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Doubly-Curved Stiffened Orthotropic 
Shells by Various Strength Theories 
 
The paper proposes a method of strength analysis for materials of thin-
walled shell structures reinforced with stiffeners. The shells under 
consideration were made of orthotropic materials. The authors analyze the 
applicability of the following seven strength criteria: the maximum stress 
criterion, the Mises–Hill criterion, the Fisher criterion, the Goldenblatt–
Kopnov criterion, the Liu–Huang–Stout criterion, the Tsai–Wu criterion, 
and the Hoffman criterion. During the study, doubly-curved shallow shells 
square in the plan were considered. A geometrically nonlinear 
mathematical model of shell deformation, which considers transverse 
shears, was used. The calculations were based on the characteristics of T-
10/UPE22-27 glass-fiber-reinforced plastic. The method relies on 
calculating the values of several strength criteria at each step of structural 
loading and analyzing the development of areas failing to meet the 
strength conditions as the load increases. 
 
Keywords: shells, strength criteria, buckling, maximum stresses, stiffened 
shell. 

 
 

1. INTRODUCTION 
 

The study of the process of deformation of shell struc–
tures is essential for various industries, including air–craft 
building, shipbuilding, rocket science, and others. In 
construction, such structures are often used, among other 
things, for covering large-span structures, for example, 
stadiums, concert halls, markets, warehouses, hangars for 
machinery and equipment, and factory buildings. 

Thin-walled shell structures may lose their perfor–
mance due to buckling when a small change in the load 
results in a significant rapid increase in displacements 
(deflection) and irreversible changes in the material 
(loss of strength). 

Unfortunately, most available studies analyze either 
buckling resistance or strength. However, in some cases, 
it is hard to predict what will be compromised earlier. 

Thus, it needs to perform structural analysis in terms 
of buckling and occurrence of failure to meet the 
strength conditions (including using various strength 
theories). 

Structures subjected to external loading can be ana–
lyzed based on the limited state of structural materials 
[1, 2]. 

Here, loss of strength means a state when the 
material experiences irreversible transformations. In 
fact, loss of strength is determined when at least one 
point of the structure fails to meet the strength criterion.  

With a further increase in loading, the areas failing 
to meet the strength conditions begin to expand, and it 
becomes important to analyze their distribution and 
development. 

Much attention is paid to the study of the 
deformation of composite materials, which are often 
orthotropic. So, in the work of Smerdov [3] for the basic 
classes of composites (high-, medium-, and low-mo–
dulus carbon-fiber, organo-, and glass-fiber plastics), 
recommendations for a rational choice of their 
structures to obtain experimental results allowing one to 
identify the elastic characteristics of unidirectional 
composites are formulated.  

Analyzing strength criteria applicable to orthotropic 
materials indicates the need for a generally accepted 
criterion. Consequently, it needs to use several criteria 
and ensure that the results obtained will be analyzed 
later. The results of such comparisons can be found in 
papers [4–8]. 

The studies addressing the strength of materials and 
structures often use the following criteria: the maximum 
stress criterion [4, 6, 9, 10], the Goldenblatt–Kopnov 
criterion [7, 11], the Tsai–Wu criterion [4, 12–16], the 
Hoffman criterion [4, 6, 17], and the Hashin criterion 
[13, 18–20]. 

Among the recent papers on the application and 
development of strength theories, the following can be 
mentioned: papers by Abrosimov and Elesin [6], 
Baryshev and Tsvetkov [21], Kolupaev et al. [22], 
Tsvetkov and Kulish [23], and Yu [24]. 

In [25], Korsun et al. describe in detail the key 
relations of the following strength criteria applicable to 
concrete: the Geniev criterion, the Geniev–Alikova 
criterion, the Leites criterion, the Yashin criterion, the 
Klovanich–Bezushko criterion, the Willam–Warnke 
criterion, and the Karpenko criterion. 

The number of studies addressing the application of 
various strength theories to the analysis of shell struc–
tures [4, 6, 26–31] is relatively small. 

