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Weightless Neural Network-Based 
Fault Diagnosis in Suspension System 
 
Vehicle suspension systems play a critical role in ensuring passenger 
comfort and safety. Detecting faults in these systems is vital for 
maintaining safety, performance, and cost-effectiveness. Traditional 
inspection methods have limitations, such as visual checks, bounce tests, 
and alignment assessments. This study explores Wilkie, Stonham, and 
Aleksander Recognition Device (WiSARD), a weightless neural network 
(WNN), for suspension fault diagnosis. A WNN model is employed to 
classify suspension system faults using sensor data. The dataset includes 
both normal and faulty conditions to train the model. The study assesses 
WiSARD under various fault conditions, including strut damage, mount 
failure, worn-out components, and low wheel pressure. Comparative 
evaluations demonstrate that the approach outperforms other 
classification techniques, achieving an impressive 95.63% accuracy with a 
rapid 0.05-second computation time for test data. This WNN-based method 
proves superior in detecting suspension faults and holds potential as a 
candidate for real-time vehicle fault diagnosis systems. 

Keywords: Fault diagnosis, Suspension system, Weightless Neural 
Network, Machine learning, classification 

 
 

1. INTRODUCTION  
 

Suspension is a critical component of any car design as 
it plays a vital role in ensuring the safety, comfort, and 
handling of the vehicle [1]. The importance of 
suspension lies in the following key factors: (i) Safety: 
The suspension system ensures safety by keeping the 
wheels in contact with the road, thereby improving grip 
and traction, resulting in reduced chances of accidents 
while braking, accelerating, or turning; (ii) comfort: 
passengers are provided with more comfortable ride by 
absorbing shocks and vibrations from the road without 
which every bump on the road would be felt in the cabin 
leading to a distressing and uncomfortable driving 
experience; (iii) handling: good handling and stability of 
the car requires good suspension which is achieved by 
keeping the car level during turns and preventing 
excessive body roll thus allowing for better control and 
responsiveness; (iv) longevity: well-maintained 
suspension system can also extend the life of other car 
components such as tires and brakes by reducing wear 
and tear resulting in savings on repairs and replacements 
over time. The malfunction of a car suspension system 
can have severe repercussions on its safety and 
functionality [2]. Various indications of suspension 
failure include uneven tire wear, a rough or bumpy ride, 
excessive body roll while turning, and compromised 
handling and responsiveness [3]. 

Neglecting suspension maintenance can result in 
decreased braking, acceleration performance, longer 
stopping distance, and impaired driving control. 

Additionally, worn-out suspension components may 
damage other car parts, such as the tires and wheel 
alignment, exacerbating the issue. Therefore, it is 
crucial to ensure that the suspension system is 
functioning correctly to provide a secure and 
comfortable driving experience. Numerous research 
studies have explored the condition monitoring of semi-
active and active suspension systems [4]. One study 
examines a clustering-based fault detection and 
monitoring method for automobile suspension systems 
that use only accelerator sensors located at four points 
[5]. The method is purely data-driven and capable of 
serving as an online tool without prior knowledge of the 
suspension model or fault features. The method's 
effectiveness is demonstrated through an experiment on 
an automobile suspension benchmark. The proposed 
approach represents a significant improvement over 
existing techniques in terms of simplicity, efficiency, 
and effectiveness in detecting and monitoring faults. 
Another study states the importance of continuous 
monitoring of the suspension system in railway 
vehicles, particularly with the advent of high-speed 
trains [6]. 

It presents a hybrid model approach for predicting 
faulty regimes in the suspension system based on 
vehicle acceleration data, parameter estimation, and a 
supervised machine learning model. The model 
accurately predicted faulty components with an 84.4% 
accuracy rate for both primary and secondary 
suspension systems. Furthermore, a fault detection and 
diagnosis method for automobile suspension systems 
based on mathematical models was carried out in [7]. 
Various techniques have been proposed to estimate 
unknown parameters of these models, including system 
identification and the local linear model tree 
(LOLIMOT) approach. LOLIMOT, which combines 
neural networks and physical models, has been used to 
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generate parity equations for fault detection and 
diagnosis in suspension systems. Researchers use 
parameter estimation and LOLIMOT-generated parity 
equations to detect and diagnose faults in a suspension 
system that proved to be effective in simulated tests. 
Numerous studies have explored the use of machine 
learning and deep learning weighted neural networks for 
fault diagnosis. Li et al. researched a deep learning-
based approach to diagnose faults in a vehicle sus–
pension system using a convolutional neural network 
(CNN). The approach was found to be highly accurate, 
achieving a 95.5% success rate in detecting suspension 
system faults [8].  

In another study, Sun et al. [9] compared the 
performance of machine learning and deep learning 
algorithms in diagnosing faults in suspension systems. 
The study employed support vector machines (SVM), 
K-nearest neighbor (KNN), random forest (RF), CNN, 
and long short-term memory (LSTM) models, with the 
deep learning models exhibiting superior accuracy and 
robustness in fault detection compared to the machine 
learning models. Weightless neural networks, such as 
the Wilkie, Stonham, and Aleksander Recognition 
Device (WiSARD) network, present a unique and 
innovative approach to fault diagnosis as compared to 
conventional weighted neural networks [10]. In contrast 
to weighted networks, weightless networks do not rely 
on complex weight matrices and instead make decisions 
based solely on the number of bits set to 1 in the input 
data. This approach offers several advantages, including 
faster processing times, lower memory requirements, 
and greater robustness to noisy and missing data. 
Moreover, weightless networks have demonstrated high 
accuracy in fault diagnosis tasks, making them a 
promising area of research for future applications. 
Although limited research has been conducted on the 
use of weightless neural networks for fault diagnosis, 
this paper emphasizes their potential usefulness in fault 
detection. This research study focuses on fault diagnosis 
utilizing WNNs, which represents a novel approach to 
this field. Previous studies have only been conducted by 
a limited number of researchers, which highlights the 
potential for further exploration and advancement in this 
area. By employing weightless neural networks, this 
research aims to contribute to the current knowledge in 
fault diagnosis and pave the way for more efficient and 
accurate diagnosis methods in the future.  

