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TIG Welded Stainless Steel 304 
 
Nd: YAG Laser and Tungsten Inert Gas (TIG) welding processes are the 
most promising joining techniques used for stainless steel (SS) alloys due 
to their significant weld characteristics. In this study, the effect of two 
process parameters (weld power and travel speed) on the mechanical 
properties (ultimate tensile strength and microhardness) of the weldment is 
investigated. Two different machine learning techniques, namely Adaptive 
Neuro-Fuzzy Inference System (ANFIS) and Unified Convolutional Neural 
Network (UCNN) are also evaluated for prediction of mechanical 
properties and defect detection through the image processing technique, 
respectively. A correlation has been performed between these two machine 
learning approaches with the experimental values. The training data sets 
are developed for the machine learning techniques, and the obtained 
results of (ANFIS) and (UCNN) models are related to the actual 
experimental values. The output of both developed models (ANFIS & 
UCNN) showed a good agreement with the actual experimental test results. 
The predicted tensile and microhardness values from the (ANFIS) model 
were found to greatly agree with the Peak Signal-to-Noise Ratio (PSNR) 
values from the (UCNN) model. However, owing to the increase in the 
applications of welding processes in industries, the utilization of machine 
learning techniques would be more efficient when compared with the other 
traditional methods that are being adopted.  
 
Keywords: Stainless Steel 304, Nd: YAG Laser Welding, TIG Welding, 
Mechanical Properties, ANFIS, UCNN). 

 
 

1. INTRODUCTION  
 

Austenitic Stainless Steels (ASS) are being widely used 
in various applications (structural materials, valves, 
vessels, etc.) due to their promising and unique charac–
teristics such as enhanced toughness, better temperature 
resistance, and good resistance towards corrosion when 
compared with other grades of steels. Owing to their 
superior material properties, their utilization in different 
applications has become unavoidable recently. How–
ever, the superior properties exhibited in an ASS will be 
affected by any joining process due to the changes in 
grain boundaries/structures, porosity, solidification 
cracking, material loss through vaporization, etc. [1, 2]. 
Therefore, to retain the properties of the alloy, it is 
necessary to select a suitable welding process and opti–
mal process parameters. In general, it is well-known that 
the welding process has been widely used to fabricate 
steel joints for either a similar or dissimilar category. 
Though there are different welding processes available 
for the fabrication of steel joints, laser beam welding 
(LBW) and tungsten inert gas (TIG) welding have been 
found as promising techniques. The LBW has been 
increased in its adoption in the industries due to its high 

energy beam density, which helps in the quick 
fabrication of the joints [3, 4]. Further, this process 
carries some significant properties such as a narrow 
heat-affected zone (HAZ), high depth of penetration, 
and high welding speed [5]. These unique pro–
perties/characteristics of LBW make them important in 
the industrial sectors. Similarly, among the different 
conventional welding processes, the gas tungsten arc 
welding (GTAW) process is much preferred for its good 
weld quality [6]. Research works have reported that the 
process parameters had a significant influence on the 
material property of the weldments [7–11]. Pertaining to 
the concern on the process parameters influence over 
the material property of weldment, the need for the 
optimization of process parameters has increased 
rapidly to meet the industrial requirements. Since the 
welding process involves complex factors such as the 
formation of intermetallic, diffusion of atoms and 
elements, solidification of the melt pool, etc. However, 
these issues can certainly be addressed efficiently with 
the proper utilization of the process parameters in a 
welding process. Nowadays, a variety of non-linear 
methods are being adopted, such as the Taguchi method 
[12–15], the response surface method [16–20], the arti–
ficial neural network (ANN) [21–25], genetic algorithm 
[26, 27], and the particle swarm optimization techniques 
[28–30] have been predominantly used to find the 
relation between the process parameters and their asso–
ciated desired outputs to represent the optimal weldment 
in all aspects. 
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Wide research works are performed with traditional 
optimization techniques such as Taguchi orthogonal 
array and grey relational analysis for predicting the 
optimal process parameters. However, due to the rapid 
growth in manufacturing firms, machine learning 
techniques play a major role due to their reduced time 
factor in determining the suitable working parameter in 
a process. Owing to the above requirements in the 
industries for the prediction of optimal weldment, the 
Adaptive Network-based Fuzzy Inference System 
(ANFIS) and Unified Convolutional Neural Network 
(UCNN) significantly influenced the enhancement of 
accuracy level in the prediction of output values to a 
greater extent. ANFIS is a predictive model that utilizes 
both the neural network and fuzzy logic to map the 
inputs and outputs [31]. The ANFIS model had been 
very predominantly used in the prediction of the tensile 
strength of the weldments, and these ANFIS models had 
been compared with other methods Artificial Neural 
Network (ANN), Taguchi, ANOVA, RSM [32–35]. The 
Convolutional Neural Network (CNN) is being widely 
used as a technique for the prediction of weld quality in 
terms of porosity and defects that occur in a welding 
process [36–40], the CNN uses training data sets for the 
prediction of the defects. However, the weld defects 
were also determined using image processing 
methodology, which implements methods like the Peak 
Signal-to-Noise Ratio (PSNR) and noise filters for the 
required output [41–45]. The Adaptive Median Filters 
(AMF) are also being used for the prediction of defects, 
which proved that the AMF could be used for the better 
determination of the defects in a weld sample [46]. 
Though research works are performed by using other 
different machine learning techniques, with varying 
models that are available strong literature shows that the 
ANFIS and UCNN models had put significant effect on 
the different welding processes. The UCNN approach 
specifically reduces a lot of time factor in detecting the 
weld defects which normally takes more pre-processing 
and post-processing work on a fabricated sample in 
conventional NDT techniques. Thus, comparing these 
two techniques is a major novelty of the current study. 

