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INTRODUCTION

Innovative Application of Artificial
Neural Networks for Effective
Rotational Shaft Crack Localization

Rotational shafts are pivotal components in industrial settings and are
responsible for transmitting torque and rotational motion. Despite their
significance, these shafts are susceptible to faults, particularly cracks,
which can adversely affect the system's performance and safety. Hence,
efficient crack detection and diagnosis ensure safety, reliability, and cost-
effectiveness. This research aims to develop an Artificial Neural Network
(ANN) model that can effectively identify cracks occurring at different
depths and locations in rotating shafts, which operate at varying rotational
speeds. Vibration signals were obtained and subjected to preprocessing
using a bandpass filter to isolate the shaft signals from other components.
Subsequently, time-domain statistical features were extracted from the
filtered signals. An optimal feature selection methodology was employed to
rank the extracted features, and the highest-ranking features were chosen
for training the ANN model. The findings of this research indicate that the
developed model achieved a classification accuracy of 94.4%.

Keywords: Artificial Neural Network, Crack Detection, ReliefF, Signal
Processing, Vibration Analysis.

systems has become a matter of growing concern for

Rotating shafts play a critical role as essential compo—
nents in various industries where alternating loads are
encountered, such as power plants, generators, comp—
ressors, aircraft engines, and wind turbines. These shafts
are subjected to continuous rotation and are responsible
for transmitting torque and rotational motion within the
respective machinery. However, despite their vital func—
tion, rotating shafts are prone to various types of failures
throughout their operational lifespan. These failures
include misalignment or unbalance during the insta—
llation process, as well as the development of cracks,
erosion, and wear during regular operation. The occur-
rence of such faults can have detrimental consequences,
leading to diminished performance, equipment failure,
and imposing significant financial burdens for repair or
replacement. Under extreme operating conditions and
subjected to repeated loads, rotating shafts are
susceptible to local plastic deformation, which can give
rise to surface flaws. Over time, these initial flaws have
the potential to propagate and develop into cracks.
When the stress intensity factors at the crack front
exceed the critical stress intensity factor, the crack may
undergo rapid propagation. This phenomenon can
ultimately lead to catastrophic fatigue crack failure,
posing significant risks and potential dangers [1].
Despite their typical ductile nature, they can exhibit
brittleness in fatigue fractures formed by cracks.
Consequently, the early detection of cracks in rotor
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engineers and researchers [2], [3]. Detecting and diag—
nosing shaft cracks in rotor systems is crucial to
preventing catastrophic failures, maintaining equipment
reliability, and protecting personnel safety.

Currently, vibration-based fault detection is consi—
dered a practical and effective approach for diagnosing
mechanical equipment [4]. According to research by
Malla and Panigrahi [S5], vibration-based condition
monitoring has been found to be highly successful in
detecting machine faults or failures, with the capability
of identifying up to 90% of such issues. This is because
each component within a system or device possesses a
specific vibration signature closely associated with the
machine's operating conditions. Rotating machines typi—
cally consist of multiple components, such as shafts,
bearings, pumps, gears, and fans. Any damage or failure
to these components leads to abnormal vibrations com—
pared to normal operational conditions. Complex vibra—
tion data is acquired from rotating machine components
through signal processing techniques, which help
resolve noise elimination, demodulation, and analysis
issues and enhance technology for feature extraction
when analyzing vibration signals from rotating machi—
nery. Features of monitored signals are extracted using
signal processing techniques to eliminate redundant
information and analyze the corresponding patterns in
the time and frequency domains and nonlinear features
[6], [7]. Features play a crucial role in fault detection in
rotating machinery. Statistical features such as mean,
standard deviation, skewness, and kurtosis are utilized
to describe the overall features of the vibration signal,
but they are limited in their ability to detect changes in
the signal.

