is represented as follows: 

/e e eg O C=    (11) 

In Eq. (10), ge represents the goodness of individual 
elements. Goodness defines the ratio between the 
optimal cost (Oe) and current cost (Ce) of element e.  

The formulation of the goodness function is problem 
specific and is defined by the problem solver. The 
goodness is calculated for each element in the solution. 
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The notion of goodness is that the more the current cost 
of an element is closer to its optimal cost, the higher its 
goodness. 

The purpose of the selection phase is to segregate 
good elements from bad ones so that the bad elements 
(having low goodness) are reassigned to new positions 
within the solution structure in the hope of improving 
their goodness. This segregation is done using a func–
tion that decides which elements in the current solution 
are to be reassigned to new positions. This reassignment 
is done in the allocation phase(discussed below). The 
following function makes the selection of elements to be 
reassigned: 

Random >Min(ge+ B, 1)  (12) 
In the above equation, parameter B controls the 

number of individual elements selected for reassign–
ment. The values of B is user-defined and are set after 
experimentation. The value of B is defined between -1 
and 1, but typically small values of B, somewhere 
between -0.2 and 0.2, are used. A higher value of B 
favors a small number of individual elements to be 
selected, while a lower value of B favors a larger 
number of elements chosen for reassignment. 

Finally, in the allocation phase, the individual 
elements selected for reassignment are removed from 
their current positions one by one. Then, each selected 
element goes through a trial assignment at different 
positions. The position that gives the element the hig–
hest goodness is fixed, and the element is placed at that 
position. This process is repeated for all selected ele–
ments. At the end of this perturbation process, a new 
solution is obtained. This new solution is then evaluated 
using a fitness function. 

 
4.2 Proposed Algorithm 

 
For the WFLD problem, the basic SE algorithm needs to 
be tailored according to the problem structure. Details 
of these adaptations and other relevant issues are 
discussed below. 

 
4.2.1  Solution Structure 

 
A solution in SE depicts a layout. This layout is visually 
represented in Figure 1, where the land area is divided 
into a 10×10 grid, mapping onto 100 potential locations. 
Each location in this grid is called a cell and can have a 
turbine in it or not. In terms of algorithmic design, this 
grid is programmed as a one-dimensional array with 
binary data. That is, if a turbine is present in a cell, then 
it is represented by a ‘1’, while the absence of a turbine 
is identified by a ‘0’. The index of the array represents 
the position in the grid. An example solution is given in 
Figure 2. 
 

Cell 1 2 3 4 5 …. 100 
Turbine 0 1 1 0 1 …. 1 

Figure 2. An example solution 

4.2.2  Initialization 
 
The initial solution is generated randomly. That is, ‘1’ 
and ‘0’s are randomly assigned to the 100 cells. During 

the construction of the initial solution, a check is 
performed to ensure that the number of ‘1’s is the same 
as defined by the user. For example, if 20 turbines are to 
be placed in the grid, then the generated initial solution 
should contain exactly 20‘1’s. If this is violated, then 
the solution is marked invalid. Once the initial solution 
is generated, its fitness is evaluated using Eq. (2). 
 
4.2.3  Evaluation 
 
During the evaluation phase, the goodness of each 
element is evaluated, as explained in Section 4.1. In the 
case of the underlying problem, an element is a turbine. 
Furthermore, the evaluation function has to be defined 
according to the problem domain. For this purpose, the 
goodness function for turbine i is defined as follows 

gi= Pi_current/ Pi_rated  (12) 
In Eq. (12), Pi_current is the power generated by tur–

bine i in its current placement within the grid, while 
Pi_rated  is the turbine's rated power (rated power is the 
max threshold power that a turbine can ideally produce). 
The interpretation of the above goodness function is that 
if the current power generated by the turbine is close to 
its rated power, then the turbine is near its optimal pla–
cement, and vice versa. Once the goodness of each 
turbine is calculated, the selection step is carried out. 
 
4.2.4  Selection 
 
In this stage, for each turbine i, (where i = 1,.....N) in the 
current placement configuration, a random number 
RANDOM in the range [0,1] is generated. This number 
is then compared with gi+ B. If the condition as given in 
Eq. (11) is satisfied, then the turbine is selected for 
reassignment; otherwise, the turbine retains its position. 
However, the value of bias is important here. A high 
bias value would cause more turbines to be selected for 
reassignment, and vice versa.  
 