Nevertheless, no evident research works reported 
comparing the two different machine learning 
techniques (ANFIS and UCNN). However, the adoption 
of these two machine learning techniques will signi–
ficantly impact the optimization approach and other 
conventional techniques that are used for defect detec–
tion. The mass production industries will benefit highly 
benefitted with the adoption of these techniques which 
greatly reduce the time factor that is being spent in the 
current practice. Therefore, in this present study, a 
comparison of the above two different machine learning 
techniques was attempted. We have made a correlation 
between the predicted mechanical properties of the 
weldment through the ANFIS model to that of (PSNR) 
values obtained for the corresponding optical micro–
structures through the image processing technique. The 
theoretical data derived from the ANFIS and UCNN 
models are compared with the experimental values from 
our previous work [47]. Our previous research is to 
achieve and predict a sound joint between two similar 
(SS 304) alloys through two different joining processes 

Nd: YAG Laser Welding and (TIG) welding. The 
training data sets for the (ANFIS) model are developed 
based on the process parameters (power, travel speed, 
and hole depth). The image processing for the defect 
detection of the samples is performed using four 
different median filters (Adaptive Median Filter, 2D 
Hybrid Median Filter, 2D Adaptive Log Gabor, 2D 
Adaptive Anisotropic Bilateral Diffusion Filter). The 
images for the image processing technique were 
procured from our previous study pertaining to the 
(LW) and (TIG) welding of (SS 304) [48].  

 
2. MACHINE LEARNING METHODS 
 
2.1 Artificial Neural Network (ANN) 

 
The Artificial Neural Network (ANN) is a simplified 
version of the Biological Neural Network (BNN). The 
neutrons are an interconnected system of the nervous 
system which consists of (computer input signals, 
transportation of signals at high speed, storage of 
information, perception, automatic training, and 
modeling). In ANN the inputs (X) will be carrying a 
weight percentage (W), which will be assembled in the 
summation unit in the form of [(X1 x W1) + ……  (Xn 
x Wn)]. From the summation unit, the received signals 
will be forwarded to the threshold unit. Here if the 
received signals are greater than the threshold limit that 
will be further passed on to the output, the signals that 
are less than the threshold unit will not be further 
processed to the output. The threshold unit is also 
termed a transfer function denoted (Φ).  The term (Φ) is 
said to be a step function which is also defined as the 
Heaviside function. These transfer functions in the ANN 
can be further classified as a hard-limit transfer 
function, linear transfer function, and sigmoid transfer 
function. The above-mentioned transfer functions are 
very popular and widely adopted in the ANN. Figure 1 
shows the schematic representation of the ANN model, 
which consists of three layers. The input layer is 
composed of the used input parameters, the processed 
input parameters are kept and performed in the hidden 
layer, and the optimized output is determined at the 
third layer. The ANN has superior mapping capabilities 
when compared with the other traditional methods; 
therefore, the ANN is adopted in situations where the 
inclusion of a mathematical model is complex. The very 
first ANN model was adopted for the GTAW process 
[49]. An improved ANN and neural network model 
were performed in the prediction and selection of 
different welding processes [50 - 53]. The ANN can be 
performed with different algorithms depending on the 
applications. The well-familiar algorithms are the back–
propagation, counter-propagation, and genetic algori–
thms. The above-mentioned are very widely adopted 
algorithms pertaining to the ANN model due to their 
well-exhibited characteristics compared to the other 
algorithms that exist. However, the material joining 
process is a factor that highly depends on the process 
parameter irrelevant to the type of process that is being 
adopted. Few research studies have reported how the 
process parameters impact the property of a bonding 
[54]. Based on the ambiance of the weld atmosphere 
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(noise level) and emission of fumes from the process 
performed to improve the joint characteristics in a safe 
manner [55, 56].  The weld quality has been determined 
using various methodologies to have a better bonding 
between the alloys [57], in this work the faults and 
defects are represented in a feasible approach. The ma–
jor difficulty in a laser welding process is the control of 
distortion in the joining process, [58] has reported work 
on the distortion control by adopting the TAGUCHI 
methodology for a flexible approach to usage.  