On the other hand, frequency-domain features,
including energy, power spectral density, and root mean
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square, are derived from the Fourier transform of the
signal and are highly sensitive to changes in the mecha—
nical system, including shifts in natural frequency,
damping, and stiffness, which are often indicative of
damage or failure. Time-domain features, such as the
time signal and its derivatives, and statistical para—
meters, such as mean, variance, and peak-to-peak value,
are useful for the early detection of faults. The choice of
fault diagnosis features depends on the fault type and
the application's specific needs. The application of
appropriate features can significantly enhance the accu—
racy and reliability of fault diagnosis in rotating mac—
hinery. However, it is not possible to identify fault
patterns by directly removing features. Hence, the
utilization of these characteristics in machine learning
and artificial intelligence techniques is necessary to
enable the categorization of faults. In the diagnosis of
rotating equipment, classifiers and statistical learning
approaches have been widely used, such as Artificial
Neural Networks (ANN) [8-11], K-Nearest Neighbor
(k-NN)[12-14], Decision Tree (DT) [15-17], Support
Vector Machine (SVM) [18-21], and other algorithms.
Various studies have been conducted on rotating
shaft fault diagnosis, providing valuable contributions
and insights. Guan et al. [22] proposed two dynamic
model variations to address shaft misalignment. Then,
these models were subjected to both simulation and
experimental evaluations. Bovsunovsky [23] presented a
methodology that employs the principles of linear
fracture mechanics to calculate the relative change in
the compliance of a shaft caused by the presence of a
crack. Huo et al. [24] presented a study that evaluated
the performance and efficiency of crack fault detection
through the utilization of wavelet packet decomposition
(WPD) and empirical mode decomposition (EMD) in
combination with multiscale entropy (MSE) for the
diagnosis of rotating shaft faults. Gradzki et al. [25]
proposed a novel signal-based methodology for detec—
ting cracks in rotors utilizing auto-correlation and power
spectral density functions derived from the vibration
signals acquired at the bearings of the rotating shaft.
Jeon et al. [26] created a noncontact method for iden—
tifying fatigue cracks in rotating steel shafts using air-
coupled transducers. The method's efficacy was eva—
luated through experiments using ultrasonic data on real
fatigue cracks on half-scale and full-scale steel shafts
used in automobile assembly lines subjected to cyclic
loading tests. Azeem et al. [27] employed a method of
order analysis to detect misalignment and shaft cracks.
The time-domain data obtained were transformed into
spectra utilizing a Fast Fourier Transform (FFT), which
was then used to conduct the order analysis in real-time.
Sinou [28] studied the possible connections between
nonlinear vibrations and the occurrences of higher-order
antiresonances and structural modifications resulting
from breathing cracks in rotor systems. In the context of
using Al for fault classification, Jiang et al. [29]
proposed a diagnostic method for faults in rotating
machinery that employs the fusion of multi-sensor
information, where all features are derived from
vibration data in the time domain to form a fusion
vector, and the SVM is utilized for classification.
Rahmoune et al. [30] proposed a predictive control
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strategy for the high-pressure shaft speed of a gas
turbine using ANN to monitor the vibratory behavior of
the rotating machine. Yan et al. [31] presented a new
algorithm for multi-sensor data fusion that utilizes the
K-nearest neighbor classification method to identify im—
balance, misalignment, and rub-impact in rotating
machinery. Umbrajkaar et al. [32] employed a combi—
nation of ANN and SVM for the classification and
assessment of shaft misalignment under varying load
conditions. Zhao et al. [30] presented a method of fault
diagnosis that employs a multi-input convolutional
neural network (MI-CNN) was presented by Zhao et al.
[33] for the classification of shaft misalignment and
cracks in rotor systems. Liu Zhao et al. [34] proposed a
novel method for diagnosing unbalance, misalignment,
and contact-rubbing in rotating shafts based on the use
of a convolutional neural network (CNN), discrete
wavelet transform (DWT), and singular value decom—
position (SVD). Seplveda and Sinha [35] proposed a
smart vibration-based machine learning model (SVML)
to diagnose rotor failures, including misalignment, shaft
bow, looseness, and rubbing. Gangsar et al. [36] pro—
posed a new approach to improve the accuracy of
diagnosing unbalanced faults in rotating machinery
using an SVM in combination with both time and
frequency domains. Lee et al. [37] proposed a strategy
for detecting shaft misalignment defects in rotating
machinery through the use of an SVM for fault
recognition, which was based on the analysis of the
values of the components of the power spectrum in the
frequency domain classified by the principal component
analysis (PCA). Rao [38] utilized a combination of
ANN and wavelet transforms to detect irregularities,
such as open cracks or grooves on a rotating stepped
shaft with multiple discs. Zamorano et al. [39] created a
technique for choosing the mother wavelet in the
wavelet packet transform method to improve the
detection of cracks in rotating elements through SVM.
While examining the existing literature, it becomes
apparent that the predominant focus of prior investi—
gations in this field has centered on fundamental signal
analysis. However, a notable gap contributing to in—
consistent results and diminished accuracy in machine
learning classifiers arises from the direct utilization of
features extracted from signals without an intermediate
preprocessing step. The absence of such preprocessing,
involving techniques like noise reduction, filtering, or
normalization, poses potential risks by introducing noise,
distortions, or inconsistencies in the feature data. This
directly impacts the performance and accuracy of
machine learning classifiers. Thus, it is imperative to
integrate suitable signal preprocessing techniques to mi—
tigate these limitations and enhance the overall effec—
tiveness of classifiers in analyzing and classifying vib—
ration signals. To address these challenges, we advocate
for robust signal preprocessing, specifically employing a
bandpass filter applied to collected data. This critical
preprocessing step significantly contributes to classifier
performance enhancement and is, therefore, a crucial
aspect of our proposed methodology. Furthermore, we
underscore the paramount importance of feature selec—
tion alongside signal preprocessing. Researchers must
diligently identify the optimal feature combination that
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captures and represents pertinent information within
vibration signals, ultimately aiming for optimal results in
terms of classification accuracy and overall performance.

