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AI-Enhanced Fault Diagnosis in Rolling 
Element Bearings: A Comprehensive 
Vibration Analysis Approach 
 
This research presents a comprehensive approach for bearing fault 
diagnosis using artificial intelligence (AI), particularly through the 
application of artificial neural networks (ANNs). By integrating these 
networks into vibration analysis, the approach aims to meet the critical 
need for prompt fault detection. The methodology comprises three key 
steps: vibration signal acquisition, feature extraction, and fault 
classification. Experiments were conducted to acquire vibration signals for 
the test bearings on a machinery fault simulator. Six time-domain features 
were extracted using MATLAB, creating a comprehensive dataset for 
training the ANN models with three algorithms: Levenberg-Marquardt 
backpropagation (LMBP), scaled conjugate gradient backpropagation 
(SCGBP), and Bayesian regularization backpropagation (BRBP). The 
BRBP algorithm achieved the highest correct classification rate (97.2%), 
followed by LMBP (90%) and SCGBP (83.6%). To evaluate their efficacy 
in bearing fault classification, these three networks were simulated, 
revealing that BRBP could predict all four classes of bearings with zero 
errors. 
 
Keywords: Artificial Intelligence,Artificial Neural Network, Fault 
Diagnosis, Fault Classification, Rolling Element Bearing, Vibration Signal 
Acquisition, Time-Domain Features. 

  
1. INTRODUCTION  

 
Rolling element bearings (REBs) find extensive 
application in rotating machinery and are regarded as 
vital components. Their reliable operation holds utmost 
significance in diverse sectors, including nuclear power 
plants, chemical industries, aviation industries, and 
various process industries. Timely fault detection in 
rotating machinery can mitigate the potential for 
damage and, consequently, reduce the need for costly 
emergency repairs. During regular operations, both 
mechanical and electrical systems generate distinctive 
signals. Any alteration in a machine's operating 
conditions will result in deviations from this 
characteristic signal. Indeed, variations in the typical 
signal can serve as an indicator of an impending fault 
[1]. Machine Condition Monitoring (CM) is the process 
of continuously monitoring various parameters, which 
can offer some insights into the condition of the 
machine during its operation, including factors like 
vibration and temperature. Modern condition 
monitoring systems typically consist of data acquisition 
systems with sensors and are integrated with software 
for signal analysis. 

Numerous researchers have reviewed bearing fault 
diagnosis using various monitoring techniques, 
including vibration and acoustic measurements[2-10]. 
Their review covered vibration measurements in both 

the frequency and time domains as well as acoustic 
measures involving sound pressure, sound intensity, and 
acoustic emission techniques; it also explored high-
frequency resonance techniques. 

Vibration is the most commonly used condition 
monitoring of rotary machines. This technique is 
extensively used in applications like material handling, 
aerospace, and power generation [11]. Comprehending 
the origins of vibration is crucial for grasping vibration 
patterns to enable effective fault detection. Even for 
healthy bearings, there will still be vibration, termed 
variable compliance, which is considered normal [7]. 
Different vibration analysis methods are available. 
Howard [8] uses accelerometers for analog signal 
acquisition. Saruhan et al. [12] use four defect states to 
diagnose faults in rolling element bearings. 

The time-domain signal records energy history and 
is frequently used for extracting statistical insights. It 
can detect defects and assess their severity using 
indicators like root mean square (RMS), kurtosis (KU), 
crest factor (CF), impulse factor (IF), peak value, 
energy index (EI), K-factor, and shape factor, with KU 
and CF being more sensitive to larger defects [9-10, 13-
14]. The frequency domain signals can be obtained by 
converting the time-domain vibration signals using the 
fast Fourier transformation[15].Calculating bearing 
characteristic frequenciesis helpful as they can indicate 
the fault's location. Bearing defects produce periodic 
vibration impulses that contain energy across a broad 
frequency range, exciting the resonant frequencies of 
individual elements, known as the fundamental vibra–
tion frequencies. When the outer race remains fixed 
while the inner race rotates, four distinct defect frequ–
encies become apparent: BPFO (ball pass frequency 
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outer race), BPFI (ball pass frequency inner race), BSF 
(ball spin frequency), and FTF (fundamental train 
frequency) [16]. 

Acquiring the vibration signal, signal processing, 
and diagnosis of fault utilizing machine learning can be 
performed in the MATLAB environment. Seokgoo et al. 
[17] used MATLAB for diagnosing faults in REBs. AI 
techniques are employed for pattern recognition in 
machine diagnostics, with artificial neural networks 
being the prominently used techniques. Among these, 
the feed-forward neural network (FFNN), specially 
trained with the back-propagation (BP) algorithm, is 
extensively utilized for machine fault diagnosis [18-22].  

The aforementioned literature provides a compre–
hensive background on the significance of the timely 
detection of faults in REBs and the utilization of vib–
ration analysis to achieve this. As the demand for en–
hanced machinery reliability grows in today's AI-driven 
era, combining AI with vibration analysis greatly en–
hances REB fault diagnosis. Specifically, ANNs have 
found extensive applications in fault identification and 
classification. Unlike other ANN models that typically 
classify bearings as either faulty or healthy, the pro–
posed ANN models classify various types of faulty bea–
rings, such as faults in the inner race, outer race, or ball, 
and distinguish them from healthy ones. Furthermore, the 
performance of these three algorithms has been in–
vestigated, a topic rarely addressed in previous literature, 
thereby establishing the novelty of this research. 