A valuable extensive comparative analysis of stren–
gth criteria can be found in a paper by Oreshko et al. 
[8]. The researchers analyzed strength criteria appli–
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cable to isotropic, orthotropic, and anisotropic materials. 
They also described the approaches used during the 
strength analysis of fibrous and layered composite 
materials. In the course of their study, they considered 
the following criteria: von Mises criterion, the Pisa–
renko–Lebedev criterion, the William–Warnke criterion, 
the Drucker–Prager criterion, the Bazant criterion, the 
Norris criterion, the Cuntze criterion, the Goldenblatt–
Kopnov criterion, the Tsai–Hill criterion, the Tsai–Wu 
criterion, the Hashin criterion, the LaRC criterion, the 
Hoffman criterion, the Puck criterion, the sandwich 
panel strength criteria, and others. Besides, they 
reviewed the strength models of the materials used in 
the ANSYS Mechanical APDL program. 

The goal of this work is to present a method to 
analyze the strength of thin-walled shell structures made 
of orthotropic materials (including the use of various 
strength theories). 

 
2. THEORY AND METHODS 

 
2.1 Limit state criteria for orthotropic materials 

 
As Tsvetkov and Kulish [23] noted, the phenome–
nological criterion of strength in anisotropic materials 
relates the possibility of structural failure to the value of 
stress tensor ( ijσ ) in the material and generally can be 
represented as follows: ( ) .1≤σijf   

The expression includes a set of constants charac–
terizing the structural behavior of the material. The 
strength criterion corresponds to the strength surface for 
a general case in the six-dimensional stress space 

122313332211 ,,,,, σσσσσσ . 
The strength surface shall pass through the points 

determined by the technical strength characteristics of 
the material, i.e., ultimate strength under uniaxial 
tension and compression in three mutually perpen–
dicular directions and ultimate strength in shear in three 
mutually perpendicular planes. 

Considers the Liu–Huang–Stout criterion (in nota–
tions accepted in the paper (Liu et al., [32])), which is 
the generalization of the Mises–Hill criterion (taking 
into account orthotropy but neglecting the difference 
between tensile and compressive moduli of elasticity) 
and the Drucker–Prager criterion (taking into account 
the difference between tensile and compressive moduli 
of elasticity but neglecting orthotropy). 
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Here, TTT
321 ,, σσσ  and CCC

321 ,, σσσ  – ultimate 
strength under tension and compression in the zyx ,,  
directions, respectively; SSS

233112 ,, τττ  – ultimate strength 
in shear in the zyzxyx ΟΟΟ ,,  planes.  

In a plane stress condition and considering that 
0=τ=τ yzxz , the Liu–Huang–Stout criterion can be 

written as follows: 
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As Polilov and Tatus [11] noted, the strength criteria 
taking into account the directional fracture of fibrous 
composites make it possible to interpret experimental 
data and perform strength analysis of composite 
structural members more adequately. 

To analyze orthotropic structures, seven criteria for 
the plane stress condition case, which in uniform 
notations can be represented as follows, are used: 

Criterion 1 (the maximum stress criterion)  
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In fact, it includes six criteria, thus providing the 
most information on the stress-strain state of the 
structure. However, it does not give any information on 
their cumulative effect or interaction. 

Criterion 2 (the Mises–Hill criterion) 
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Criterion 3 (the Fisher criterion (Fisher, [33])) 
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Criterion 4 (the Goldenblatt–Kopnov criterion 
(Goldenblat and Kopnov, [34])) 

.14

2
1

11
2
111

2
1

2
1

2
12

2
12

2211

2

45,1245,12

45,1245,12

2

22

22
2

11

11

2
22

2

22

222
11

2

11

11

22
22

11
11

≤
⎪⎭

⎪
⎬
⎫

τ
+σσ

⎥
⎥
⎥

⎦

⎤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

⎪⎩

⎪
⎨
⎧

+σ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+σ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

+σ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++σ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−+

−+

−+

−+

−+

−+

−+

−+

−+

−+

−+−+

FFF
FF

FF
FF

FF
FF

FF
FF

FF
FF

FFFF

  (6) 

Criterion 5 (the Liu–Huang–Stout criterion ([32])) 
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Criterion 6 (the Tsai–Wu criterion (Tsai, Wu, [35])) 
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Criterion 7 (the Hoffman criterion [6]) 

−σ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++σ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

+σ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+σ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−+−+

−+−+−+−+

2211

2
22

2
11

1111

11
2
111

2
1

yyxx

yyxxxxyy

FFFF

FFFFFFFF
 

( ) .1111
2
1 22

2211 ≤τ−σ−σ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+− −+−+−+ xy

xyxyxxyy FFFFFF
  (9) 

For criteria 2 and 3, the following condition is in 
place: 
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It should be noted that some sources do not put the 
minus sign with ultimate compressive stresses. To 
ensure consistency in notation with regard to the criteria 
and values calculated, assumed that compressive stres–
ses (including ultimate compressive stresses) have the 
minus sign.  