This paper introduces an innovative application of
ANN for detecting cracks in rotating shafts, critical
components in various industries. The developed ANN
model can identify cracks at different depths and loca—
tions, contributing to enhanced equipment reliability,
safety, and cost-effectiveness. The practical applications
include proactive maintenance through early crack de—
tection, leading to improved equipment longevity. The
automated capabilities of the ANN model offer a cost-
effective solution by reducing manual inspection efforts,
saving time, and conserving resources.

In this paper, the development of an ANN model for
the identification of crack depth and locations in rotating
shafts operating at various rotational speeds is presented.
To accomplish this objective, a test rig was designed and
fabricated to provide a suitable platform for experimental
investigations. Cracks of varying depths and locations
were simulated in the shafts using a wire electrical
discharge machine (WEDM). A data acquisition system
was developed by integrating a micro-electromechanical
system (MEMS) with data acquisition hardware and
LabVIEW software. To improve the accuracy of the
analysis, Bessel bypass filters were employed to filter the
acquired vibration signals effectively. This filtering
process successfully isolated the shaft vibration signals of
interest, elimi—nating any extraneous signals originating
from other components. Statistical features were derived
from the filtered time-domain signals and subsequently
utilized in the ReliefF feature ranking method. This
method allowed for the identification of the most
informative features. Finally, an Al classification model
based on ANN was developed, incorporating the top-

ranked features for the training of the model.

The remainder of this paper is organized as
follows Section 2 presents a comprehensive overview of
the experimental procedures, encompassing details
regarding the test rig, crack simulation, as well as the
data acquisition system and signal processing
techniques employed. The process of extracting and
selecting relevant features using the ReliefF algorithm is
examined in depth in Section 3. The classification
model employed in this investigation is elaborated upon
in Section 4. In Section 5, the obtained results are
presented and analyzed. Finally, the conclusions drawn
from this study are summarized in Section 6.

2. EXPERIMENTAL STUDY

This section provides details of the experimental test rig
used to detect and diagnose cracks in a rotating shaft,
crack fault simulation, and the data acquisition system,
including hardware and software.

2.1 Test Rig Design

An experimental test setup was specifically designed and
fabricated to evaluate shafts with a diameter of 20 mm
and a length of 500 mm, as illustrated in Figure 1. This
test rig consisted of a 0.75 kW three-phase electric motor,
which was controlled by a Hyundai N700E variable
frequency drive (VFD). In order to minimize
misalignment, a flexible coupling was utilized to estab—
lish a connection between the shaft and the electric motor.
The experimental setup included a rotating disk with
a diameter of 200 mm, a thickness of 35 mm, and a
weight of 8 kg, which served as the load attached to the
shaft. To ensure the secure placement of the accel—
erometer, the top edge of the bearing housing was
machined, drilled, and threaded. An ADXL335 three-
axis accelerometer [40] was then mounted on the top
edge of the bearing housing using two M3 bolts,
guaranteeing its stability throughout the test operation.

2.2 Fault Simulation

This research encompassed the examination of an intact
shaft (Healthy) in addition to nine shafts exhibiting
cracks at different depths and locations, as presented in
Table 1. These shafts were made of C45 carbon steel
and measured 500 mm in length and 20 mm in diameter.
The cracks were artificially simulated using a wire
electrical discharge machine (WEDM) with a wire
diameter of 0.25 mm and a cutting edge positioned at a
90-degree angle to the shaft's axis. Cracks were created
at depths of 2 mm, 5 mm, and 8 mm, positioned at
distances of 90 mm, 270 mm, and 410 mm from the
edge of the shaft, respectively. Table 1 provides a
comprehensive list of cases, while Figure 2-A visually
depicts the shafts with simulated cracks. Additionally,
Figure 2-B presents a side view showcasing the depths
of the simulated cracks.

The case name for each experimental scenario was
represented as a ratio of the crack depth to the crack loca—
tion measured from the driven edge of the shaft. It is worth
noting that the (Healthy) condition of the shaft, which was
free of any cracks, was included as a reference point.

Figure 1. Experimental Test Rig
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Table 1. Experimental cases.

Distance from Distance from
Case Name Shaft Edge Depth Sensor
Healthy - - -
2/90 90 mm 14 mm
2/270 270 mm 2 mm 194 mm
2/410 410 mm 334 mm
5/90 90 mm 14 mm
5/270 270 mm 5 mm 194 mm
5/410 410 mm 334 mm
8/90 90 mm 14 mm
8/270 270 mm 8 mm 194 mm
8/410 410 mm 334 mm

Figure 2. (a) Crack Simulations on Shafts (b) Side View

2.3 Data Acquisition System and Signal
Preprocessing

To collect vibration data, the accelerometer was con—
nected to a 16-bit NI USB-6215 data acquisition device
(DAQ), as depicted in Figure 3. The LabVIEW software
platform [41] was employed for signal processing and
feature extraction.