Weightless neural networks, also known as neural 
gas networks or growing cell structures, present an 
alternative artificial neural network model that 
distinguishes itself from traditional neural networks in 
terms of operational methodology [11], [12]. WNNs do 
not rely on weights like their counterparts. Instead, 
binary connections are employed, allowing for a more 
efficient and faster learning process [13]. The ability to 
operate without weights makes WNNs useful in scarce 
or constantly changing data scenarios. WNNs are an 
emerging neural technology that differs from 
conventional networks. These networks consist of 
binary neurons and synapses, deviating from the 
conventional artificial neural networks that store 
weights and biases. Instead, WNNs rely on a simple 
activation signal of 1 or 0. This streamlined approach 

reduces complexity and minimizes memory requi–
rements. Moreover, WNNs adopt a different approach 
to pattern recognition and exhibit real-time capacity to 
learn complex patterns. Their utilization spans various 
domains, including image processing, bio-inspired 
computing, and machine learning, where they find 
application in sensory perception, decision-making, and 
control. By eschewing the use of weights, WNNs 
facilitate the learning of relationships between inputs 
and outputs. The conceptual model of WNNs 
encompasses one or more layers of processing, with 
each cell fulfilling a specific function, such as 
clustering. These cells are arranged in an interconnected 
manner, ensuring efficient processing of input data.  

Training WNNs involves a different approach 
compared to traditional neural networks. WNNs focus 
on the activation of concepts rather than the activation 
of individual neurons [14]. This means that instead of 
adjusting the weights of connections between neurons 
during training, the weights of concepts and their 
associations are adjusted. The training process entails 
presenting the network with input patterns and using a 
signal to modify the weights of the activated concepts. 
One notable advantage of weightless neural networks is 
their ability to learn from a few examples, making them 
particularly suitable for tasks such as classification and 
recognition. Despite their usefulness, weightless neural 
networks are an emerging technology that requires 
further research and development. The learning algo–
rithms employed in weightless neural networks are de–
signed to simulate the behavior of biological neurons 
and enable them to recognize patterns like the human 
brain. These networks find applications in scenarios 
where traditional neural networks may not be suitable, 
such as situations with highly variable input data or sig–
nificant noise in the data. The learning algorithms used 
in weightless neural networks typically rely on exam–
ples and can be trained to recognize complex patterns 
by exposing them to a large dataset. Overall, WNNs 
present an interesting and promising approach to sol–
ving complex problems in various fields, including arti–
ficial intelligence, machine learning, and data analysis.  

However, as with any evolving technology, there are 
challenges and future directions that need to be 
considered. WNNs have the potential for diverse 
applications in the fields of machine learning and 
artificial intelligence. These networks can be utilized in 
pattern recognition tasks, including image classification, 
speech recognition, and natural language processing. 
They also offer solutions for prediction, forecasting, and 
decision-making problems. 

WiSARD (Wilkie, Stonham, Aleksander Recog–
nition Device) weightless neural networks are a type of 
neural network model that uses a binary pattern and 
logical rules to perform pattern recognition tasks, rather 
than numerical weights like traditional neural networks. 
WiSARD networks store neuron functions using lookup 
tables, allowing for a simple implementation and fast 
learning phase [15]. The WiSARD classifier is a fast 
algorithm that requires simple logical operations that are 
highly memory efficient since it only stores binary 
values in random access memory (RAM) cells. Overall, 
the WiSARD is a useful algorithm in the field of pattern 
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recognition due to its speed and efficiency. The 
networks were originally designed for pattern recog–
nition in image processing; however, they have been 
adapted for use in other areas of machine learning [16]. 

In one of the studies, researchers explored the 
capabilities of WiSARD, a weightless neural network 
that stores neuron functions using lookup tables instead 
of weights [17]. Initially intended for pattern recog–
nition in image processing, the researchers introduced a 
new machine learning method called the WiSARD 
classifier, which transforms multivariable data into 
binary patterns for WiSARD input. The research paper's 
authors conducted a comprehensive experiment to 
assess the classification potential of WiSARD. They 
included the WiSARD classifier and eight other mac–
hine learning methods in the experiment and evaluated 
their performance across seventy classification tasks. 
Statistical analysis, based on nonparametric tests, was 
used to compare the effectiveness of the WiSARD clas–
sifier with other established machine learning libraries. 
The study found that the WiSARD classifier performed 
comparably well in classification tasks. The present 
study utilizes the WiSARD classifier, which offers mul–
tiple advantages compared to conventional neural net–
works [18]. The absence of weight updation, elimi–
nation of model training, higher scalability, robustness, 
and low memory requirements are some takeaways of 
the WiSARD classifier. The following findings were 
inferred from the literature discussed above. 
• The application of data-driven methods in the fault 

diagnosis domain is still in the primary stages of 
development. 

• Studies carried out in suspension fault diagnosis 
were oriented towards detecting and identifying a 
single component like a ball joint, spring, or damper. 

• Vibration-based measurement techniques were 
utilized widely among all measurement techniques 
for fault diagnosis. 

• Suspension components like strut mount and lower 
arm bush faults were not explored. 

• In collaboration with vibration measurements, mac–
hine learning techniques proved to be effective in 
classifying various faults in numerous applications. 

• Studies involving the diagnosis of multiple fault 
scenarios in suspension systems were limited. 