4.2.5  Allocation 
 
During the allocation phase, each turbine selected in the 
selection phase is tried one by one at different available 
cells (i.e., empty cells without a turbine) within the grid. 
As an example, consider the scenario in Figure3, which 
shows a turbine (highlighted by black) in its current 
position. Assume that this turbine has been selected for 
reassignment during the evaluation phase. There are four 
possible locations for this cell to be reassigned, shown in 
red. Note that the approach adopted in this study is to 
consider cell positions adjacent to the tur–bine's current 
position. In an ideal condition, if all adja–cent four 
locations are available, then trial reassign–ments are done 
on all four positions. After each trial reassignment, the 
solution's fitness is evaluated using Eq. (10). The trial 
position, which results in the highest fitness value among 
the four trials, is fixed for the turbine, and the turbine is 
moved to the new position. It may so happen that one or 
more of the adjacent cells are already occupied by 
another turbine (s). In this case, only the available 
adjacent positions are tried. In the worst case, if all four 
positions are already occupied, then the turbine is not 
moved and remains in its current position.  
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The above process of reassignment is repeated for 
each selected turbine until all selected turbines are 
reassigned to new positions. The fitness of the whole 
new solution is then calculated using Eq. (10). 
 
5. RESULTS AND DISCUSSIONS 

 
The proposed algorithm was tested using real data for 
the area of Turaif located at a height of 827 meters 
(aboveground level) in the northern region of Saudi 
Arabia. The area has an average wind speed of 6.49 m/s 
at the height of 80 m [38]. Only one wind scenario was 
assumed, which was constant wind speed from one 
direction only. Furthemore, only one type of turbine was 
assumed, and Acciona AW 70/1500 was considered for 
simulations. A grid size of 10 × 10 was assumed, as 
shown in Figure1, with an area of 2.3716 sq. km (1.54 
km × 1.54 km). It was also assumed that turbines are 
placed in the middle of the cell. Experiments were 
carried out with two scenarios where 20 and 15 turbines 
were considered. Table 2 gives the turbine specifi–
cations and other relevant information.  
 

                             
                             
                             
                             
                             
                             
                             
                             
                             
                             

Figure 3. Example of possible moves for reassignment 

Table 2. Turbine and Site specifications used in the study. 

Turbine Acciona AW 70/1500 
Hub Height 80 m 
Turbine Diameter 70 m 
Turbine Cut-in Speed 4 m/s 
Turbine Cut-out Speed 25 m/s 
Turbine Rated Speed 11.6 m/s 
Turbine Rated Power 1.5 MW 
Axial Induction Factor 0.09 
Entrainment Factor 0.15 
Surface Roughness Length 0.3 m 
Thrust Coefficient 0.3276 

 
Since bias B is the only algorithmic parameter in SE, 

the impact of this parameter on the algorithm’s 
performance was assessed through parameter sensitivity 
analysis. Accordingly, simulations were carried out with 
five different values of bias. These values were 0, 0.05, 
0.1, 0.15, and 0.2. Also note that SE is a non-deter–
ministic algorithm, which means that each simulation 
run can result in a different best solution. Therefore, for 
each bias value, 30 independent runs were carried out 
following the procedure adopted in similar previous 
studies [4,18]. Furthermore, after several trial runs with 
a different number of iterations, it was observed that the 
algorithm converges within 300 iterations for all bias 

values. Therefore, all runs were executed for 300 
iterations. Moreover, an average of 30 runs along with 
the standard deviation were reported. Simulations were 
carried out using Intel Core i5 processor with 32 GB 
RAM. A pre-generated initial solution was used in all 
simulations for fair comparisons. 
Table 3: Effect of bias on efficiency using 20 turbines  

Bias 
Maximum 
Efficiency 

Minimum 
Efficiency 

Average  
Efficiency 

0 0.799 0.747 0.774 ± 0.0114 
0.05 0.802 0.750 0.774 ± 0.0113 
0.1 0.801 0.753 0.770 ± 0.0136 

0.15 0.791 0.735 0.754 ± 0.0137 
0.2 0.804 0.714 0.749 ± 0.0176 

Table 4: Effect of bias on efficiency using 15 turbines 

Bias 
Maximum 
Efficiency 

Minimum 
Efficiency 

Average  
Efficiency 

0 0.896 0.868 0.883 ± 0.007 
0.05 0.894 0.858 0.878 ± 0.008   
0.1 0.893 0.867 0.880 ± 0.007  

0.15 0.896 0.854 0.877 ± 0.010   
0.2 0.887 0.847 0.871 ± 0.011   

 
Table 3 shows the results obtained with different 

bias values for 20 turbines. The table shows the best 
efficiency of the farm averaged over 30 runs, along with 
the maximum and minimum efficiency of 30 runs. The 
standard deviation of the 30 runs is also given. The 
results indicate that, on average, low bias values (B = 
0.0 and B = 0.05) generated the best results, with an 
average efficiency of 0.774 (or 77.4 %). Furthermore, 
the standard deviation was also almost equal (i.e., 0.113 
and 0.114). In contrast, higher bias values with B = 0.1 
to 0.2 generated layouts with lower efficiency, while 
having higher standard deviations. In particular, the 
worst results were produced by B = 0.2, where the 
average efficiency was lowest among all results (0.749) 
while having the highest standard deviation of 0.0176 
among the results of all bias values. As far as layouts 
with 15 turbines are concerned, results in Table 4 reflect 
somewhat similar trends as observed for 20 turbines. 
The best results were obtained with B = 0.0, with the 
highest average efficiency of 0.883 and the lowest 
standard deviation of 0.007. Again, a high bias such as 
B = 0.2 produced the worst results in terms of efficiency 
and standard deviation. 