The block diagram in Figure 4 illustrates the signal
flow, starting with the DAQ Assistant and followed by
manual calibration for the accelerometer. The Lab-—
VIEW Filter VI offers five different infinite impulse
response (IIR) filter topologies: Butterworth, Chebys—

Figure 3. Data Acquisition Device
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hev, Inverse Chebyshev, Elliptic, and Bessel. To
determine the optimal topology, a comparison program
was developed in LabVIEW, which ranked the Bessel
topology as the most suitable choice with an 8th order.
A Bessel bandpass filter was then applied to the
vibration signal to capture the shaft frequency while
suppressing irrelevant frequencies originating from
other assembled components. Figure 5 illustrates the
effects of filtering on the vibration signal in both the
time and frequency domains, and the specific low cut-
off and high cut-off frequencies corresponding to each
rotational speed are provided in Table 2.

For every experimental case, time-domain signals
were captured with a sampling frequency of 1600 Hz at
three distinct rotational speeds: 1200, 1800, and 2400
rpm. In total, 800 samples were acquired at each speed
for every case. From each filtered signal, five features
were extracted from each axis, yielding a dataset with
dimensions of 24000 X 15.

Table 2. Cut-off frequencies.

Rotation Fr:}ﬁﬁlc Low Cut-off | High Cut-off
Speed (rpm) (qHz) Y Frequency (Hz) |Frequency (Hz)
1200 20 19 21
1800 30 29 31
2400 40 39 41

3. FEATURE EXTRACTION AND SELECTION

In this research, a total of fifteen features were extracted
from the filtered vibration signals obtained from each
axis of the accelerometer. These features encompassed
five statistical measures: Root Mean Square (RMS),
Standard Deviation, Kurtosis, Skewness, and Crest
Factor. The following provides a summary of these
features along with their corresponding equations:

e Root Mean Square (RMS): is a statistical measure
used to characterize the magnitude of a set of numeric
values, calculated by taking the square of each value of
the signal, finding the average of those squares, and
then taking the square root of the average. RMS is
commonly used to define a signal or waveform's overall
power or energy.

1Y,
RMS = | = x; (1)
Ni:l
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Figure 5. Filtering Effect on Vibration Signal at 1800 rpm

e Standard Deviation (STD) is a measure of the
dispersion or spread of a distribution. It is calculated by
taking the square root of the variance of a set of
numbers. Standard deviation measures the amount of
variation or dispersion in a data set and helps determine
how close the values are to the mean or average value.

N
STD (o) = %Z(xi— )2 (2)
i=1

e Crest Factor (CF): is a measure of the peak-to-
average ratio of a waveform or signal. It is calculated by
dividing the peak value of a signal by its RMS value.
The crest factor is often used to assess the potential for
audio and other signal distortion.

Crest Factor (CF) = Vimax 3)
RMS

e Kurtosis (K): is a measure of the peakedness of a
distribution. A distribution with a high kurtosis has a
more peaked shape than a normal distribution, while a
distribution with a low kurtosis has a flatter shape.
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e Skewness (Sk): is a measure of the asymmetry of a
distribution. Skewness can be positive, negative, or
zero. A distribution with positive skewness is skewed to
the right, a distribution with negative skewness is
skewed to the left, and a distribution with zero skewness
is symmetrical.

N
N (xi-w)’
Skewness(Sk) = 1:1—3 5)
o

where xi is a signal for i = 1, 2,....N. N is the number of
data points, Vmax is the maximum value of (xi), pt is the
signal value.

3.1 ReliefF Ranking Algorithm
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The presence of a large number of features can pose
challenges in the classification process, making it
difficult to identify appropriate characteristics for
classification purposes. Incorporating an excessive
number of features can lead to increased operational
complexity, reduced processing speed, and compro—
mised classification accuracy, particularly when the
available number of samples is limited [42]. In such
scenarios, the utilization of feature selection or dimen—
sionality reduction methods becomes imperative to
facilitate the classification process. Among these met—
hods, the ReliefF algorithm stands out as one of the
most effective filtering feature selection techniques.

The Relief algorithm was first introduced by Kira in
1992 as a solution for two-class classification problems
[43]. This algorithm assigns weights to features according
to their correlation with the class labels and selects those
features whose weights exceed a specified threshold. The
correlation is measured based on the features' ability to
differentiate between samples in close proximity. The
Relief algorithm has gained popularity due to its simplicity,
efficiency, and satisfactory results. However, a notable
limitation of the Relief algorithm is its capability to handle
only two-class classification problems. To address this
limitation, Kononenko pro—posed the ReliefF algorithm in
1994 [44], which extends the functionality of the Relief
algorithm to handle multiclass classification problems.