 
1.1 Contribution of Study 

1. A quarter-car model-like replication with a Mc–
Pherson suspension system was fabricated for the pre–
sent study to simulate the real-time working conditions 
of passenger cars. 
2. A total of eight different suspension conditions, 
namely, low wheel pressure (LWP), externally damaged 
strut (STED), tie rod ball joint worn out (TRBJ), worn 
out strut (STWO), lower arm bush worn off (LABW), 
lower arm ball joint worn out (LABJ), strut mount fault 
(STMF) and good condition were considered in the study. 
3. A piezoelectric accelerometer was used to collect the 
vibration signals for every condition of the suspension 
system. 

4. Statistical features were extracted from the collected 
vibration signals while the J48 algorithm was used to 
select the most significant features that contribute 
towards classification. 
5. The selected features were categorized into train test 
split ratio of 80%-20% that were further provided as 
input to the WiSARD classifier. Additionally, various 
hyperparameters of the WiSARD classifier were tuned 
to derive an optimal value that achieved maximum 
classification accuracy. 

1.2 Novelty: 

1. The paper specifically uses the WiSARD Weightless 
Neural Network for fault diagnosis, which does not 
require any weight updates and has been gaining 
popularity among weightless neural networks. 
2. Eight test conditions of the suspension system were 
diagnosed accurately using the WiSARD classifier. 
3. Several hyperparameters of the WiSARD classifier, 
such as bit number, bleach configuration, bleach flag, 
bleach step, map type, and tic number, were modified to 
determine the most optimal hyperparameters.  
4. Optimal hyperparameters were determined, and the 
classification performance of the WiSARD classifier 
was assessed with various state-of-the-art techniques. 
 
2. EXPERIMENTAL SETUP 
 
The present experimental configuration simulates a 
quarter-car model that replicates the operational 
characteristics of the McPherson suspension system 
utilized in front-wheel drive automobiles. The research 
encompasses data collection using an accelerometer and 
a vibration sensor affixed to the control arm of the 
suspension system through adhesive mounting. The data 
acquisition process for distinct fault conditions 
necessitates the sequential substitution of the flawed 
components of the suspension system. Following data 
acquisition for the impaired states, vibration signals 
emanating from a properly functioning suspension 
system are procured [20]. The following section 
provides a detailed account of the experimental studies 
conducted concerning (a) fabrication of experimental 
setup, (b) faults of the suspension system considered in 
the study, and (c) data acquisition. 

2.1 Fabrication of Experimental Setup 

The setup comprises several components, including a 
frame, motor, wheel, drive shaft, idle roller, and loa–
ding system. The fabricated test setup is shown in 
Figure 1. The suspension system of the Hyundai i10 
was utilized in the fabrication of the test rig used in the 
present study. 

The McPherson suspension system consists of a strut 
(damper in a coil spring), control arm (lower arm), tie 
rod, and knuckle.  A quarter-car  model  test  setup  was 
designed and built to evaluate the condition of the 
suspension system on a uniform surface at a constant 
speed of 70 kmph. 
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Figure 1. Fabricated test setup

The wheel runs over two supporting rollers with bearings 
that maintain constant speed by using the motor power 
(rotation force) through a belt drive and constant velocity 
(CV) joints. This minimizes the unwanted vibrations 
transmitted to the system. The load acting on the 
suspension is also controlled using a hydraulic system 
(jack) to adjust the height of the supporting rollers [21].  

2.2 Faults in the Suspension System 

The suspension system of a vehicle is critical in 
providing a comfortable ride and ensuring the safety and 
stability of the vehicle. Faults in the suspension system 
can lead to various problems that compromise these 
functions. In this research paper, some common faults 
(Figure 2) that occur in suspension systems were 
identified and discussed below [21]. It is essential to 
perform regular maintenance and inspections to identify 
and address these faults early. This practice helps 
prevent further damage to the suspension system, 
thereby ensuring safety and comfort for the occupants.           
(i) Worn or damaged shock absorbers/dampers: These 

components are responsible for dampening the 
shocks and vibrations generated by the road. Worn/ 
damaged shock absorbers can lead to excessive 
bouncing, reduced vehicle stability, and poor 
handling. 

(ii) Broken or worn springs: These springs provide the 
necessary support and cushioning for the vehicle's 
weight. If worn or broken, they can cause the 
vehicle to sag or bottom out, leading to poor ride 
quality and compromised handling. 

(iii) Control arm bush: The control arm bush provides a 
pivot point between the suspension and the vehicle 
chassis. Worn or damaged bush can lead to uneven 
tire wear, poor handling, and reduced stability. 

(iv) Loose or worn ball joints: These joints connect the 
steering knuckle to the control arm and allow the 

suspension to move up and down while steering. 
Loose or worn ball joints can cause noise, uneven 
tire wear, poor handling, and even steering problems. 

 (v) Bent or damaged steering components can cause the 
vehicle to pull to one side, leading to poor handling 
and reduced stability. 

  
3. METHODOLOGY 
 
The detection of faults in the suspension system is critical 
in ensuring the safe and reliable operation of a vehicle. In 
recent years, the use of WiSARD (Wilkie, Stonham, 
Aleksander Recognition Device) weightless neural 
networks has been utilized in fault diagnosis applications. 
This approach is based on the analysis of vibration sig–
nals generated by the suspension system, which are 
processed and classified by the WiSARD (Wilkie, 
Stonham, Aleksander Recongition Device) weightless 
neural networks has been utilized in fault diagnosis 
classifier. Figure 3 shows the proposed methodology. 