 
Figure 1. Schematic representation of ANN with two input 
variables [32] 
 

2.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) 
 
Takagi and Sugeno's approach is represented as 
(ANFIS), the model was developed in early 1993 later it 
has obtained a wide scope in various applications for 
their efficiency and accuracy when compared with the 
other existing neural network models. In the (ANFIS) 
model, the input is considered to be a linear distribution, 
for much more accuracy a non-linear distribution can be 
utilized in the developed model, whereas the output is 
always a function of inputs. The inputs are considered to 
be a membership distribution function which is distin–
guished by three linguistic terms. If we consider two 
inputs (I1* and I2*) during the training and model 
development, we will be varying the (d1 and d2 – 
represent the length of the distribution function) for 
obtaining a modified distribution in the given inputs. In 
general, the ANFIS model consists of 6 layers (Layer 1 
– Inputs, Layer 2 – Fuzzification, Layer 3 – Firing 
strength values, Layer 4 – Normalized firing strength 
values, Layer 5 – Outputs calculated as the product of 
normalized firing strength values, and Layer 6 – Overall 
output for the trained and developed model) each layer 
will be having a significant role in deciding the training 
and model development. The schematic representation 
of the ANFIS architecture can be referred to in Figure 2. 
It can be observed from Figure 2, there are notations in 
terms of circles and squares.  

 
Figure 2. ANFIS Architecture [48] 

The squared variables define that further optimization 
can achieve much more enhanced accuracy in the 
trained and developed model. The further optimization 
can be of error minimization algorithms with the assis–
tance of input variables coef–ficients (ai, bi, and ci). If 
we adopt a Genetic Algorithm for further optimization, 
it is termed as ANFIS model. However, the ANFIS mo–
del is the well-defined solution for the theoretical 
prediction of the values. 
 
2.3 Convolutional Neural Network (CNN) 
 
The Convolutional Neural Network (CNN) is said to be 
a special case of the existing Artificial Neural Network 
(ANN). The CNN uses the images as the inputs, 
whereas the ANN uses the inputs as vector values or 
labels. However, the complexity that exists in the ANN 
methods is easily eliminated with the adoption of the 
CNN, such as the sparse between the layers and weight 
sharing are possible in the CNN. The sparse and the 
weight sharing had a promising effect on the reduction 
of the matrix sizes to a greater extent, thus we could be 
able to achieve the desired output with minimal 
connections and layers. Due to these factors, CNN 
played determining roles in image recognition, object 
detection, semantic segmentation, and medical image 
analysis. The images are typically recognized with the 
adoption of filters or kernels. The specific filter or 
kernel can be utilized in the image recognition process, 
for example, a curve in the image with a particular 
orientation of angle can be predicted with the same filter 
or kernel. Generally, the images are said to be in the 
range of 0 to 255 pixels, which is mentioned as an 8-bit 
image. The input images can be of grayscale or RGB 
image, where the RGB image is composed of 3 
channels. The inputs are derived from the pixels along 
the horizontal and the vertical axis as (nx and ny). 
Therefore, in the case of the grayscale images, the input 
will be of (nx x ny), and in the case of RGB images, the 
input will be of (nx x ny x 3). The obtained output 
volume from the CNN is also to be termed a feature 
map or activation map, the size control of the feature or 
activation map is easily controlled when compared with 
the other traditional methods. 
 