In the context of multiclass classification problems,
the ReliefF algorithm adopts a process where a sample
Ri is randomly selected from the training dataset with
class labels represented as C = {ci, c2, .., cl}.
Subsequently, the algorithm identifies the k nearest
neighbors of sample R; that share the same class label
(referred to as near Hits) and assigns them labels H;(c)
(where j = 1, 2, ..., k). Additionally, the algorithm
identifies the k nearest neighbors of Ri that belong to
other classes (known as near Misses), denoted as M;(c)
(where j =1, 2, ..., k). These steps are repeated m times
as part of the algorithm's execution [45]. The assigned
weight of feature A is adjusted as follows:

i i diff (A,R;,H;
W(IH)(A):WI(A)—Z?:l ( mk1 )

(6)

() .
D ceclass(R) L_p(I;:SS(R))Z z(j:l) diff(A,R;, M; (C))}

mk

+

where m is the iteration number, and diff(4, R;, R>)
represents the disparity between samples R; and R, in
feature A. If A is continuous, the difference can be
defined as:

[Ri[AT-R,[A]|

diff(A,R,R,) = 7
(A-R1:R2) max(A) — min(A) M
If A4 is discrete, then the diff can be defined as:
. 0 ; RI[A]FR,[A]
diff (A,R|,R,) = @)
1 ; RI[A]#R,[A]

4. CLASSIFICATION MODEL

Artificial Neural Networks are computer structures ins—
pired by the functioning of neurons in the human brain.
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The first ANN was created by the psychologist Frank
Rosenblatt in 1958. [46]. An ANN is made up of a
network of connected neurons that are stacked in layers.
ANN typically comprises an input layer, an output
layer, and at least one hidden layer. The number of input
and output variables necessary to characterize the
problem and its type determines the number of neurons
in the input and output layers, while the trial-and-error
approach decides the number of hidden layers and
neurons between each layer. As illustrated in Figure 6,
each neuron in a layer (except the input layer) adds the
input value to the corresponding weight to generate a
single threshold value. The single-value threshold is
combined with a bias to obtain a net value (Net).
Finally, an activation function is applied to the net value
to provide an output value. A supervised learning
technique compares the input and output values and
then uses a backpropagation algorithm to train the ANN
model by altering the weights between each neuron in
the various layers [47]. Due to its superior performance,
ANN has been used in many applications, including
pattern identification, fault prediction and classification,
voice recognition, handwritten and printed text
recognition, and detection of heart disease and cancer
detection [48-52].

Bias

W + Met

Activation Dutput
Function

A

Input Weights

Figure 6. Artificial Neural Networks
4.1 Neural Network Mathematical Expression

The mathematical expression of an ANN model entails
a sequential arrangement of interconnected compu—
tational units referred to as neurons, which are struc—
tured in layers. These neurons receive input, undergo
computational operations, and generate an output. The
network's input is represented by x;(n), the hidden layer
output is represented by f, and the neural network's
output is represented by yi(n). The weights connecting
the input layer to the hidden layer and the hidden layer
to the output layer are represented by w; and wy,
respectively. The output vector of the hidden layer can
be calculated using the following equation:

f= Qj[zgzl) (Wijxi (n)+Bj)] , j=1,2,..,D (9)

where B; is the threshold of neurons in the hidden layer,
N is the number of inputs, D represents the number of
neurons in the hidden layer, and Q is the hyperbolic acti—
vation function in the hidden layer. Which is given by:

X —X

€
tanh = X— (10)
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While the time index n has been omitted for simplicity,
the output of the final output layer can be calculated as:

¥im) = QY Wif+B)] , k=12..D  (11)

where By is the threshold for the neuron of the output
layer, and E is the number of neurons in the output
layer. The output of the ANN may then be expressed as:

b (Wi QT (wigki(m)+ B |

Yi(n):Qk[Z(izl) n Bk )] (12)

4.2 Neural Network Model Design

Orange Data Mining Software [53] was utilized in this
research to design the ANN model, whose data pro—
cessing flows are presented in Figure 7. The
development of the ANN model involved an iterative
process of experimentation and parameter tuning, en—
compassing various aspects such as the number of
layers, neurons, solver, and activation function. Initially,
a preliminary version of the ANN model was created
with a single hidden layer and default parameter values.
This initial model was then trained and evaluated to
assess its classification accuracy. Subsequent iterations
involved making several adjustments to enhance the
performance of the ANN model. After multiple itera—
tions, an optimal configuration was determined, which
comprised four hidden layers, with 60, 40, 40, and 40
neurons allocated to each respective layer. Detailed
information regarding the classifier's characteristics can
be found in Table 3.