In the proposed methodology, the first step involves 
obtaining vibration data from the suspension system 
using an accelerometer sensor. The data is collected 
from the fabricated test rig, which is further 
preprocessed to extract relevant features. 
• Subsequently, descriptive statistical features such 

as mean, mode, range, sum, count, kurtosis, skew–
ness, standard deviation, median, standard error, 
etc., were extracted from the collected signals. 

• Furthermore, feature selection was applied to 
reduce the dimensionality of the feature space by 
selecting the most relevant features for fault 
detection. This process reduces the complexity of 
the WiSARD network, thereby improving the accu–
racy of the classification and reducing the 
computational cost. The J48 decision tree algorithm 
was selected for data extraction. 
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Figure 2. Suspension faults (a) strut mount failure, (b) strut external damage, (c) lower arm bush worn out, (d) lower arm ball 
joint fault, (e) strut worn out, and (f) low tire pressure. 

Figure 3. Proposed methodologies for suspension fault diagnosis 

• The selection of the contributing features, the 
collected dataset, is split into training and test 
datasets. The training data is fed as input to the 
WiSARD classifier for training with the 
corresponding fault labels. During training, the 
network learns to associate the vibration sig–
nals with the corresponding faults. The trained 
WiSARD network is then tested with the test 
data created. The performance of the network 
is evaluated using performance metrics.                      

3.1 Acquisition  

Vibration signals were acquired using a piezoelectric 
accelerometer (NI-PCB 352C03) with a frequency range 

of 0.5–10,000 Hz and sensitivity of 10.26 mV/g, which 
was placed on the control arm of the suspension system 
using an adhesive mounting technique. To collect and 
convert the analog signal values into digital form, a data 
acquisition system (DAQ) was used. The output from 
the accelerometer was fed into the NI9234 DAQ 
through a USB chassis, and the data collection was 
performed using the NI LabVIEW software. To 
simulate different fault scenarios, various faulty 
components in the suspension system were replaced in a 
controlled manner without altering specific parameters 
such as the spring rate or damping coefficient. 

The resulting data was then recorded using the 
sensors and preprocessed to remove any noise or 
outliers. The collected data was transformed into a 
suitable format and split as training and test data.   
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Figure 4. Sample of vibration plots of suspension conditions 

Training data was fed as input to the WNN for the 
classifier training, while test data was supplied to 
evaluate the classifier performance. During the data 
acquisition process, a sampling frequency of 25 kHz 
was used with a sample length of 10,000 steps and 100 
instances of data for no Load (0 psi) condition. Fig 4 
illustrates the vibration plots corresponding to each of 
the eight distinct conditions. The graph is derived from 
good and faulty signals collected across 2000 samples at 
a frequency of 25,000 Hz. The vibration signal exhibits 
distinct variations for each specific fault condition. For 
instance, in the case of good, TRBJF, and LWP 
conditions, the vibration amplitude continuously 
fluctuates throughout the sample. In contrast, for other 
faults, the vibration amplitude rapidly fluctuates, 
reaches saturation, and then exhibits significant 
variations towards the end. Furthermore, each fault 
condition showcases a unique pattern corresponding to 
its specific fault type. These variations and distinctive 
fault patterns empower machine learning algorithms to 
classify faults efficiently using the extracted features.  

 
3.2 Feature Extraction 
 
In this study, each fault condition exhibits a distinct and 
unique pattern oriented to that particular fault. These 
variations and unique fault patterns are instrumental in 
enabling machine learning algorithms to accurately 
classify and differentiate among different faults aided 
by the extracted features. The study focuses on 
extracting. various statistical features from the 
vibrational signals, including mean, median, mode, 
standard deviation, sample variance, standard error, 
skewness, kurtosis, minimum, maximum, sum, range, 
and count. The collected data is processed and 
organized to enhance readers' understanding of the 
underlying characteristics of vibration signals [24]. 
Subsequently, the statistical information is consolidated, 
and specific features are extracted and stored in a 
comma-separated value (CSV) data file, allowing easy 

accessibility for further analysis. These extracted 
features serve as crucial input for training machine 
learning models, enabling them to detect and identify 
faults within the suspension system automatically. By 
leveraging these techniques, machine learning models 
can effectively learn and recognize the distinct patterns 
associated with different faults, facilitating automated 
fault detection in suspension systems.  
 
3.3 Feature Selection 
 
Feature selection is the process of selecting the most 
relevant features from a larger set of features in a 
dataset to improve the accuracy and interpretability of 
machine learning models by reducing the number of 
irrelevant or redundant features [25]. There are different 
feature selection algorithms like J48, recursive feature 
elimination, and random forest. Among them, J48 is 
considered an important algorithm due to its simple 
design and accurate rule generation. J48 is a well-
known feature selection algorithm that accounts for 
several benefits [26]. Firstly, it employs a decision tree 
method to create a model that depicts the possible 
consequences of different decisions. This tree-like 
structure can be easily interpreted and understood, 
which makes it simpler for researchers to extract 
valuable insights from the model. Secondly, J48 uses a 
greedy approach to pick the most informative features at 
each decision tree node that is effective and can handle 
large datasets with numerous features. Thirdly, J48 has 
been extensively tested and proven to be effective in 
enhancing classification accuracy in various 
applications. Overall, J48 is a reliable and effective 
feature selection algorithm that is widely used by 
researchers and professionals in diverse fields.  

To perform feature selection in the J48 algorithm, the 
first step is to construct a decision tree using all the 
available features. Next, the importance or relevance of 
each feature is determined by computing the information 
gain or gain ratio obtained from the decision tree. This 
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measure indicates the extent to which each feature 
contributes to reducing the entropy or disorder of the 
data. Based on these scores, the algorithm sorts the 
features in descending order of importance and selects the 
top ‘k’ features. The value of ‘k’ can be chosen based on 
a predefined threshold cross-validation. Finally, the J48 
algorithm constructs a new decision tree using only the 
selected features and evaluates its performance on a test 
set. The benefit of feature selection is that it improves the 
efficiency and accuracy of the classification task by 
focusing only on the most informative attributes and 
avoiding irrelevant features that may decrease 
performance. However, selecting features can lead to a 
reduction in interpretability and information loss if 
important features are ignored. Therefore, choosing the 
right set of features is important to balance the accuracy 
and complexity of the model. Fig 5 depicts the decision 
tree generated for fault detection in the suspension 
system. 