2.4 Adaptive Filters (AF) 
 
Generally speaking, the images observed in a process 
will tend to degrade due to various environmental facts, 
equipment errors, etc. Therefore, there is always a large 
scope required in the enhancement of procured or 
observed images from the experiments. In this scenario, 
the Adaptive Filters (AF) play a major role in the 
restoration of the images that are said to be degraded 
due to different factors. These AF will be helpful in the 
enhancement of the observed images in an efficient 
manner. Similarly, the defects in the images are also 
found to be well-identified through these filters to a 
greater extent when compared with other techniques. 
The variations in the degraded images can be validated 
with the Peak Signal-to-Noise Ratio (PSNR) values. 
The validation of the defects through PSNR values is 
highly commendable and recommended in the welding 
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processes; these AF techniques have overcome the 
challenges that exist in the Non-Destructive Testing 
(NDT) methods. Different types of AF techniques are 
available, and depending on the higher PSNR values the 
optimal filter can be selected for the better detection of 
defects in a welding process. This restoration of the 
procured images through the image processing tech–
nique falls in the Unified Convolutional Neural 
Network UCNN model. 
 
3. EXPERIMENTS AND RESULTS 

 
3.1 Experiments 
 
The base metal used in this study is (SS 304) which is 
often used in wide applications due to its superior 
material properties, as discussed in the earlier section. 
The plate dimensions are (300 × 150 × 2) mm, which 
are machined with laser cutting to maintain accurate 
dimensions and have a good surface finish. Two diffe–
rent welding processes are adopted to fabricate joints 
between the metals, namely (the TIG Welding process 
and the Nd: YAG Laser Welding process). The need for 
two different joining processes is to identify the suitable 
process for the (SS 304), owing to their tremendous re–
quirement in different applications. A total of two 
samples are fabricated through the TIG and Nd: YAG 
Laser welding process. In our previous work [47] we 
have related the material properties of the weldments 
with their free vibrational characteristics. In this study, 
the welding power and travel speed are considered key 
process parameters for developing the model using a 
machine-learning approach. 

 
3.2 Experimental results 
 
It is reported and discussed in our previous study [47], 
that the refinement in the grain boundaries will have a 
significant effect on the enhancement of material 
properties (tensile and microhardness). However, this 
refinement in the grain can be achieved with the proper 
selection of the joining process, process parameters, and 
the addition of external powder particles. The obtained 
microstructures from the experiments are depicted in          
Figure 3 (A-D). Figure 3 (A-D) describes the metal–
lurgical aspects of the laser and TIG welded joints. It is 
reported in our previous investigation [47], that refi–
nement of grains is achieved with the addition of 
powders with the base metal, and also the welding 
process used will play a major role in the metallurgical 
happenings across the weld pool region.  
Table 1. Process parameters [47] 

SI. 
No 

Weld 
technique 

used 

Power Travel 
speed 

(mm/s) 

Hole 
depth 
(mm) 

1 Nd: YAG 190 
(W) 

5 3 

2 TIG 180 
(A) 

8 3 

 
Due to these refinements in the grain structures, the 
enhancement in the tensile and microhardness are 
predicted. The ac–hieved test result values of the tensile 

test and the microhardness are reported in Tables 2 and 
3. In the present investigation, we have utilized the 
(tensile and microhardness) values for the (ANFIS) 
model, and the optical microstructures observed in the 
Heat-Affected Zone (HAZ) and Fusion Zone (FZ) are 
considered for the (UCNN) model. 
Table 2. Ultimate tensile strength values [47] 

SI. No Sample UTS (MPa) 
1 Base metal ≈ 501
2 Nd: YAG Laser welded sample ≈ 578 
3 TIG welded sample ≈ 532 

Table 3. Microhardness values [47] 

SI. No Sample Hv 
1 Base metal ≈ 162
2 Nd: YAG Laser welded sample ≈ 271 
3 TIG welded sample ≈ 221 
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Figure 3 (A-D): (A) HAZ – Laser welded joint, (B) HAZ – TIG 
welded joint, (C) FZ – Laser welded joint, and (D) FZ – TIG 
welded joint [47] 
 

4. ANFIS MODELLING AND VALIDATION 
 

4.1 Input variable for ANFIS model 
 
To obtain the ANFIS model a total of 3 input variables 
are used in this work. The study was made with the 
variables (power, travel speed, and depth hole ratio). 
The adopted process parameters in this study are listed 
in Table 1 for two different welding processes. Tables 2 
and 3 reveal that the welding process and the process 
parameters used had a significant effect on the tensile 
properties and microhardness values. From the test 
results, the base metal of (SS 304) showed lower tensile 
and microhardness values when compared with the 
samples fabricated via Nd: YAG Laser welding and TIG 
welding process. Comparing the tensile and micro–
hardness values of Nd: YAG Laser welding and the TIG 
welding process, the laser-welded samples showed pro–
mising improvement in the values of mechanical 
properties. However, relating the process parameters 
with the material properties is always quite complex and 
tedious with the traditional methods that exist. This 
made a large scope for adopting the statistical learning 
model (ANFIS). ANFIS can be predominantly used for 
the development of predictive values. 
 
