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Control of Direct Current Motor by 
Using Artificial Neural Networks in 
Internal Model Control Scheme 
 
In this research, control of the Direct Current motor is accomplished using 
a neuro controller in the Internal Model Control scheme. Two Feed 
Forward Neural Networks are trained using historical input-output data. 
The first neural network is trained to identify the object's dynamic 
behavior, and that model is used as an internal model in the control 
scheme. The second neural network is trained to obtain an inverse model 
of the object, which is applied as a neuro controller. Experiment is 
conducted on the real direct current motor in laboratory conditions. 
Obtained results are compared to those achieved by implementing the 
Direct Inverse Control method with the same neuro controller. It was 
demonstrated that the proposed control method is simple to implement and 
the system robustness is achieved, which is a great benefit, aside from the 
fact that no mathematical model of the system is necessary to synthesize 
the controller of the real object.    
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1. INTRODUCTION  
 

A direct current (DC) motor represents a power actuator 
that converts electrical into mechanical energy [1]. It is 
often utilized in various industries where wide speed 
ranges are required, such as for robotic manipulators, 
overhead cranes, guided vehicles, cutting tools, electri–
cal traction, etc. The fundamental reason for this is that 
DC motors are highly adaptable when it comes to speed 
control, and they have excellent characteristics such as 
high starting, accelerating, and retard torque, high 
response performance, etc. [2].  
 Numerous techniques are available for controlling a 
DC motor's angular velocity. Undoubtedly, using clas–
sical PID-like controllers is one of the most common 
techniques due to their simplicity, ease of installation, 
and cost-effectiveness. Adjustment of parameters for 
PID-like controllers can rely on classical methods such 
as Ziegler-Nichols and Chien-Hrones-Reswick [3], but 
other methods can also be used [4]. For dealing with the 
same task, the adaptive PID controller demonstrated its 
superiority over the conventional PID controller, which 
is proved in [5].  
 After Lotfi A. Zadeh introduced fuzzy logic con–
cepts [6], control theory underwent a significant change. 
Fundamentally, fuzzy logic enables the processing of 
multiple potential truth values through a single variable 
represented with linguistic value. Fuzzy logic 
controllers (FLC) can be used to control the speed of 
DC motors. For example, it was demonstrated in [7] that 
FLC represents a better option than traditional PID 
controllers. A comparison between PID, FLC, and fuzzy 

PID controllers revealed that fuzzy PID guarantees 
superior performance to the other two controllers [8]. 
An even better solution can be produced by applying an 
adaptive fuzzy PID controller [9]. A different approach 
for implementing fuzzy logic speed controllers is 
offered in [10], where the authors developed fuzzy logic 
microcontroller and suggested using it since it is easy to 
implement and requires a few inexpensive components.  
 The development of artificial intelligence paved the 
way for the advancement of engineering in general. It 
has found purpose in a variety of fields, such as for 
heating energy consumption prediction [11], predicting 
kinematic errors solution in the five-axis machine [12], 
modeling of machining parameters [13], optimization of 
traditional Montenegrin chair [14], etc. An example of 
the use of the artificial neural network (ANN) in the 
domain of speed control can be found in [15], where 
ANNs are trained to estimate speed and control the DC 
motor. It was shown that by using ANN, calculating the 
motor parameters can be avoided in modeling the 
system, and ANN can replace the speed sensors in the 
control system models. Additionally, the neuro cont–
roller achieved a remarkable advantage compared to the 
conventional one. Compared with FLC, where both 
controllers performed well, the ANN controller reacted 
faster on the speed adjusting, and the settling time was 
lower [16]. Adaptive neural speed controller can be 
applied as well [17].  
 The technique combining fuzzy logic and ANNs 
implies using an adaptive neuro-fuzzy inference system 
(ANFIS) for object control. In control system metrics, 
including overshoot, undershoot, steady state error, rise, 
settling, and recovery time, the ANFIS controller out–
performs conventional PI, fuzzy-tuned PID, and Fuzzy 
Variable Structure controller [18].  
 Recently, the usage of metaheuristic optimization 
algorithms in finding optimal controller parameters has 
been growing. Metaheuristic algorithm can be defined 
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as a form of stochastic optimization that is not depen–
dent on the surface gradient for optimization [19]. 
Inspiration for developing a new algorithm can usually 
be found in nature, evolution, society, etc. In [20], 
Archimedes Optimization Algorithm (AOA), Dispersive 
Flies Optimization (DFO), and Particle Swarm Optimi–
zation (PSO) algorithms served for tuning optimal gain 
parameters of conventional PID controllers. It was 
shown that AOA-PID and DFO-PID are more conve–
nient for speed control of DC motors than PSO-PID and 
PID tuned via the Ziegler-Nichols method. Fuzzy 
controllers can be optimized likewise. Fuzzy PD and 
PID controllers were optimized via PSO, Cuckoo, and 
Bat algorithms [21], and the controller optimized with 
the bat search algorithm achieved the best performance. 
The advantages of PSO and the Gravitational Search 
Algorithm were combined to develop the fuzzy PI 
controller parameters for the DC motor [22].   