In defining the criteria, the following designations 
are accepted: 3,2,1  – the orthogonal system of coordi–
nates corresponding to the orthotropy axes of the mate–
rial; ++

21 , FF  – ultimate strength under tension in the 

2,1  orthotropy directions [MPa]; −−
21 , FF  – ultimate 

strength under compression in the 2,1  orthotropy direc–
tions [MPa]; 12F  – ultimate strength in shear in the 

orthotropy plane [MPa]; −+
45,1245,12 , FF  – ultimate stren–

gth in shear along the planes inclined at 45° to the 
principal directions [MPa]; 332211 ,, σσσ  – normal 
stresses in the 3,2,1  orthotropy directions [MPa]; 

231312 ,, τττ  – shear stresses in the 32,31,21 ΟΟΟ  
planes [MPa]. 

If the 1, 2 orthotropy axes of the material do not 
coincide with the yx,  coordinate axes of the structure, 
then structural stresses xyyx τσσ ,,  shall be adjusted to 
the 1, 2 orthotropy directions by using equations for 
coordinate system rotation. In such a case, the known 
values of the ultimate strength of the material can be 
used in strength criterion equations. 

From now on, it will consider that the 1 and 2 
orthotropy axes coincide with the yx,  axes of the 
accepted local coordinate system, respectively ( zyx ,,  – 
the orthogonal coordinate system in the middle surface 
of the shell structure; yx,  – the curvilinear coordinates 
oriented along the main shell curvature lines, z  – the 
coordinate oriented in the direction of the concavity, 
perpendicular to the middle surface).  

 
2.2 Description of structures under consideration 

 
T-10/UPE22-27 glass-fiber-reinforced plastic [2] as the 
structural material is selected. Its characteristics are 
given in Table 1.  
Table 1 T-10/UPE22-27 glass-fiber-reinforced plastic 
characteristics [2] 

,1E  MPa 12μ  ,2E  MPa ,12G  MPa ,13G  MPa
510294.0 ⋅ 0.123 41078.1 ⋅  410301.0 ⋅  410301.0 ⋅

,23G  MPa ,1
+F  MPa ,1

−F  MPa ,2
+F  MPa ,2

−F  MPa
410301.0 ⋅ 508 –209 246 –117 
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,12F  MPa ,45,12
+F  MPa ,45,12

−F  MPa 

43 130 –160 
 
Table 2 shows the input parameters of a doubly-

curved shallow shell under consideration. 
Table 2 Input parameters of a doubly-curved sallow shell 

No. m,h  m,a  m,b  m,1R  m,2R  

1 0.01 1.2 1.2 4.8 4.8 
 
The orthotropic doubly-curved shell is simply 

supported along the contour (for x = a1, x = a, U = V = 
W = Mx =Ψy = 0; for 0=y , by = ,U = V = W = Mx 
=Ψy = 0). 

Computer simulation of the process of deformation 
of shell structures is important for many industries, 
including the construction and aircraft industry [36–39]. 

To unambiguously interpret these input parameters, 
Fig. 1 presents a general view of a doubly-curved 
shallow shell reinforced with stiffeners with the 
accepted local coordinate system. 
 

1R 2R

b

yx

a

0

z

0

 
Figure 1. Accepted local coordinate system 

The shells are square in plan, with pin support along 
the contour, and subjected to uniformly distributed tra–
nsverse load q directed along the normal to the surface. 

The shells are reinforced with an orthogonal grid of 
stiffeners uniformly distributed throughout the structure. 
The width of the stiffeners is hrr ij 2== , and the 
height is hhh ij 3== . The distance between the 
stiffeners defined as xr, with the outer stiffeners at a 
distance rx5.0  from the edge of the structure. 

 
2.3 Mathematical model and analysis algorithm 

 
The functional of full potential deformation energy (the 
Lagrange functional) as the basis for the mathematical 
model of shell structure deformation is used. 

In the case of static problems, the function can be 
represented as the difference between the potential 
energy of the system and the work of external forces: 
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where 0
sE  – the component of the statics functional, 

associated with the skin; R
pE  – the potential energy of 

the system, associated with the stiffeners; 0
pE  – the 

potential energy of the system, associated with the skin; 
Α  – the work of external forces. 