Apart from better solutions by the SE algorithm at 
low bias values, the results in Tables 3 and 4 also 
highlight the algorithm's stability at low bias values. It is 
observed from both tables that when bias was low (say 
B =0.0), the standard deviation was also low. This 
indicates that every time the algorithm is run, the 
algorithm is able to reach the same quality of solution, 
indicating that the algorithm had a stable behavior in 
converging towards a high-quality solution. In contrast, 
as the bias value increased from low to high, the 
standard deviation kept increasing. This indicates that at 
high bias values, the algorithm had a somewhat unstable 
behavior; therefore, every time the algorithm was run, it 
reached a different quality of solutions.  

Figures 4 and 5 provide the frequency of solutions in 
different ranges to further analyze the impact of bias on 
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the quality of solutions. Note that the SE algorithm was 
run 30 times at each bias setup for both 15 and 20 
turbines. Thus, each bias setup produced 30 final solu–
tions. These solutions were categorized into different 
efficiency ranges. For example, for 20 turbines, the 
plots in Figure 4 indicate that for  Bias = 0.0, a reaso–
nably good number of solutions were in the range of 
efficiency above 0.78 (identified by orange legend). As 
the bias values increased, the high-efficiency solutions 
kept reducing, with B = 0.15 and B = 0.2 having a 
negligible number of high-quality solutions (identified 
by a small count of orange legend). In the same sense, 
the low-quality solutions (such as the efficiency range 
of 0.7 to 0.719 and 0.72 to 0.739) were non-existent for 
low and medium bias values (B = 0.0, 0.05, and 0.1) but 
were observed for high bias values of 0.15 and 0.2. 
Similar observations can be made about results for 15 
turbines in Figure 5, where low bias values show more 
solutions in the high-efficiency range, while high bias 
values produce results with more solutions with low-
efficiency values. From the observations in Tables 4 and 
5, it can be fairly claimed that the SE algorithm could 
produce more solutions with higher efficiencies when 
bias was kept low.  

The better performance of low bias values can be 
explained as follows. At a low value of bias, more ele–
ments(turbines) are selected for reassignment. This cau–
ses a higher level of exploration in the existing solution, 
thus taking the algorithm to the other search space sub-
regions and avoiding trapping in local optima. In con–
trast, higher bias values, such as 0.15 and 0.20, result in 
fewer turbines selected for reassignment. This, in turn, 
results in less exploration (and thus favors more explo–
itation), which decreases the algorithm's capability to 
get out of local optima. As a result, the algorithm keeps 
traversing the same search space for a longer time.  

 
Figure 4. Frequency of solutions for different bias values, 
20 turbines.  Eff  = efficiency. 

What is also observed from Tables 3 and 4 (and 
complemented by Figures 4 and 5) is that the range of 
efficiencies for 15 and 20 turbines is different. For 20 
turbines, the efficiencies range between 0.71 and 0.8. 
With 15 turbines, this range is between 0.847 and 0.896. 
This indicates that when the number of turbines is less, 

the efficiency is higher (this should not be confused 
with the power output, as the power generated with 20 
turbines will be more when compared with 15 turbines). 
When the turbines are increased, the efficiency deg–
rades. This is logical since the grid size is fixed (i.e., 
2.3716 sq. km), and a low number of turbines have 
more slots for reassignment. For a higher number of 
turbines, the area (i.e., the number of cells)  is still the 
same; therefore, there are fewer possibilities for turbine 
reassignment. 

 
Figure 5. Frequency of solutions for different bias values, 
15 turbines. Eff = efficiency. 
 