 Internal Model Control (IMC) is a control tech–
nique often used to control industrial processes, and it 
can be applied to both linear and nonlinear systems. The 
reason for common usage is founded in the fact that 
compensation for the effect of disturbances on the 
system can be achieved using a simple control scheme 
containing a controller and an internal model that simu–
lates the controlled object's behavior. In theory, by using 
the IMC scheme, perfect control is possible. IMC stra–
tegy can be implemented to tune the parameters of the 
PID controller to control brushless DC motors, like in 
[23].  

Model-based fuzzy controller with a fuzzy dynamic 
model in the IMC scheme demonstrated good robust 
performance in controlling flow rate [24]. Also, it was 
shown that this control method could be used with 
ANNs to control the class of nonlinear systems [25].  

In this research, the ANN approach is used in the 
Internal Model Control scheme to control the DC 
motor's angular velocity. The first ANN is trained for 
the identification of the object, and it is used as an 
internal model, while the second ANN is trained to 
represent an inverse model of the system, which is later 
utilized as the controller. Obtained results are compared 
to results obtained using Direct Inverse Control (DIC) 
strategy with an ANN controller.  
  
2. SYSTEM DESCRIPTION  
 
The real-life system, Quanser SRV02 Rotary Servo 
Base Unit [26], is used in this study.  

The Servo plant includes DC motor placed in a solid 
aluminum frame with a planetary gearbox. The motor 
also has an internal gearbox that drives external gears. 
There are two available external loads: a disk and a bar. 
Their purpose is to vary the moment of inertia [26]. In 
this work, the disk load is attached to the load gear of 
the object. This object is shown in Figure 1.  

The well-known equation that describes the dyna–
mic behavior of the used DC motor and whose sche–
matic model is represented in figure 2 is [27]:  
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In (1) ωl denotes the angular velocity of the load 
shaft, and Vm is motor voltage; the rest of the parameters 
can be calculated using the following equations.  
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In equations (2), (3), and (4), symbols ηg, Kg, Jm, Jl, 
ηm, kt, km, Bm, Bl, and Rm, represent gearbox efficiency, 
the gear ratio of the motor’s gear train, motor shaft 
moment of inertia, moment of inertia of the load, the 
motor efficiency, current-torque constant, back 
electromotive motor constant, viscous friction acting on 
the motor shaft, viscous friction acting on the load shaft 
and motor resistance, respectively. 