4.2 ANFIS model development for the prediction of 

mechanical properties 
 
ANFIS model is developed for the samples fabricated 
for the process parameters listed in Table 1. The models 
are developed to predict the tensile and microhardness 
values. The ANFIS model is a unique and productive 
methodology that can be widely used for the theoretical 
prediction of values such as tensile strength and hard–
ness. ANFIS model is part of the artificial neural net–
works (ANN), though different techniques exist in the 
(ANN). ANFIS models were widely utilized in various 
applications due to their flexibility in developing the 
trial model for the theoretical prediction of values. 
Figure 4 shows the schematic representation of the 
ANFIS model developed for the samples fabricated with 
different process parameters. Tables 4 and 6 depict the 
(RMSE & MAPE) values for different membership 
functions, it can be observed in the Tables that the 

Gauss membership functions possess with least error 
values when compared with the other membership 
functions. The achieved experimental test result values 
and the predicted values of tensile and microhardness 
are reported in Tables 5 and 7. In this experimental trial, 
a minimum number of samples was fabricated, there–
fore, to develop the ANFIS model few other process 
parameters are assumed for better validation and mea–
surement of the error. It can be depicted from the Tables 
that the test result values and the predicted values have 
fewer errors for both the joining processes. Therefore, it 
can be considered that the ANFIS model can be adopted 
for the theoretical prediction of tensile and micro–
hardness for different joining processes. 

 
Figure 4. ANFIS model 

For each model, 45 data pairs of actual experimental 
outputs and ANFIS projected outputs were produced 
using the leave-one-out cross-validation approach. The 
formula used for obtaining the predicted ANFIS values 
is given in (1). 

( )PredictedAnfis TS=evalfis UTS,Output ;   (1) 

In a fuzzy set theory, the membership function 
defines the degree of truth which will be positioned 
between 0 and 1. This greatly helps to solve undefined 
problems easily. Generally, the membership functions 
are represented as curve-like shapes where each curve is 
termed with different terminology (trimpf, pimf, 
gbellmf, gaussmf, and gauss2mf). Table 4 refers to the 
RMSE and MAPE (%) values for each membership 
function that is arrived at for the UTS plot performed in 
this work. The least values of RMSE and MAPE (%) 
are found to be a more reliable membership function to 
be adopted for the development of the ANFIS model. 
The least values of RMSE and MAPE (%) in a 
membership function will be providing the mere values 
of UTS when compared with the experimentally arrived 
(UTS) values. The other membership functions also 
provide the predicted values, but they can be neglected 
due to their large variations and errors when compared 
with the actual experimental values. Table 7 shows the 
comparison between the actual microhardness values 
with their predicted values arrived with the ANFIS 
model.  

For each model, 45 data pairs of actual experimental 
outputs and ANFIS projected outputs were produced 
using the leave-one-out cross-validation approach. The 
formula used for obtaining the predicted ANFIS values 
is given in (2): 

( )PredictedAnfisHv=evalfis Hv,Output ;  (2) 
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Table 4. Membership function 

Number of ‘mf’ Type of Membership 
Function RMSE (MPa) MAPE (%) Laser Power Travel Speed UTS 

3 3 2 trimf 52.3782 17.6428 
2 3 3 pimf 45.1246 23.1395 
3 2 2 pimf 52.3743 18.1266 
5 5 3 pimf 42.8417 17.6892 
2 3 2 gbellmf 57.8861 15.1977 
2 2 3 gaussmf 39.0936 13.0598 
5 5 2 gauss2mf 49.7295 15.8533 

Table 5. Comparison of ANFIS predicted UTS vs the Actual Experimental UTS values with Error. 