 
3.4 Feature Classification using WiSARD 
 
The WiSARD (Wilkie, Stonham, Aleksander Recog–
nition Device) classifier is a machine learning algorithm 
often used for pattern recognition tasks. It is developed 
to overcome the limitations of conventional classifiers, 
such as the perceptron and nearest neighbor contrast to 
other standard classifiers that work on fixed input data. 
WiSARD uses a mapping of the input feature space to a 
set of values random access memory (RAM) cells. Each 
RAM cell signifies a specific input feature attribute. 

The binary values stored in the RAM cells are used 
to decide about the input being classified. The WiSARD 
classifier is a fast algorithm as it only requires simple 
logical operations. It also showcases high memory 
efficiency since only binary values are stored in RAM 
cells. Overall, the WiSARD is a useful algorithm in the 
field of pattern due to its speed and efficiency. The 

basic architecture consists of a set of random weights 
that are used to split the input into partitions. From 
there, the output of each partition is processed and fed 
into the final decision layer that determines the 
classification of the input. The size and number of 
partitions can be adjusted to optimize performance for 
datasets. Overall, the WiSARD architecture is designed 
to be scalable, efficient, and effective for a wide range 
of applications. 

The first stage of the WiSARD classifier procedure 
involves the preprocessing of the input data. This 
crucial step is undertaken to prepare the data for 
subsequent classification operations. During the 
preprocessing stage, the input data is transformed into a 
format that is more suitable for analysis and 
classification purposes. The specific preprocessing 
techniques employed may vary depending on the nature 
of the input data. It may encompass operations such as 
feature scaling and normalization. Normalization 
ensures that all input data is converted into a consistent 
format, while feature scaling guarantees that all features 
have similar ranges. Additionally, feature selection may 
be performed to choose a subset of input features that 
will be utilized for the classification task. Once the 
preprocessing stage is completed, the WiSARD 
classifier commences the classification process, where it 
categorizes the input data into one of several possible 
categories. The following steps take place while the 
WiSARD classifier is working. 
(a) Encoding-Binarization: Encoding-Binarization is a 
widely employed technique in various machine learning 
algorithms, including the WiSARD classifier, that plays 
a crucial role in enhancing the efficiency and accuracy 
of data processing. This technique involves the 
conversion of input data into a binary format wherein 
each feature is represented by a binary digit (0 or 1). By 
simplifying the data in this manner, it becomes easier 
for the algorithm to process and classify it effectively.   

 
Figure 5. J48 decision tree derive
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(b) Creating the address space: Building the WiSARD 
classifier involves a crucial step known as creating the 
address space. This address space is essentially a matrix 
consisting of binary values that serve to represent the 
locations of the WiSARD memory cells. The size of this 
address space is determined by two factors: the number of 
features present in the dataset and the number of bits 
allocated to each feature. Corresponding to each memory 
cell within the WiSARD network, there exists a unique 
address within the address space. To construct the address 
space, the WiSARD classifier identifies all distinct fea-
tures within the dataset and assigns each feature a distinct 
binary code. The designated code then becomes the 
feature address within the address space. The resulting 
binary matrix is subsequently utilized to ascertain which 
memory cells will be activated in response to a given 
input. An advantageous aspect of this process is that the 
creation of the address space is automated, facilitating the 
effective training and usage of the WiSARD classifier. 
The address space will perform two major operations, 
namely, random subspace projection and discriminative 
learning, before predicting the final outputs.  
(c) Predictions: It plays a pivotal role in the WiSARD 
classifier, constituting an indispensable component of the 
model. Once the training process is completed using the 
input data, the WiSARD classifier adapts across the 
acquired patterns to generate predictions for novel and 
previously unseen data. This classifier selectively iden–
tifies the output neuron exhibiting the highest level of 
activity as the corresponding class. This distinctive app-
roach contributes significantly to the classifier's ability to 
produce precise predictions even when the input data is 
characterized by noise or incompleteness. Notably, the 
WiSARD classifier also possesses the capacity to address 
multiclass classification problems encompassing multiple 
output classes. Consequently, the WiSARD classifier 
emerges as a formidable tool capa–ble of delivering 
accurate and robust predictions, the–reby proving its 
efficacy across a diverse range of machine-learning tasks. 
The major tasks performed through the WiSARD 
classifier are presented as follows. 
(d) Classification Process: The classification process is 
considered the fundamental core of any machine 
learning algorithm that involves the crucial task of 
categorizing input data into various possible classes or 
categories. Specifically, the WiSARD Classifier utilizes 
a distinctive approach wherein the classification process 
relies on a set of randomly generated patterns referred to 
as "discriminators." These discriminators are systema–
tically compared against the input data to identify the 
discriminator that most closely corresponds to the input. 
The WiSARD classifier successfully assigns the input to 
its respective class by identifying the best matching 
discriminator. This iterative process is repeated for each 
input data point until all the data points have been 
effectively classified. Due to its ability to handle 
substantial amounts of data rapidly and accurately, the 
WiSARD classifier emerges as a powerful tool for 
diverse tasks such as recognition and speech processing.  
(e) Decision Rules: The WiSARD Classifier is an 
effective classification method that utilizes decision 
rules to classify input data. These decision rules are 
generated through a learning process where the 

classifier is trained on a labeled dataset. Each decision 
rule is represented as a string that corresponds to a 
specific classification. During the classification process, 
the classifier applies these decision rules to the input 
data concurrently, and the class with the greatest 
number of active rules is chosen as the final classi–
fication. The utilization of decision rules in the 
WiSARD classifier offers a swift and efficient approach 
to classification. The classifier compares the input data 
to binary values instead of performing intricate com–
putations on the data to perform classification. Conse–
quently, the WiSARD classifier's reliance on decision 
rules makes it particularly well-suited for tasks 
involving high-dimensional data or large datasets 
 