 
Figure 1. Quanser SRV02 system with external gears [26]  

Finally, by choosing output variable y = ωl and input 
variable u = Vm linear model of the system is:  

 ( ) ( ) ( ),+ =eq eq v mJ y t B y t A u t . (5) 

The linear model does not describe the dynamical 
behavior of the object completely well because it needs 
to pay attention to the major nonlinear effect, such as 
the speed dependant friction, dead zone, and backlash. 
The nonlinear mathematical model of the system, which 
takes friction into account, is of the form [28]:  

 ( ) ( ) ( )( ) ( )+ + =st mJy t By t T y t A u t . (6) 
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Figure 2.  Schematic representation of DC motor [27] 

The total moment of inertia reflecting the output 
shaft is labeled as J, while B is the equivalent damping 
term where the linear viscous friction has already been 
comprehended. Addition, that represents the nonlinear 
part of the friction torque, Tst  is [28]:  

( ) ( ) ( )0.0640.0174sgn 0.0087 sgn
y

stT y y e y
⎛ ⎞−⎜ ⎟
⎝ ⎠= + .  (7) 

However, the mathematical model of the object is 
not used in this research to obtain results. It is served 
only as foreknowledge about the object to determine the 
object's difference equation, which is used for setting 
inputs and output of ANNs, which will be explained in 
the continuation of the paper.   

 
3. ANN INTERNAL MODEL CONTROL STRATEGY  

 
The prime characteristic of the IMC strategy is that it 
should achieve system robustness. A well-known sch–
eme that illustrates the IMC strategy is shown in Figure 3.  

 
Figure 3. General Internal Model Control diagram 

There are three main properties of IMC strategy [25]:  
Property 1 – Stability: Suppose that the model of the 
object is perfect. The closed-loop system is also stable if 
the object and the controller are input-output stable.  

Property 2 – Perfect control: Suppose that the controller 
and inverse model are equal and that the closed-loop 
system is stable. In that case, control of the system will 
be perfect.  
Property 3 – Zero offset: Suppose that the closed loop 
system is stable and the steady state controller gain equ–
als the inverse of the model gain. Then the offset-free 
control is reached for asymptotically constant signals.  

A deeper analysis of the IMC approach can be found 
in [29]. 
 IMC strategy with ANNs implies that trained ANNs 
are used as controllers and object models in the control 
scheme. There are two steps in implementing this method 
– identification of the object and iden–tification of the 
inverse model. Object identification involves training the 
ANN to predict output from the real object so that it can 
be used as an object model in the scheme, while 
identification of the inverse model serves to learn ANN to 
predict object input and be treated as an inverse 
controller. The paper further discusses the application of 
this control method to the specific DC motor case.  
 
3.1 Feedforward ANN model 

 
Feedforward neural network (FFNN) is a simple ANN 
with a well-known architecture composed of neurons 
arranged in input, hidden, and output layers. It is often 
used to control different objects and processes, function 
approximation, prediction, classification, etc. Classical 
learning process of FFNN is based on the back-
propagation algorithm. For example, deeper information 
about FFNN can be found in [30].  

In this research, two FFNNs were trained to satisfy 
the IMC scheme. Both models have only one hidden 
layer with a difference in the number of neurons. Model 
of the object has 6 neurons, and the inverse model has 7 
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neurons in the hidden layer. Training was offline with 
historical input-output data. Levenberg-Marquardt algo–
rithm, which promises fast convergence, is used in mo–
del training. Mean Squared Error (MSE) is defined as 
the objective function. Learning rate is set to 0.001. 
Mentioned parameters are kept the same in both of the 
training processes.  
 
3.2 Object identification  
 
Object identification is conducted via a model where the 
output from the object is predicted based on input and 
output from the previous moment.  

DC motor that is considered in this research belongs to 
single-input-single systems. According to equation (6) it 
can be represented via the following difference equation:  

 ( ) ( ) ( )1 ,y k f y k u k+ = ⎡ ⎤⎣ ⎦ . (8) 

Based on (8), neural network output can be desc–
ribed as:   

 ( ) ( ) ( )11 ,my k N y k u k+ = ⎡ ⎤⎣ ⎦ , (9) 

where N1 represents a trained neural network for object 
identification. Structural diagram that describes the 
training process of the feedforward model for this 
particular object is given in figure 4. 

 
Figure 4.  Identification of considered object using ANN 

4. IDENTIFICATION OF INVERSE OBJECT   
 
Obtaining an inverse model means that ANN should be 
trained to predict the input of an object, i.e., control 
signal based on previous output and input signals.  