Table 3. ANN model properties.

INumber of hidden layers 4
INeurons in the input layer 15
INeurons in the first hidden layer 60
INeurons in the second hidden layer 40
INeurons in the third hidden layer 40
INeurons in the fourth hidden layer 40
INeurons in the output layer 10
IActivation function RELU
Solver Adam
Regularization (o) 0.0001
Maximum number of iterations 400

5. RESULTS AND DISCUSSION

This research employed an ANN approach to identify
and diagnose the depth and location of cracks in rotating

Reduced Data —

Data Data
b alla

Data Rank

Data Sampler

shafts operating at three different rotational speeds
(1200, 1800, and 2400 rpm).

The experiment involved the investigation of an intact
shaft alongside nine shafts with cracks at various depths
and locations, as outlined in Table 1. The vibration data
collected from the shafts were filtered and analyzed.
Subsequently, five statistical features were extracted, and
the ReliefF ranking algorithm was employed to designate
the highest-ranked feature from each axis.

The ANN model received a dataset consisting of
2400 samples for each case, resulting in the formation
of a matrix containing 24000 samples across 15 fea—
tures. The data sampler allocated 80% of these samples
for training the ANN model, with the remaining 20%
reserved for testing the model.

The cases were examined under two distinct sce—
narios, denoted as S1 and S2. In Scenario S1, a total of
fifteen features were obtained by extracting five time-
domain features from the filtered vibration data
associated with each accelerometer axis. These fifteen
features were subsequently employed as input variables
for the ANN model. In Scenario S2, the ReliefF ranking
method was implemented on the feature set extracted
from Scenario S1. This approach aimed to reduce the
input feature dimensionality of the ANN model from
fifteen to three. This reduction was accomplished by
selecting the top-ranked features for each accelerometer
axis based on their ReliefF scores.

The application of the ReliefF ranking method in
this research demonstrated that the three highest-ranked
features extracted were the root mean square values of
the X, Y, and Z axes. Furthermore, the findings indi—
cated that the filtering procedure resulted in the mean
value becoming uniformly zero, leading to the RMS and
STD features possessing identical values and, conse—
quently, equivalent rankings. As a result, only the RMS
feature was selected for further analysis. Figure 8
depicts the ranking and selection process of the
extracted features.

The evaluation of a fault diagnosis system's per—
formance can be accomplished by employing various
performance indicators, including Classification Accu—
racy (CA), F1-Score, Precision (P), Recall (R), and
Specificity [54]. These indicators offer a comprehensive
system performance assessment by considering multiple
aspects of the diagnosis process. The calculation of
these performance indicators can be carried out using
the following equations:

cA-—p+In (13)
Tp+Ty +Fp +Fy

Remaining Data — Test Data

Drata Sample— Dl - Evaluation Results v %
- : [ ]
-
g & %’ Test and Score Confusion Matrix
- 3

X

Neural Metwork

Figure 7. Data Processing Flow of ANN Model in Orange Data Mining
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Fl= _ 2 (14)
2Tp +Fp +Fy
Precision = Tp (15)
Tp +Fp
Recall = Tp (16)
Specificity = I 17)
Ty +Fp

Table 4 illustrates the performance metrics of both
S1 and S2 models. Under S1, utilizing all features
extracted from vibration data, the ANN achieved a clas—
sification accuracy of 81.46%, F1 Score of 81.13%,
Precision of 81.11%, Recall of 81.46%, and Specificity
of 97.94%. These metrics collectively reflect the
model's proficiency in accurately categorizing intact and
cracked shaft instances.

Table 4. Performance matrices for both scenarios

Scenario| CA F1

S1 81.46% | 81.13% | 81.11% | 81.46% | 97.94%
S2 92.19% | 92.16% | 92.17% | 92.19% | 99.13%

Precision| Recall |Specificity

Conversely, S2, incorporating the ReliefF algorithm,
showcased substantial performance enhancement. It
demonstrated higher Classification Accuracy (92.19%),
F1 Score (92.16%), Precision (92.17%), Recall (92.19%),
and Specificity (99.13%) compared to S1. The superior
performance of S2, leveraging a more refined feature set,
is evident across all evaluated parameters.

The outcomes underscore the importance of meti—
culous feature selection in optimizing ANN models for
crack detection in rotating shaft applications. Specifically,
the selective feature integration facilitated by the ReliefF
algorithm signifies considerable advancements, empha—
sizing its potential to enhance the dependability and
precision of crack detection systems in rotating machinery.