4. HYPERPARAMETERS IN WISARD  
 
Hyperparameters are predefined settings that resear–
chers employ to govern the behavior and performance 
of machine learning algorithms. Hyperparameters play 
an instrumental role in improving the overall model 
performance, generalization ability, and training time. 
Choosing suitable values for hyperparameters is critical 
as it greatly influences the model's capacity to learn 
from the available data [26]. The adjustment of hyper–
parameters enables fine-tuning of the classifier, resul–
ting in improved performance. By identifying optimal 
values for hyperparameters, such as the number of 
RAMs or discrimination threshold, the classifier can 
enhance its accuracy, precision, and recall. Through 
modifications in hyperparameters, the classifier can 
adapt and acquire specific patterns inherent to the given 
dataset, ultimately leading to enhanced performance. 
Additionally, hyperparameters play a crucial role in 
preventing the classifier from either overfitting or 
underfitting the data, thus ensuring optimal model 
training [27]. WiSARD classifier performance can be 
assessed through the variation in hyperparameters, 
including bit number, bleach confidence, bleach flag, 
map type, and tic number. 
 
5. RESULTS AND DISCUSSIONS  
 
The current study aims to evaluate the effectiveness of 
the proposed WNN model (WiSARD) in detecting fa–
ults within a suspension system. The evaluation was 
conducted under eight distinct test conditions, as outlined 
in the provided data. The performance of the WiSARD 
network was assessed through the varying hyperpa–
rameters, including bit number, bleach confidence, bleach 
flag, map type, and tic number. The primary objective of 
this study is to train the model to attain the highest 
possible accuracy in fault detection within suspension 
systems. The experiments' results demonstrate the 
proposed solution's efficacy and po–tential application for 
real-time scenarios. The overall dataset was split into 
training and test sets with a split ratio of 80%-20%. The 
validation was performed using the training set that 
underwent a ten-fold cross-validation.  
 
5.1 Impact of Changing ‘Bit Number’ 
 
This parameter determines the number of RAMs used in 
the classifier. Increasing the number of RAMs can 
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enhance the model's capacity to learn complex patterns; 
however, it may also increase computational requi–
rements. Table 1 presents a detailed analysis of the 
effects of varying the 'bit number' on various classi–
fication statistics. The results obtained in Table 1 
signify that the value of test accuracy varies with chan–
ging bit number. However, the highest classification 
accuracy of 95.63% was obtained for 32-bit numbers. 
Thus, the value of the bit number 32 was selected as the 
optimal value that was fixed and passed on to the next 
set of hyperparameter experimentation. 
Table 1. Performance of WiSARD classifier by varying bit 
number 

Bit 
number 

Training Set 
Accuracy (%) 

Cross Validation 
Accuracy (%) 

Test Set 
Accuracy (%) 

4 97.81 90.37 91.25 
8 99.98 92.87 93.75 

16 100.00 93.75 94.37 
32 100.00 93.37 95.63 

 
5.2 Impact of Changing ‘Bleach Confidence’ 
 
Bleaching is an effective technique employed in the 
WiSARD classifier to mitigate the issue of overfitting. 
This approach involves randomly resetting a specific 
fraction of RAMs during the training process. The 
bleaching factor determines the extent to which the 
bleaching process is applied. Table 2 comprehensively 
examines the impact of altering the 'bleach confidence' 
on diverse classification statistics. The obtained results 
in Table 2 indicate that a bleach confidence value of 
0.95 exhibited exceptional performance, leading to mi–
nimal errors. Based on these findings, a bleach 
confidence of 0.95 is highly effective in achieving 
accurate and reliable classification outcomes. 
Table 2. Performance of WISARD classifier by varying 
bleach confidence 

Bleach 
confidence 

Training Set 
Accuracy (%) 

Cross 
Validation 

Accuracy (%) 

Test Set 
Accuracy 

(%) 
0.60 100.00 93.13 95.63 
0.70 100.00 94.00 93.13 
0.80 100.00 93.25 94.37 
0.90 100.00 92.63 95.62 
0.95 100.00 94.25 96.25 

 
5.3 Impact of Changing ‘Bleach Flag’ 
 
This hyperparameter involves randomly resetting a 
fraction of RAMs to reduce overfitting. The bleach flag, 
when set to "True" or "1," indicates that bleaching is 
enabled and will be applied during training. Conversely, 
when set to "False" or "0," it signifies that bleaching is 
disabled, and RAMs will not be reset during training. 
The bleach flag provides flexibility to selectively turn 
the bleaching process on or off based on the specific 
requirements or characteristics of the problem being 
addressed. Table 3 shows the impact of changing the 
bleach flag parameter. The obtained results indicate that 
a bleach flag with FALSE achieved the maximum test 
accuracy of 94.38%.  