6. CONCLUSIONS AND FUTURE DIRECTIONS 
 
The high level of complexity in wind farm layout design 
makes the use of nature-inspired algorithms inevitable. 
While a number of population-based natural computing 
algorithms have been applied to the problem in the past, 
the use of non-population-based algorithms has been 
limited. This study applied the SE algorithm to the 
WFLD problem while using efficiency as the optimi–
zation objective. A preliminary empirical analysis was 
carried out using data from a potential site in the 
northern region of Saudi Arabia. The impact of bias B, 
which is the only algorithmic parameter in the SE 
algorithm, was analyzed with respect to the quality of 
solutions generated. The results averaged over 30 runs 
indicated that overall, a lows bias value, particularly B = 
0.0, produced the best results than the other values tried. 
Overall, the preliminary analysis in this study is enco–
uraging and solicits the need to have an in-depth 
analysis of the SE algorithm with more test scenarios. 
For in-depth testing, data from several other sites from 
Saudi Arabia as well as other global locations can be 
used, and results can be mutually compared for different 
trends. Most of the required data is already available in 
the public domain or can be obtained from competent 
authorities. 

Based on the work presented in this study, several 
potential research directions may be identified both in 
terms of problem model and algorithmic aspects, as 
follows: 
• Different wake effect models can be tested with 

the SE algorithm, and the impact on the quality of 
solutions can be mutually compared.  
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• Instead of optimizing a single objective, several 
objectives may be simultaneously optimized, thus 
making the problem model multi-objective 
optimization. This will require the SE algorithm 
to be adapted for multi-objective optimization.  

• Another direction is the development of a dyna–
mic bias where the bias can adjust itself automa–
tically based on the algorithm's performance, thus 
reducing or alleviating the need for a human user 
to define the bias value. 

• Furthermore, the SE algorithm can be compared 
with other population and non-population-based 
algorithms to evaluate the quality of solutions and 
the execution time.  

• Studies have shown that the hybridization of 
algorithms generally improves the performance of 
the algorithm. Thus, the hybridization of SE with 
other algorithms can also be explored.   
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NOMENCLATURE 

 
 
АДАПТАЦИЈА АЛГОРИТМА СИМУЛИРАНЕ 
ЕВОЛУЦИЈЕ ЗА ОПТИМИЗАЦИЈУ РАСПО–

РЕДА ВЕТРОПАРКА 
 

С.А. Кхан 
  

Енергија ветра је потенцијална замена за тради–
ционалне изворе енергије на бази фосилних горива. 
Један важан фактор у процесу производње енергије 

a Axial induction factor 
z0 Surface roughness 
u0 Mean wind speed 
Z Hub height 
Ct Thrust coefficient 

xij 

Distance downstream from turbine j to 
turbine i (i.e., distance between the 
current turbine and the turbine creating 
wake effect on it) 

ui 
Wind speed downstream under multiple 
wakes 

N Total number of turbines 
mi Set of all turbines creating wake effect 

on turbine i 

rd0 
Wake radius immediately downstream of 
the wind turbine 

rdl 

 
D 
Pactual 
Pideal 
B 
ge 
Oe 
Ce 
Random 
gi 
Pi_current 
Pi_rated 
α 
GA 
PSO 
ACO 
BBO 
DE 
SE 

Wake radius at a distance x  downstream 
of the wind turbine 
Rotor diameter 
Total power generated by turbines 
Ideal power generated by turbines 
Bias 
Goodness of element e 
Optimal cost of element e 
Current cost of element e 
Random number in the range [0,1] 
Goodness of turbine i 
Current power generated by turbine i 
Rated power of turbine i 
Entrainment factor 
Genetic algorithms 
Particle swarm optimization 
Ant colony optimization 
Biogeography based optimization 
Differential evolution 
Simulated evolution 
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ветра је пројектовање оптималног распореда 
ветропарка како би се искористила максимална 
енергија. Ова оптимизација распореда је сложен, 
НП-тврд проблем оптимизације. Због саме 
сложености овог дизајна изгледа, потребни су 
интелигентни алгоритми, попут оних из домена 
природног рачунарства. Један такав ефикасан 
алгоритам је алгоритам симулиране еволуције (СЕ). 
Овај рад представља симулирани алгоритам еволу–
ције пројектован да реши проблем оптимизације 
дизајна распореда ветропарка (ВФЛД). За разлику 
од многих недетерминистичких алгоритама, као што 
су генетски алгоритми и оптимизација роја честица 

који раде на популацији, СЕ алгоритам ради на 
једном решењу, смањујући време израчунавања. 
Штавише, СЕ алгоритам има само један параметар 
за подешавање за разлику од многих алгоритама 
који захтевају подешавање више параметара. Пре–
лиминарна емпиријска студија је урађена кориш–
ћењем података прикупљених са потенцијалне 
локације у северном региону Саудијске Арабије. 
Експерименти се изводе на мрежи 10 × 10 са 15 и 20 
турбина уз разматрање турбина номиналног капаци–
тета 1,5 МВ. Резултати показују да је симулирани 
алгоритам еволуције одржива опција за наведени 
проблем. 

 
 
 
 
 
 
 
 
 