The performance of ANN in both scenarios is
illustrated through the presentation of a confusion
matrix, as depicted in Figures 9 and 10. The rows and
columns of the matrix correspond to the actual and
predicted instances, respectively. The instances that
have been accurately classified are displayed along the
diagonal of the confusion matrix. It is noteworthy that a
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total of 480 samples were employed for testing each
case, resulting in an aggregate of 4800 samples.

The confusion matrix of the S1 model, as illustrated
in Figure 9 and utilizing an ANN model trained with all
the extracted features, demonstrates relatively good
accuracy in classifying intact shaft (Healthy) from the
cracked shafts, with 342 samples correctly classified.
However, 95 of the samples were misclassified as
2/270. This suggests that the model effectively distin—
guishes intact shafts with a small error rate of 2/270,
where this particular case involves a 2mm crack in the
midspan. Moreover, 68 instances of 2/270 and 23 ins—
tances of 8/270 were erroneously classified as Healthy.

However, challenges arise when classifying cracked
shafts, particularly in discerning between different crack
depths and locations. Notably, the 2/90 case exhibits
significant misclassification rates, with 156 of the
samples classified as 5/270 and 103 of the samples as
8/90. Additionally, 116 instances from the 5/270 cate—
gory were misclassified as 2/90. These findings suggest
limitations in accurately determining specific crack
configurations. The highest accuracy for cracked shafts
is achieved in the 8/410 case, with 98.3% correctly
classified (472 of 480 samples). Consequently, there are
opportunities to improve the model's performance,
which could be addressed through feature selection.

In contrast, the S2 model, as shown in Figure 10,
incorporates the ReliefF feature selection algorithm,
demonstrating improved performance compared to S1.
ReliefF ranks the extracted features, and the top-ranked
features from each axis are selected as input for the
ANN. Results indicate enhanced accuracy in classifying
intact shafts from the cracked shafts, with 397 samples
correctly identified. Notably, the S2 model performs
better in accurately classifying crack depths and loca—
tions than S1. For instance, the correctly classified sam—
ples of the 2/90 were improved from 221 in S1 to 404
samples in S2. This enhancement suggests that the
ReliefF algorithm effectively identifies informative fea—
tures for crack detection. Furthermore, the 8/410 case
again achieves the highest accuracy, with 100%
correctly classified. These results highlight the efficacy
of ReliefF in selecting relevant features, contributing to
improved crack detection in the S2 model.

A comparative analysis between the S1 and S2
models highlights the superior performance of the latter
in terms of overall accuracy and precise classification of
crack depths and locations. The incorporation of the
ReliefF algorithm for feature selection in the S2 model
leads to significant advancements. The S2 model de—
monstrates higher accuracy in classifying both the
healthy and cracked shaft classes. Furthermore, it exhi—
bits improved accuracy in accurately identifying spe—
cific crack configurations, as evidenced by the enhanced
classification accuracy observed in the 2/90 case. These
findings emphasize the effectiveness of the ReliefF
algorithm in selecting relevant features, thereby contri—
buting to enhanced crack detection performance. Con—
sequently, the results suggest that feature selection plays
a crucial role in enhancing the accuracy and robustness
of crack detection models, demanding further investi—
gation and refinement to achieve optimal performance.
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Figure 9. Confusion Matrix of S1
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Figure 10. Confusion Matrix of S2
6. CONCLUSIONS crack depths and locations. This achievement

This study constitutes a noteworthy progression in the
domain of crack detection within rotating shafts,
employing a meticulous evaluation of two artificial
neural network models, S1 and S2. The focal point on
feature selection techniques has yielded pivotal insights
into augmenting the precision and efficacy of crack
detection models.

The outcomes of this inquiry underscore a notable
limitation in S1. While demonstrating commendable
performance in discerning intact shafts, it encountered
impediments in accurately categorizing diverse crack
depths and locations. This limitation accentuates the
imperative for further refining crack detection models to
heighten their efficacy.

Conversely, the integration of ReliefF feature
selection in S2 has manifested as a substantial
enhancement. Notably, S2 surpassed S1 by attaining
superior overall accuracy and refined classification of
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substantiates the effectiveness of ReliefF in discerning
informative features, thereby contributing to the
advancement of crack detection methodologies.

A distinctive facet of this study, which sets it apart
from previous endeavors, is the incorporation of filtered
vibration signals in the analysis. Notably, a substantial
number of earlier studies did not harness the potential of
filtered signals, which our findings suggest can lead to a
considerable improvement in results. This underscores
the importance of incorporating such signal-filtering
methodologies in future investigations, highlighting an
avenue for further refinement.

The scholarly contribution of this study lies in its
illustration of ReliefF's efficacy in refining machine-
learning models for crack detection in rotating shafts,
especially when utilizing filtered vibration signals.
Through tangible enhancements in accuracy and
classification, this research establishes a foundational
framework for prospective investigations.