Table 3. Performance of WISARD classifier by varying 
bleach flag 

Bleach 
flag 

Training Set 
Accuracy (%) 

Cross Validation 
Accuracy (%) 

Test Set 
Accuracy (%) 

TRUE 54.21 37.25 45.00 
FALSE 100.00 93.63 94.38 
 
5.4 Impact of Changing ‘Bleach Step’ 
 
The decay rate of active bits during the bleaching 
process is controlled by the parameter known as the 
'bleach step'. A higher value assigned to the 'bleach step' 
results in a faster decay and a more rapid reduction in 
bit activity. The effects of altering the 'bleach step' 
parameter on various classification statistics have been 
thoroughly examined and documented in Table 4. This 
analysis provides valuable insights into the relationship 
between the 'bleach step' and the performance of the 
classification system. Hence, based on the information 
presented in the table, the selection made was a 
bleaching step with a value of 2. 
Table 4. Performance of WISARD classifier by varying 
bleach step 

Bleach step Training Set 
Accuracy (%) 

Cross Validation 
Accuracy (%) 

Test Set 
Accuracy 

(%) 
1 99.84 93.25 95.00 
2 100.00 93.13 95.24 
5 100.00 93.50 94.17 
10 100.00 93.00 94.37 

 
5.5 Impact of ‘Map Type’  
 
The hyperparameter 'map type' plays a pivotal role in 
determining the mapping scheme employed within the 
WiSARD classifier. This parameter essentially governs 
the allocation of input features to distinct RAM con–
tained within the classifier. The 'map type' hyper–
parameter encompasses a range of choices for struc–
turing the input data, including one-hot encoding and 
binary encoding. The judicious selection of an app–
ropriate 'map type' enables researchers to enhance the 
classifier efficacy in accurately capturing and proces–
sing information derived from the input features. Table 
5 demonstrates a substantial variance in accuracy when 
employing the RANDOM map-type hyperparameter. 
The maximum test accuracy of 94.38% was obtained 
with the RANDOM map type.  
Table 5. Performance of WISARD classifier by varying map 
type 

Map type Training Set 
Accuracy (%) 

Cross 
Validation 

Accuracy (%) 

Test Set 
Accuracy 

(%) 
RANDOM 100.00 92.75 94.38 
LINEAR 99.84 78.25 72.50 
 
5.6 Impact of ‘Tic Number’  
 
The 'tic number' parameter controls the frequency at 
which the classifier processes each training instance 
during the training process. To evaluate its effect, 
different values of 'tic number' (1, 10, 20, 50, 100, and 
256) were tested. Table 6 presents a detailed analysis of 
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the impact of adjusting the 'tic number' parameter on 
different classification statistics. The results, as pre–
sented in Table 6, infer that when each training instance 
was processed 256 times, the classifier performed 
exceptionally well with an accuracy of 95.00%.  
Table 6. Performance of WISARD classifier by varying tic 
number 

Tic number Training Set 
Accuracy (%) 

Cross Validation 
Accuracy (%) 

Test Set 
Accuracy (%)

1 13.28 13.13 12.50 
10 91.09 77.75 76.87 
20 95.78 83.38 80.62 
50 99.53 90.75 93.75 

100 99.53 92.50 93.13 
256 100.00 93.88 95.00 

5.7 Optimal Hyperparameter Selection 

Table 7 presents the optimal hyperparameter selection 
based on the experiments carried out in the afore–
mentioned sections. The model performance with the 
optimal hyperparameter settings was evaluated with the 
aid of the confusion matrix represented in Fig 6.  
Table 7. Optimal hyperparameters for the WIZARD 
classifier 

Hyperparameter Configuration 
Bits 32 
Bleach Confidence 0.95 
Bleach Flag FALSE 
Bleach Step 2 
Map Type RANDOM 
Tic Number 256 

A confusion matrix is a table used to evaluate the 
performance of a classification algorithm. The matrix 
summarizes the predictions made by the algorithm on a 
set of test data, comparing the predicted labels with the 
true labels [28]. The matrix represents a multiclass 
classification that separates faulty and non-faulty sus–
pension systems, respectively [29]. According to the 
matrix in Fig 6, the model demonstrated a high level of 
accuracy in classifying instances by correctly 
identifying 153 out of 160 instances. However, the 
model also mis–classified 7 instances, indicating some 
errors in its classi–fication process. While the overall 
performance appears to be relatively good, the 
misclassifications suggest that further analysis and fine-
tuning may be necessary to improve the model's 
accuracy and minimize false posi–tives or negatives. Fig 

6 illustrates the overall perfor–mance of the model. 
Notably, the model exhibited a re–markably short 
testing time of just 0.05 seconds, representing a 
potential applicability in real-time fault diagnosis 
systems. The study emphasized the significance of 
employing the WiSARD classifier with 32 bits and 256 
tics, as this configuration led to accurate classi–fication. 
Moreover, the study successfully demonstrated the 
effectiveness of the proposed fault diagnosis method 
that utilizes the WiSARD classifier.   

Table 8 provides a comprehensive overview of the 
detailed accuracy measures for eight distinct classes. 
The depicted metrics include TP (True Positive Rate), 
FP (False Positive Rate), Precision, Recall, F-measures, 
MCC (Matthews Correlation Coefficient), ROC Area 
(Receiver Operating Characteristic Area), and PRC 
Area (Precision-Recall Curve Area). The representation 
allows for a thorough assessment of the performance of 
each class across these key evaluation criteria. 

 
Figure 6. Confusion matrix of WiSARD classifier with opti–
mal hyperparameters                                            

5.8 Comparison with other studies 

The performance of the proposed WiSARD classifier is 
compared and evaluated with various state-of-the-art 
techniques. Table 9 represents the performance 
comparison that details the classification accuracy 
achieved over the years. Based on the observations, one 
can suggest that the proposed WiSARD classifier 
outclasses the state-of-the-art works. 