The part of the functional associated with the skin 
will be as follows: 
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where R
pE  depends on the method to arrange stiffeners, 

taking the following general form [40]: 
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As a rule, if the external load is applied along the 
normal to the shell surface, then ysvyxsvx PPPP == ,  
(dead load components), and their transverse component 
can be determined as follows: 

svqyayaa
xaxaaqq
+++×

×++=
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322212

2
3121110 ,  (14) 

where q0 denotes the value of the applied load, MPa; qsv 
denotes the transverse shell dead load component, MPa. 

This paper suggests using an algorithm based on the 
Ritz method and the solution continuation method with 
respect to the best parameter for studying shell struc–
tures.  

According to this algorithm, the Ritz method is 
applied to the function to reduce the variational problem 
to a system of nonlinear algebraic equations. For this 
purpose, the required functions are presented as follows: 
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where 
klyklU Ψ−  – unknown numerical parameters. 

Having applied functions (15) to functional (11), the 
derivatives with respect to unknown numerical para–
meters 

klyklU Ψ−  are founded. Thus, a system of 
nonlinear algebraic equations is derived. 

To solve this system, the solution continuation 
method with respect to the best parameter is used. 
Verification of this algorithm is considered in detail in 
[41]. 
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When the solution continuation method concerning 
the best parameter is used, the load/deflection curve is 
built step by step. At each step, the stress-strain state of 
the structure is analyzed. In the case of isotropic 
structures, it is sufficient to evaluate stress intensity, but 
in the case of orthotropic and anisotropic structures, it is 
required to apply special strength criteria. These criteria 
use constants of the ultimate values of stresses in the 
material. Besides, values of ultimate strength in 
different directions as well as values of ultimate strength 
under tension/compression and in shear, are different. 

In the monograph [42], the authors analyzed stresses 
in different layers along the z  coordinate for shallow 
shells rectangular in plan. They showed that the 
maximum stresses occur on the outside of the shell at 

.2/hz −=  That is why the shell reinforced with 
stiffeners on the convex side is more rigid than the shell 
reinforced with stiffeners on the concave side. However, 
for technological reasons, shells are often reinforced 
with stiffeners on the concavity as well. 

To analyze strength criteria, stresses 
yzxzxyyx τττσσ ,,,,  at 2/hz −=  are calculated. 

MPa,q

rK

H

LHS

MHF ,

GK

TW
xyF

−
xF

−
yF

+
xF

+
yF

 
Figure 2. Strength criterion curves for a doubly-curved 
shallow shell made of T-10/UPE22-27 glass-fiber-reinforced 
plastic with the 4 x 4 grid of stiffeners 

 

3. NUMERICAL RESULTS 
 

3.1 Strength analysis of a glass-fiber-reinforced 
plastic shell 

 
Next, the fulfillment of the strength conditions for a T-
10/UPE22-27 glass-fiber-reinforced plastic shell with 
the 44×  orthogonal grid of stiffeners by using several 
criteria. The author suggests building criterion/load 
curves and criteria fields under various loads as well as 
areas failing to meet the strength conditions in the post-
buckling state. Fig. 2 shows a strength criterion vs. load 
diagram. The load corresponding to the point where a 
criterion curve exceeds 1 on the horizontal axis 
indicates the onset of failure to meet the strength 
conditions. In the diagram below, the maximum stress 
criterion is represented by six curves corresponding to 
its components. The sharp curve bends because the 
criterion's maximum value is calculated over the entire 

structure (i.e., those may be different points in different 
moments of loading). When one point with the 
maximum values changes to another, the curve changes 
direction since the criterion values in different points of 
the structure increase at different rates.  

Table 3 shows the maximum stresses obtained based 
on various strength criteria. Among other things, such a 
spread in values is also due to the fact that, in terms of 
some criteria, maximum stresses are achieved before 
buckling and, in terms of other criteria – after buckling. 
In Fig. 2, this is represented by the loops.  
Table 3 Maximum stresses obtained based on various 
strength criteria  

Strength criterion MPa,prq  

Maximum stresses 

+
xF  0.6499 
−

xF  – 
+
yF  0.3249 
−
yF  – 
+

xyF  2.0468 
−

xyF  2.0468 

Mises–Hill 0.3425 
Fisher 0.3425 
Goldenblatt–Kopnov 0.1141 
Liu–Huang–Stout 0.0987 
Tsai–Wu 0.1113 
Hoffman 0.2942 

 
Criterion fields under a load of 0.3883 MPa are 

shown in Fig. 3. 
This load value was chosen because it exceeds the 

values of all ultimate loads qpr obtained according to 
various criteria, and allows us to analyze the areas of the 
structure where the strength conditions were violated. In 
addition, this value is close to the values of ultimate 
loads, which makes it possible to estimate exactly where 
the beginning of irreversible changes in the shell 
material occurred before these areas had time to expand. 