Laser 
power (W) 

Travel speed 
(mm/s) 

Drill hole 
depth (mm) 

Experimental 
UTS (MPa) 

Predicted Anfis 
UTS (MPa) 

Error % 

180 5 3 540 540.167 0.167 
181 5 4 550 549.515 -0.485 
182 5 5 554 554.413 0.413 
183 5 3 557 557.034 0.034 
184 5 4 560 559.731 -0.269 
185 5 5 563 563.140 0.140 
186 5 3 566 566.098 0.098 
187 5 4 569 568.894 -0.106 
188 5 5 572 571.955 -0.045 
189 5 3 575 575.048 0.048 
190 5 4 578 578.005 0.005 
180 6 5 532 532.616 0.616 
181 6 3 535 534.114 -0.886 
182 6 4 538 537.551 -0.449 
183 6 5 544 545.720 1.720 
184 6 3 558 556.399 -1.601 
185 6 4 563 563.392 0.392 
186 6 5 566 566.569 0.569 
187 6 3 569 568.654 -0.346 
188 6 4 572 571.726 -0.274 
189 6 5 575 575.361 0.361 
190 6 3 578 577.900 -0.100 
180 7 4 532 531.949 -0.051 
181 7 5 535 535.231 0.231 
182 7 3 538 537.555 -0.445 
183 7 4 541 541.349 0.349 
184 7 5 544 544.248 0.248 
185 7 3 547 545.983 -1.017 
186 7 4 551 552.292 1.292 
187 7 5 564 563.264 -0.736 
188 7 3 572 571.807 -0.193 
189 7 4 575 575.584 0.584 
190 7 5 578 577.734 -0.266 
180 8 3 532 531.227 -0.773 
181 8 4 535 536.508 1.508 
182 8 5 538 538.460 0.460 
183 8 3 541 540.211 -0.789 
184 8 4 544 543.246 -0.754 
185 8 5 547 547.957 0.957 
186 8 3 550 550.537 0.537 
187 8 4 553 552.535 -0.465 
188 8 5 556 556.396 0.396 
189 8 3 559 558.382 -0.618 
190 8 4 568 568.431 0.431 

Table 6. Membership function 

Number of ‘mf’ Type of Membership 
Function RMSE (Hv) MAPE (%) Laser Power Travel Speed Microhardness 

3 3 2 trimf 45.5572 18.8656 
2 3 3 pimf 52.6912 15.1258 
3 2 2 pimf 38.0177 14.2795 
5 5 3 pimf 58.8656 16.5684 
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2 3 2 gbellmf 47.0655 17.0167 
2 2 3 gaussmf 37.0395 13.0663 
5 5 2 gauss2mf 54.5618 14.0355 

Table 7. Comparison of ANFIS predicted Microhardness vs the Actual Experimental Microhardness values with Error. 

Laser 
power (W) 

Travel speed 
(mm/s) 

Drill hole depth 
(mm) 

Experimental 
Microhardness (Hv) 

Predicted Anfis 
Microhardness (Hv) 

Error % 

180 5 3 234 234.498 0.498 
181 5 4 256 254.575 -1.425 
182 5 5 259 260.495 1.495 
183 5 3 261 260.443 -0.557 
184 5 4 262 261.789 -0.211 
185 5 5 264 264.206 0.206 
186 5 3 265 265.310 0.310 
187 5 4 267 266.420 -0.580 
188 5 5 268 268.326 0.326 
189 5 3 270 270.016 0.016 
190 5 4 271 270.925 -0.075 
180 6 5 221 220.919 -0.081 
181 6 3 222 222.410 0.410 
182 6 4 224 223.215 -0.785 
183 6 5 232 232.826 0.826 
184 6 3 258 257.146 -0.854 
185 6 4 264 264.934 0.934 
186 6 5 265 264.729 -0.271 
187 6 3 267 266.328 -0.672 
188 6 4 268 268.658 0.658 
189 6 5 270 269.852 -0.148 
190 6 3 271 270.983 -0.017 
180 7 4 221 221.130 0.130 
181 7 5 222 221.616 -0.384 
182 7 3 223 223.169 0.169 
183 7 4 225 225.122 0.122 
184 7 5 226 226.421 0.421 
185 7 3 227 226.113 -0.887 
186 7 4 232 232.762 0.762 
187 7 5 256 255.464 -0.536 
188 7 3 268 267.788 -0.212 
189 7 4 270 270.867 0.867 
190 7 5 271 270.547 -0.453 
180 8 3 221 220.483 -0.517 
181 8 4 222 222.365 0.365 
182 8 5 223 222.175 -0.825 
183 8 3 225 225.594 0.594 
184 8 4 226 225.523 -0.477 
185 8 5 227 227.368 0.368 
186 8 3 228 227.390 -0.610 
187 8 4 230 229.199 -0.801 
188 8 5 231 231.539 0.539 
189 8 3 233 232.108 -0.892 
190 8 4 249 249.507 0.507 

 

 
Figure 5. Surface plot for UTS varying laser power and 
travel speed. 