Table 8. Performance metrics comparison of WISARD classifier for optimal hyperparameters 

PRC Area ROC Area MCC F1 Score Recall Precision FP Rate TP Rate Class 
1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 GOOD 
0.68 0.95 0.88 0.89 0.85 0.94 0.00 0.85 LABJF 
0.79 0.94 0.88 0.90 0.90 0.90 0.01 0.90 LABWO 
0.91 0.98 0.94 0.95 0.95 0.95 0.00 0.95 STED 
0.96 0.99 1.00 1.00 1.00 1.00 0.00 1.00 STMF 
1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 STWO 
0.96 0.99 0.97 0.97 0.95 1.00 0.00 0.95 TRBJF 
0.94 0.99 0.92 0.93 1.00 0.87 0.02 1.00 WLP 
0.90 0.98 0.95 0.95 0.95 0.95 0.00 0.95 WA 

WA-Weighted average 
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Table 9. Performance comparison with various state-of-the-
art methods 

State-of-the-art 
methods 

Classification 
Accuracy (%) References 

K Nearest Neighbour 89.40 [30] 
Naïve Bayes 90.60 [30] 
Support Vector 
Machines 

92.50 [31] 

BayesNet 94.50 [32] 
Expert system 
production rule 

95.00 [33] 

Fuzzy neural network 95.00 [34] 
WiSARD (Proposed) 95.63  

 
6. CONCLUSION 
 
The current study presents a novel method for 
diagnosing faults in suspension systems through the use 
of WNNs. Suspension systems are crucial for ensuring 
the safety and comfort of passengers in vehicles. 
However, due to wear and tear, the internal components 
of suspension systems may develop faults over time, 
endangering vehicle and passenger safety. Using an 
accelerometer installed in the fabricated test rig, the 
proposed approach uses a WNN model to classify 
suspension system faults based on vibration signals 
obtained for each suspension condition. The collected 
vibration signals were preprocessed, and descriptive 
statistical features were extracted. The commendable 
features that elevate classification performance were 
selected using the J48 decision tree algorithm. The 
selected features were split into training and test 
datasets with which the WiSARD classifier was trained 
and evaluated. Additionally, the study compares the 
performance of the proposed method with that of other 
classification techniques, including weighted neural 
networks.  

The results show that the WNN-based approach 
outperforms these techniques, successfully detecting 
faults in the suspension system. The proposed method 
achieves a classification accuracy of 95.63%. This 
approach has the potential to be used in real-time fault 
diagnosis systems for vehicles, thereby enhancing their 
safety and reliability.  

Eight different conditions, including strut external 
damage, strut mount failure, ball joint wear, control arm 
bush wear, control arm ball joint wear, strut wear, low 
wheel pressure, and good condition, were considered. 
WNN can successfully identify faults even in the 
absence of weights.  

In summary, this research work proposes a novel 
approach for diagnosing faults in suspension systems 
using WNN and demonstrates its superiority over other 
classification techniques, with potential implications for 
improving the safety and performance of suspension 
systems in vehicles. As a future scope, one can do the 
following: (i) the experiments carried out in the study 
were performed under laboratory conditions with a 
quarter-car model. The proposed method and model 
accuracy may differ. As a future work, implementation 
in real-time can be of greater significance. (ii) numerous 
other families of classifiers can be experimented with 
and analyzed along with various hyperparameter tuning. 
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ABBREVIATIONS 

WiSARD Wilkie, Stonham, and Aleksander 
Recognition Device 

WNN Weightless neural network 
LOLIMOT Local linear model tree 
CNN Convolutional neural network 
SVM Support vector machines 
KNN K nearest neighbor 
RF Random forest 
LSTM Long short-term memory 
RAM Random access memory 
LWP Low wheel pressure 
STED Externally damaged strut 
TRBJ Tie rod ball joint worn out 
STWO Worn out strut 
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LABW Lower arm bush has worn off 
LABJ Lower arm ball joint worn out 
STMF Strut mount fault 
CV Constant velocity 
DAQ Data acquisition system 
CSV Comma separated value 
TP True positive 
FP False positive 
MCC Mathews correlation coefficient 
ROC Receiver operating characteristic 
PRC Precision recall curve 

NOMENCLATURE 

mV/g Milli volt per acceleration due to gravity 
Hz Hertz 
kHz Kilo hertz 
kmph Kilometer per hour 
% percentage 

 
 

ДИЈАГНОСТИКА КВАРОВА ЗАСНОВАНА НА 
БЕСТЕЖИНСКОЈ НЕУРОНСКОЈ МРЕЖИ У 

СИСТЕМУ ВЕШАЊА 
 

Р. Шах, С.Н. Венкатиш, П.А. Балаџи,  
В. Сугумаран 

 

Системи вешања возила играју кључну улогу у 
обезбеђивању удобности и безбедности путника. 
Откривање кварова у овим системима је од виталног 
значаја за одржавање безбедности, перформанси и 
исплативости. Традиционалне методе инспекције 
имају ограничења, као што су визуелне провере, 
тестови одбијања и процене поравнања. Ова студија 
истражује Вилки, Стонхам и Александер Уређај за 
Препознавање (ВиСАРД), бестежинску неуронску 
мрежу (ВНН), за дијагнозу квара суспензије. ВНН 
модел се користи за класификацију грешака система 
ослањања користећи податке сензора. Скуп 
података укључује нормалне и неисправне услове за 
обуку модела. Студија процењује ВиСАРД под 
различитим условима квара, укључујући оштећење 
подупирача, квар носача, истрошене компоненте и 
низак притисак на точковима. Компаративне 
процене показују да приступ надмашује друге 
технике класификације, постижући импресивних 
95,63% тачности са брзим временом израчунавања 
тестних података од 0,05 секунди. Ова метода 
заснована на ВНН доказује се супериорном у 
откривању кварова на суспензији и има потенцијал 
као кандидата за системе за дијагностику грешака 
возила у реалном времену. 
 
 

 