According to the components of the criterion of maxi–
mum stresses, the places of stress concentration are visible, 
which together can be seen in the images of other strength 
criteria. The highest values correspond to the sections at 
the edges of the structure (in the middle of the span). 

All criteria show the absence of stress concentration 
in the center of the shell; also, the minimum stress 
values are observed at the corner points. 

The Mises – Hill and Fisher criteria fields look al–
most the same, corresponding to the minimum diffe–
rence in their formulas (the difference lies in only one 
coefficient). 

The nature of the Liu – Huang – Stout criterion field 
is similar to the Mises – Hill, and Fisher criteria but 
gives higher values and shows a smaller difference in 
values between the concentrations at the x and y edges. 

The Tsai – Wu, and Hoffman criteria show stress 
concentrations at the edges of the structure to a lesser 
extent. It can be seen from them that the strength 
conditions are violated at the boundary of the structure 
along the x axis, while the stresses at the boundary 
along the y axis are practically insignificant. 
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Figure 3. Strength criterion fields under a load of 0.3883 MPa for a doubly-curved shallow shell

The extension of areas failing to meet the strength 
conditions, based on some of the described criteria, at a 
load of 0.5869 MPa and a load of 1.056 MPa, are shown 
in Fig. 4. These load values were chosen due to the fact 
that it allows analyzing the process of increasing the 
areas of irreversible changes in the material: the first 
load value is taken slightly more than the founded 
maximum allowable load qpr, and the second – before 
the strength conditions cease to be satisfied at all points 
of the structure. 

The development of areas failing to meet the 
strength conditions indicate, first of all, the occurrence 
of damage to the material on the edge of the structure 
along the x axis. This can be explained as follows: 
despite the structure under consideration being 
symmetrical in terms of geometry, reinforcement, and 
the applied load, orthotropic material is used. In the case 
of T-10/UPE22-27 glass-fiber-reinforced plastic, the 
ultimate strength along the 1 orthotropy axis (which 
coincides with the x axis) is twice as high as that along 
direction 2. Thus, when tensile stresses occur along 
direction 2, areas failing to meet the strength conditions 
occur closer to the edges of the structure. As the load 
increases, areas are expanding and supplemented by 
similar areas near the other two edges. These areas 
develop similarly but with a “delay”. 

The results obtained based on different strength 
criteria are very similar. However, it should be noted that 
the Liu–Huang–Stout criterion comes into action earlier 
and is indicative of more significant changes in the 
material under the same loads. In terms of the Hoffman 
criterion, the areas expand more slowly and differ in 

shape. Besides, they even fail to develop along the 1 
orthotropy axis under the loads under consideration. 

The maximum stress criterion shall be considered as a 
set of all its components: in this case, only +

yF  and +
xF  

are significant, and the cumulative area failing to meet the 
strength conditions can be obtained by their combination. 

 
4. CONCLUSION 

 
The paper described a method of strength analysis with 
regard to the materials of thin-walled shell structures 
reinforced with stiffeners, using doubly-curved shallow 
shells as an example. The applicability of the following 
seven strength criteria was analyzed: the maximum 
stress criterion, the Mises–Hill criterion, the Fisher 
criterion, the Goldenblatt–Kopnov criterion, the Liu–
Huang–Stout criterion, the Tsai–Wu criterion, and the 
Hoffman criterion. Three-dimensional graphs for 
strength criteria under a given load are also presented. 
Besides, the development of areas failing to meet the 
strength conditions by different criteria is analyzed. The 
suggested presentation format with regard to data on 
areas failing to meet the strength conditions and a 
strength criterion diagram is new and makes it possible 
to evaluate the state of the structure visually. 