 
Figure 6. Surface plot for UTS varying laser power and hole 
depth ratio. 
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The Surface plot helps visualize the welding process 
parameters necessary to obtain specific tensile strength 
values. The Surface plot is plotted in Figures 5 and 6. 
Figure 5 illustrates Laser Power on the X-axis, Travel 
Speed on the Y-axis, and the UTS value is plotted on 
the Z-axis, while Figure 6 describes Laser Power on the 
X-axis, Hole Depth Ratio on the Y-axis, and the UTS 
value is plotted on the Z-axis. 

 
5. UCNN MODELLING AND VALIDATION 

 
UCNN tool is a novel method for predicting defects in 
the welded samples through the image processing 
technique. The test trials are performed with the appli–
cation of MATLAB software and the accuracy values 
are listed in table 8. The fabricated joints of laser and 
TIG welding samples are observed in the optical 
microscope for their metallurgical behavior. The optical 
survey is focused on the fusion zone and heat-affected 
zone to understand the solidification of the metal. Fig. 3 
(C & D) depicts the fusion zone metallurgical behavior 
of two different welding processes. Among these two, 
figure 3(C) has been imported into the MATLAB portal 
for the prediction of the defects shown in Figure 7. 
Figure 8 shows the accuracy validation plot obtained 
from the MATLAB portal for the respective image. 

It can be observed in Table 8 that the accuracy value is 
higher for laser-welded when compared with the TIG 
welded sample. A higher accuracy value proves the defect 
in the respective sample is at the lower end when compared 
with the other samples. Figures 9, 10, & 11 represent the 
various plots obtained for the different medians that are 
utilized in the image processing technique and it can be 
depicted from the figures that the accuracy values are 

higher for samples that are low in the mean square error, 
high (PSNR) value, and low in the processing time. 

 
Figure 7. Optical image of FZ laser-welded sample. 

The accuracy values obtained for the samples show a 
good agreement with the experimental test result values. 
Thus, the UCNN tool can be adopted to predict defects in 
the weldment instead of existing traditional methods. 
Table 8. Accuracy validation plot for the optical images 
obtained in different zones. 

SI. No Zones & weld 
process 

Accuracy value from 
MATLAB 

1 FZ – TIG 91.64 
2 HAZ – TIG 92.62 
3 FZ – LW 94.96 
4 HAZ – LW 94.20 

 
Figure 8. Accuracy validation plot. 
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Figure 9. Mean square error plot from MATLAB using 
different algorithms. 

 
Figure 10. PSNR graph plot for different algorithms. 

 
Figure 11. Processing time plots for different algorithms. 

6. EVALUATION OF ANFIS & UCNN MODELS 
 

From the obtained results it is found that the predicted 
mechanical properties (tensile strength and microhar–
dness) of the ANFIS model are in good agreement with 
the experimental results. Similarly, the UCNN tool 
using different adaptive filters resulted in higher 
(PSNR) and Least Mean Square Error (MSE) values for 
the sample fabricated with the laser welding process 
which is also found to be in good understanding with 
the obtained metallographic results. From the inferred 
results of the machine learning techniques, the laser-
welded sample has shown promising results in the 

image processing technique. It is reported in our pre–
vious study [47], that the refinement of grain boundaries 
is achieved with the addition of powders with the base 
metal. Moreover, the (δ-Fe) content also had a signi–
ficant effect on the metallurgical properties of the weld–
ments. However, these enhancements in the metal–
lurgical property of the metal are also due to the joining 
process that we adopt for the fabrication. In this 
situation, laser welding had made a good effect on the 
enhancement of metallurgical characteristics of the 
weldment when compared with the TIG welded sample. 
The improvement in the metallurgical aspects of the 
sample had a promising effect on the PSNR and MSE 
values obtained through the image processing techni–
que. Thus, both machine learning approaches are sound 
enough for the welding process to determine either the 
numerical values or those related to defect prediction. 
 
7. CONCLUSION  

 
The present investigation has demonstrated two dif–
ferent machine learning approaches, one approach 
pertaining to the prediction of tensile and microhardness 
values, and the other one is the prediction of defects 
from the optical images obtained from the samples. This 
study will provide a comparison of the two different 
machine-learning approaches. In addition to this, the 
adoption of these machine learning techniques could be 
more reliable for the better optimization of the process 
parameters. The drawn conclusions from this study are 
reported below. 