VOL. 52, No 1, 2024 = 111



Furthermore, the findings underscore the potential
for ongoing exploration and refinement of feature
selection methods, coupled with the integration of
sophisticated machine learning algorithms. The proposal
to explore diverse sensor modalities and employ data
fusion techniques in conjunction with filtered vibration
signals represents an additional avenue for enriching the
comprehensiveness of crack detection assessments.

Fundamentally, this study not only contributes to the
understanding of crack detection in rotating machinery
but also sets a standard for engineers and researchers
seeking to improve proactive maintenance strategies and
operational efficiency. The showcased advancements
create opportunities for subsequent investigations,
laying the foundation for ongoing innovation in the field
of reliability within rotating machinery.

In conclusion, the developed ANN model holds
significant practical implications across industries. Its
application promises enhanced equipment reliability
through proactive maintenance, contributing to
improved safety and optimized performance. The
model's adaptability and automated crack detection
capabilities offer cost-effective solutions by reducing
manual inspection efforts, saving time, and conserving
resources. Ultimately, this research provides a valuable
tool for pre-emptive maintenance, ensuring the
longevity and efficiency of rotating machinery in
diverse industrial contexts.

NOMENCLATURE

A Feature in the ReliefF algorithm

Bj Threshold of neurons in the hidden layer
Bk Threshold of neurons in the output layer

C Set of class labels {cl, c2, ..., cl}

D Number of neurons in the hidden layer

E Number of neurons in the output layer

Fy False negative values

Fp False positive values

Hi(c)  Labels of k nearest neighbors with the same

class label

Mj(c)  Labels of k nearest neighbors with other class
labels

N Number of data points

0 Hyperbolic activation function in the hidden
layer

Ri Randomly selected sample from the training
dataset

RMS  Root mean square

Sk Skewness

Vmax Maximum value of (xi)

diff(A, R1, R2)  Disparity between samples R1 and R2
in feature A

f Hidden layer output

k Number of nearest neighbors

m Iteration number in the ReliefF algorithm

u Signal value

Ty True negative values

Tp True positive values

Wik Weights connecting hidden layer to output
layer

Wy Weights connecting input layer to hidden layer

X; Neural network's input
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Yi

Neural network's output
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NHOBATHUBHA ITPUMEHA BEIITAYKUX
HEYPOHCKHNX MPEXA 3A EOUKACHY
JIOKAJIM3AIIMJY NTPCJIMHA POTALIMOHOT'
BPATHJIA

C.M. Hlakup, A.A. IIadep

Porammona Bpatmima Ccy KJbydHe KOMIIOHEHTE Y
HUHIOYCTPUjCKMM OKpY)XEHhHMa M OIrOBOpDHE Cy 3a
IIPEHOC OOPTHOT MOMEHTa W DPOTALMOHOT KpeTama.
Yrupkoc cBOM 3Ha4ajy, OBE OCOBHHE Cy IOIJIOXKHE
KBapOBHMa, IIOCEOHO HAmpCliMHAMa, KOjeé  MOry
HETaTHMBHO YTHIIATH Ha mepdopmance u 0e30eqHOCT
cucrema. Crora, eUKacHO OTKPHMBAbE M JMjarHOCTHKA
IyKOTHHA OCHUI'YPaBajy CHUTYPHOCT, TIOY3[aHOCT |
eKOHOMUYHOCT. OBO HCTpaXHBamke MMa 3a Wb Ja
pasBuje Mojen BemTauke HeypoHcke Mmpexxe (AHH)
KOjH MOKe e(pHKacCHO N1a HISHTU(HUKYje MyKOTHHE KOje
C€ jaBJbajy Ha Pa3MUUUTHM ITyOMHAMa U HA PA3TUIATHM
JoOKanpjamMa y potupajyhum BpaTmiuMa, Koje pane mpu
paznuuutuM Op3uHama potanuje. CurHaau BuOpauuje
Cy NOOHMjeHU U TMOJABPTHYTH MPETXOAHO] O0paau Ko—
pumhemeM nporycHor ¢uirepa aa OM ce H30J0BaIU
CHUI'HaJIM OCOBUHE O APYTrUX KOMIIOHCHTH. Hakon TOra,
CTaTHCTHYKE KapaKTEepUCTUKE BPEMEHCKOr JOMEHa Cy
u3ABojeHe M3 (QuiTpUpaHux curHana. OnTumanHa
METO/I0JIOTHja 0fadupa KapaKTepucThKa je KopuinheHa
3a paHrHpame M3IBOJCHHX KAPAKTEPHUCTHKA, a Kapak—
TEPUCTUKE HAjBUIIET paHTa cy wn3adpaHe 3a OO0YyKy
monena AHH. Hamasu oBor ucrpaxuBama yKasyjy za je
pa3BUjeHN MOJEN MMOCTUTA0 TAYHOCT Kiacu(puKamuje o
94,4%.
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