 In our case, ANN marked with N2, is trained to give 
output um based on the following expression:  

 ( ) ( ) ( )2 , 1mu k N y k y k= +⎡ ⎤⎣ ⎦ . (10) 

 A structural diagram of training ANN to represent 
an inverse model of the user object is shown in figure 5.  

 
Figure 5. Obtaining an inverse model of the DC motor 
 

5. IMPLEMENTATION OF IMC SCHEME ON DC 
MOTOR 
 

Finally, after training FFNN models, the IMC strategy is 
adapted to suit the object used in this research. Detailed 
structural diagram of the proposed IMC method, which 
shows appropriate input signals in the identified object 
model, neuro controller, and the real object, DC motor, 
is shown in Figure 6.  
 
6. DIRECT INVERSE CONTROL METHOD 

 
The DIC method implies using an inverse model as a 
neuro controller. It is a simple method where the inputs 
in the controller are desired output values and outputs 
from the object.  

In our research, the DIC method is compared with 
IMC to investigate the performance of the proposed 
IMC method. The Neuro controller used in DIC is the 
same as in the IMC scheme. Figure 7 shows a detailed 
structural diagram of DIC adapted to the specific case of 
DC motor control. 

 
Figure 6. Structural diagram of adapted IMC scheme  
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Figure 7. Structural diagram of adapted DIC scheme  

7. EXPERIMENTAL RESULTS AND DISCUSSION  
 
This section is split into two parts. The first is presented 
results after training FFNNs used in IMC strategy. The 
second subsection refers to the presentation and com–
parison of the results obtained by implementing two 
different control strategies.  
 
7.1 Obtaining identified and inverse object model 
 
The dataset used for FFNNs training is a collection of 
previous readings of the object's input and output signal 
values obtained in laboratory conditions. Input in the ob–
ject is a random signal whose values go between   -10 V 
and 10 V and change every 0.5 s. Time duration for obta–
ining the dataset is 200 s with fixed step time T = 0.002 s. 

The diagram that shows obtained output from a 
noncontrolled DC motor and output predicted via FFNN 
is given in figure 8, and a high coincidence of these two 
signals can be noticed. The best value of the MSE in 
validation during the training process is 0.0096123.  

 
Figure 8. Training results of the identified object model 

Figure 9 is a given graph, after training the inverse 
model, that shows input in the object (which is the 
output of the inverse model) and predicted input via 
FFNN based on the value of the output signal from the 
object. The best MSE value is 0.28553. 

 
Figure 9. Results after training the inverse object model 

7.2 Comparison of the obtained results by using 
IMC and DIC strategies  

 
There are three following cases of comparison between 
DIC and IMC methods whose results are shown in the 
continuation of the paper.  
Case 1: In the first case, the desired output is a step 
signal with a value of 5 rad/s.  
Case 2: In the second case, models are tested when 
disturbance acts on the object. The disturbance arises at   
0.5 s and lasts till 1 s. Desired output is the same as in 
the first case.  
Case 3: The third case of comparison is an examination 
of how our models behave when the desired output is a 
sinusoidal signal with an amplitude 5 rad/s and a 
frequency of 0.04 rad/s.   

Integral Square Error (ISE) is used as a performance 
index, and this criterion can be described via the 
following expression:  

 ( )2

0
 ISE e t dt

∞
= ∫  (11) 

A moving-average filter reduces noise in all res–
ponse and control signals. It can be described with the 
difference equation (12) where the length of average, N, 
is set to 5, y[n] is the current output, x[n] is the current 
input, x[n-1] is the previous input, etc.  

 [ ] [ ]
1

0
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−
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Figure 10. System response to the step input signal 

 
Figure 11. Control signal to step input  
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Figure 10 shows the system response in the first 
testing case. Both of the used models work similarly, 
and the desired velocity value is achieved quickly. 
Control signal for this case is given in figure 11. 