The sequence of actions indicated in work and, 
especially, the format for presenting data on the state of 
the structure (fields of strength criteria, graphs of 
dependence of strength criteria on load, graphs of the 
development of areas of non-fulfillment of strength 
conditions) are new and represent a scientific novelty. 
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Figure 4. Development of areas failing to meet the strength conditions at a load of 0.5869 MPa and a load of 1.056 MPa for a 
doubly-curved shallow shel
 

The practical significance of the work lies in the fact 
that the proposed method and the developed computa–
tional computer program for studying the stress-strain state, 

strength, and buckling of shells stiffened with ribs made of 
orthotropic materials under static loading can be used in 
design organizations and further scientific research. 
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NOMENCLATURE 

BA,  Lame parameters describing the 
shell geometry 

21, EE  elastic moduli 

sE  functional of full potential defor–
mation energy of the shell structure

0
sE  functional of full potential 

deformation energy of the skin 
R
pE  potential deformation energy of the 

stiffeners 

)(zf  
function describing the distribution 
of stresses τxz and τyz through the 
shell thickness 

++
21 , FF  

ultimate strength under tension in 
the 2,1  orthotropy directions 

−−
21 , FF  

ultimate strength under compres–
sion in the 2,1  orthotropy 
directions 

12F  ultimate strength in shear in the 
orthotropy plane 

−+
45,1245,12 , FF  

ultimate strength in shear along the 
planes inclined at 45° to the 
principal directions 

231312 ,, GGG  shear modules 
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ji hh ,  the height of the stiffeners 

yx kk ,  main curvatures of the shell along 
the x y axes 

rK  yield strength criterion 
0000 ,,, yxxyyx MMMM  moments occurring in the skin 
R
yx

R
xy

R
y

R
x MMMM ,,, forces and moments occurring in 

the stiffeners 
0000 ,,, yxxyyx NNNN  forces occurring in the skin 

R
yx

R
xy

R
y

R
x NNNN ,,,  forces and moments occurring in 

the stiffeners 

N  number of terms in the expansion 
of the Ritz method 

yx PPq ,,  load components 

0q  the value of the applied load 

svq  transverse shell dead load 
component 

prq  maximum permissible load 
(strength); 

00 , yx QQ  
transverse forces in the planes 

zxΟ  and zyΟ , occurring in the 
skin 

R
y

R
x QQ ,  

transverse forces in the planes 
zxΟ  and zyΟ , occurring in the 

stiffeners 
ji rr ,  width of the stiffeners 
WVU ,,  displacement functions 

klyklU Ψ−  unknown numerical parameters 

rx  the distance between the stiffeners 
Α  the work of external forces 

xyγ  shear deformation in the yxΟ  
plane 

1221 ,, χχχ  functions of curvature and torsional
change 

yx ΨΨ ,  
functions of the normal rotation 
angles in the zxΟ  and zyΟ  
planes, respectively 

yx εε .  deformations of elongation along 
the x , y  coordinates of the 

middle surface 
2112 ,μμ  Poisson's ratios 

231312 ,, τττ  shear stresses in the 
32,31,21 ΟΟΟ  planes 

yzxzxy τττ ,,  
shear stresses in the plane yxΟ , 

zxΟ  and zyΟ  

332211 ,, σσσ  normal stresses in the 3,2,1  
orthotropy directions 

yx σσ ,  the normal stresses in the 
directions of axes x , y  

 
 

МЕТОДА АНАЛИЗЕ ЧВРСТОЋЕ ЗА 
ДВОСТРУКО ЗАКРИВЉЕНЕ УКРУЋЕНЕ 

ОРТОТРОПНЕ ШКОЉКЕ ПРЕМА 
РАЗЛИЧИТИМ ТЕОРИЈАМА ЧВРСТОЋЕ 

 
A.A. Семенов 

 
У раду је предложена метода анализе чврстоће 
материјала танкозидних шкољкастих конструкција 
ојачаних елементима за укрућење. Шкољке које се 
разматрају биле су од ортотропних материјала. 
Аутори анализирају применљивост следећих седам 
критеријума чврстоће: критеријум максималног 
напрезања, критеријум Мизес–Хил, критеријум 
Фишер, критеријум Голденблат–Копнов, критеријум 
Лиу–Хуанг–Стаут, критеријум Цаи–Ву и Хофманов 
критеријум. критеријум. Током истраживања раз–
матране су двоструко закривљене плитке шкољке 
квадратне у плану. Коришћен је геометријски 
нелинеарни математички модел деформације 
шкољке, који разматра попречне смицање. Прора–
чуни су засновани на карактеристикама Т-
10/УПЕ22-27 пластике ојачане стакленим влакнима. 
Метода се ослања на израчунавање вредности 
неколико критеријума чврстоће у сваком кораку 
конструкцијског оптерећења и анализу развоја 
подручја која не испуњавају услове чврстоће како се 
оптерећење повећава. 

 