1. ANFIS model analysis was performed based on 
the Takagi-Sugeno approach. 

2. The UCNN model was developed with the 
assistance of 4 different filters (Adaptive Median Filter, 
2D Hybrid Median Filter, 2D Adaptive Log Gabor, 2D 
Adaptive Anisotropic Bilateral Diffusion Filter). 

3. The ANFIS model is developed to predict the 
tensile and microhardness values. The UCNN model is 
developed for the prediction of defects in the weldment 
through image processing techniques. 

4. The two different machine learning approaches 
adopted in this study had good agreement with the 
obtained experimental test results. 

5. The predicted values of the ANFIS model for the 
laser-welded sample are well accommodated with the 
(PSNR) value obtained from the image processing 
technique for a similar laser-welded sample. Therefore, 
these two different techniques can be widely utilized for 
the prediction of values or defects.  

6. However, the (PSNR) values are found to be less 
for the TIG welded sample, this variation in the (PSNR) 
values is due to the different welding processes. Thus, 
the optimal selection of the welding process is also 
observed to be highly influential in the metallurgical 
aspects.  

7. It is found that the MSE value is minimal in both 
the developed models, the (2D Adaptive Anisotropic 
Bilateral Diffusion Filter) of the UCNN showed the 
least value among the other filters adopted. 

8. However, the adoption of the ANFIS model has 
had a significant effect on the selection of process 
parameters. Based on this model with the assumed 
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process parameters,  we could be able to identify the 
predicted mechanical property values with ease.   Thus, 
it reduces the difficulty that occurs in the conventional 
optimization of process parameters which requires more 
trial and error methodologies.  

9. The utilization of the UCNN model is reliable in 
predicting the defects in the fabricated sample without 
much complexity, that occur in the conventional NDT 
techniques. The conventional NDT methods require 
more pre and post-processing approach which also takes 
much amount of time. Whereas, with the adoption of the 
UCNN model it is easy to overcome those issues.  

10. Thus, both machine learning techniques can be 
adopted in the welding process. Concerning the 
application requirement, we need to use the appropriate 
machine-learning techniques. 
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Nomenclature 

W Watt 
A Amps 
Hv Microhardness 
Mf Membership function 

Acronyms 

Nd YAG Neodymium Yttrium Aluminum Garnet 
TIG Tungsten Inert Gas Welding 
Hv Microhardness 
ANFIS Artificial Neuro-Fuzzy Interface System 
UCNN Unified Convolutional Neural Network 
ASS Austenitic Stainless Steel 
LBW Laser Beam Welding 
GTAW Gas Tungsten Arc Welding 
HAZ Heat Affected Zone 
ANN Artificial Neural Network 
ANOVA Analysis of Variance 
PSNR Peak Signal to Noise Ratio 
AMF Adaptive Median Filter 
NDT Non-Destructive Testing 
RMSE Root Mean Square Error 
MAPE Mean Absolute Percentage Error 
UTS Ultimate Tensile Strength 
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технике спајања које се користе за легуре нерђајућег 
челика (СС) због њихових значајних карактеристика 
завара. У овој студији истражује се утицај два 
параметра процеса (снага завара и брзина кретања) 
на механичка својства (крајња затезна чврстоћа и 
микротврдоћа) завареног споја. Две различите 
технике машинског учења, а то су Адаптиве Неуро-
Фуззи Инференце Систем (АНФИС) и Унифиед 
Цонволутионал Неурал Нетворк (УЦНН), такође се 
процењују за предвиђање механичких својстава и 
детекцију дефеката кроз технику обраде слике, 
респективно. Извршена је корелација између ова два 
приступа машинском учењу са експерименталним 
вредностима. Скупови података за обуку су разви–

јени за технике машинског учења, а добијени ре–
зултати (АНФИС) и (УЦНН) модела су повезани са 
стварним експерименталним вредностима. Резултат 
оба развијена модела (АНФИС & УЦНН) показао је 
добро слагање са стварним експерименталним 
резултатима теста. Утврђено је да се предвиђене 
вредности затезања и микротврдоће из (АНФИС) 
модела у великој мери слажу са вредностима врш–
ног односа сигнал-шум (ПСНР) из (УЦНН) модела. 
Међутим, захваљујући повећању примене процеса 
заваривања у индустрији, коришћење техника 
машинског учења било би ефикасније у поређењу са 
другим традиционалним методама које се усвајају. 

 

 