 
Figure 12. System response to the step input signal with 
disturbance 

The system response to step signal with disturbance 
for both controlling methods is given in figure 12. It is 
clear that the IMC method ensures that the neuro cont-
roller reacts in a way that balances the impact of the 
disturbance, while the controller in DIC cannot handle 
the disturbance. Suitable control signal for this case can 
be seen in figure 13.  

 
Figure 13. Control signal to step input with disturbance 

Finally, output signals for sinusoidal desired velocity 
are given in figure 14.  

 
Figure 14. System response to the sinusoidal input signal 

Figure 15 shows the control signal in the third com–
parison case.  

ISE values for all three comparison cases are given 
in table 1. It can be noticed that values are approximate 
when the object is not affected by a disturbance. When 
disturbance appears, the ISE value is significantly lower 
when IMC is used. However, ISE is slightly lower in 
those cases when applied in the DIC method.  

 
Figure 15. Control signal to a sinusoidal input 

Table 1. ISE value 

ISE Case 1 Case 2 Case 3 
DIC 0.1361 0.2505 0.0716 
IMC 0.1463 0.1539 0.0767 

 
8. CONCLUSION  

 
This study proposes an artificial intelligence approach 
to automatic control. The IMC strategy is adapted for 
controlling the real DC motor using two FFNNs. In 
addition, DIC is implemented for the same purpose, and 
the same ANN model is used as a neuro controller. 
There are several inferences from this research.   

The fact that mathematical equations that describe 
the object's dynamic behavior are not required for 
controller synthesis is a significant benefit provided by 
the usage of ANN for control.  

Both methods are easy to implement, but it is crucial 
to obtain identified and inverse models that are good 
representations of the real system. For this purpose, it is 
necessary to train a few ANN with variations in learning 
parameters, which can refer to a number of neurons, 
hidden layers, learning rate, etc. Sometimes using diffe–
rent ANN models brings better solutions. In this resea–
rch, FFNNs were acceptable for dealing with the set task.  
 When it comes to the comparison of DIC and IMC 
strategies, it is obvious that in the cases when the object 
is not affected by disturbance, both of them give similar 
results. Although ISE criteria stand out for DIC, the 
difference in ISE values is diminutive. A huge diffe–
rence between these methods occurs when disturbance 
affects DC motors. Then, the controller in the DIC 
strategy cannot compensate for the effect of the distur–
bance, while the controller in the IMC scheme success–
fully deals with the disturbance. In that case, the diffe–
rence in ISE values is noticeably greater.  
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УПРАВЉАЊЕ МОТОРA ЈЕДНОСМЕРНЕ 
СТРУЈЕ КОРИШЋЕЊЕМ ВЕШТАЧКИХ 

НЕУРОНСКИХ МРЕЖА У УПРАВЉАЧКОЈ 
ШЕМИ СА УНУТРАШЊИМ МОДЕЛОМ 

 
Н.Б. Перишић, Р.Ж. Јовановић 

 
У овом истраживању је остварено управљање 
мотором једносмерне струје коришћењем неуро-      
-контролера у управљачкој шеми са унутрашњим 
моделом. Две неуронске мреже без повратних веза 
су обучене на основу прикупљених улазно-излазних 
података. Прва неуронска мрежа је обучена за 
идентификацију динамичког понашања објекта и тај 
модел је  коришћен као унутрашњи модел у шеми 
управљања. Друга неуронска мрежа је обучена у 
циљу добијања инверзног модела објекта, који је 
примењен као неуро-контролер. Експеримент је 
спроведен на реалном систему – мотору једно–
смерне струје у лабораторијским условима. Доби–
јени резултати су упоређени са резултатима постиг–
нутим имплементацијом методе директног инвер–
зног управљања са истим неуро-контролером. Пока–
зало се да је предложени метод управљања једнос–
таван за имплементацију и да је постигнута робус–
ност система, што поред чињенице да није потребан 
математички модел да би се пројектовао контролер 
за управљање стварним објектом, представља ве–
лику предност.  

  
 