Hence, this paper endeavors to integrate AI tech–
niques, particularly ANN, into fault diagnosis of rolling 
element bearings, presenting a comprehensive, data-
driven methodology. The proposed approach combines 
vibration analysis with AI, including three main steps: 
acquisition of vibration signal, extraction of time-do–
main features, and classification of bearing faults. The 
subsequent quantitative evaluation highlights the prac–
tical applicability and effectiveness of this novel app–
roach in the realm of industrial machinery health moni–
toring and predictive maintenance. 

Section 2 provides a detailed methodology, inclu–
ding experimentation and data acquisition in sub-section 
2.1, and outlines the procedure for extracting time-
domain features and training the ANN models in sub-
section 2.2. The results and discussion are presented in 
section 3, with conclusions summarized in section 4. 
 
2. METHODOLOGY 
 
The flow chart for the approach used in this research is 
shown in Figure 1. Using a machinery fault simulator, 
the vibration signals of the test bearings under various 
conditions - such as healthy bearings and faulty bearings 
with defects in the outer race, inner race, and rolling 
element - have been acquired. Section 2.1 details the 
experimental setup and data acquisition methods. 

Subsequently, six key time-domain features – na–
mely, RMS, kurtosis, crest factor, peak-to-peak, impulse 
factor, and energy - have been extracted from the 
acquired vibration data utilizing MATLAB. Section 2.2 
provides a comprehensive explanation of this process. 

An ANN model with a feedforward (FF) backpro–
pagation (BP) algorithm has been developed to enhance 

predictive capabilities. For training, testing, and vali–
dation, the extracted dataset has been utilized. The 
details of this model development and dataset utilization 
are further explained in Section 2.2. 

 
Figure 1. Methodology Flowchart 

 

2.1 Experimentation and Data Acquisition 
 
The machinery fault simulator (MFS) developed by 
Tyrannus Innovative Engineering & Research Academy 
PVT LTD, shown in Fig. 2, has been used for expe–
rimentation. It comprises a 3-phase 0.25 HP motor, two 
aluminum pedestals, a flexible coupling, two bearings, 
and a variable frequency drive (VFD). The flexible 
coupling connects the driven shaft with the motor output 
shaft, compensating for any potential misalignment. The 
two aluminum pedestals house the bearings, supporting 
the shaft. A functioning bearing is always positioned at 
the drive end (closer to the motor), while the test 
bearing is installed at the non-drive end. Motor speed is 
regulated by the VFD.A PCB Piezotronics tri-axial 
accelerometer is mounted onto the pedestal, as illus–
trated in Figure 2, to acquire the vibration of the test 
bearing. The accelerometer, through a lightweight cable, 
is connected to a dedicated data acquisition card, the 
NI9234, designed for sound and vibration acquisition. 
This card is mounted onto the NI cDAQ 9178 chassis. 
The chassis, in turn, is connected to a computer, with 
LabVIEW installed, via a USB cable.To acquire the 
analog acceleration signal in both the time domain as 
well as in the frequency domain and to save the data for 
further analysis, a LabVIEW application has been deve–
loped. The authors have utilized the same experimental 
setup for fan blade fault analysis [23].  

In this investigation,the test bearing selected is the 
SKF 6304, a widely studied rolling element bearing that 
has been investigated using a different approach in 
previous literature [14]. The specifications of the test 
bearing are outlined in Table 1. Localized faults of 
circular shapes with a diameter of 0.5 mm have been 
artificially created by laser engraving on the balls, inner 
races, and outer races.The test bearings both with and 
without fault have been reinstalled separately in the 
setup to acquire vibration data. 
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Figure 2. Experimental setup

Table 1. Specification of Test Bearing 

Bearing number 6304 
Type deep groove 
Inner diameter (ID) 20 mm 
Outer diameter (OD) 52 mm 
Race width (B) 15 mm 
Ball diameter (d) 9.525 mm 
Pitch diameter (D) 35.99 mm 
No. balls (z) 7 
Contact angle(ϕ) 0 degree 
Material chrome steel 
 
2.2 Feature Extraction and ANN Model 
 
The time domain technique stands out as the most 
straightforward and simplest approach for analyzing 
vibration signals. Many time domain features, including 
crest factor, kurtosis, peak-to-peak value, RMS, and 
others, can be utilized for condition monitoring [2]. The 
RMS measures the overall level of a discrete signal, 
which can be computed as the square root of the average 
of the values that are squared using (1), 

2

1

1 N
i

i
RMS y

N 
     (1) 

where "N" represents the number of discrete points, that 
is the signal from each sampled point. These RMS 
values are compared with established standards to 
evaluate the bearing’s condition.  

Kurtosis represents the fourth moment of a distri–
bution normalized by the fourth power of the standard 
deviation. It offers a balanced measure that combines 
lower and higher moments to assess the shape and tail 
behavior of a dataset and can be computed using (2). It 
has been demonstrated that kurtosis is highly valuable in 
fault diagnosis, 
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where the instantaneous magnitude (yi), the mean( y ), 

the sample length (N), and the standard deviation (σ).  
The crest factor is defined as a ratio of peak value to 

RMS, as given in (3). 
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The impulse factor compares the peak height relative 
to the signal's mean level, calculated as the peak value 
divided by the mean of the absolute value as given in 
(4). 
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Peak-to-peak value is calculated by finding the 
difference between the maximum and minimumvalues 
in the discrete signal data.Energy is computed as the 
mean of the squared values of the discrete signal data. 

From the raw vibration signals acquired by follo–
wing the procedure outlined in section 2.1, a MATLAB 
program has been employed to extract six essential time 
domain features: RMS, crest factor, kurtosis, impulse 
factor, peak-to-peak, and energy. These features serve 
as the input nodes for the neural networks, with four 
classes of bearings represented as output nodes.  

For the development and simulation, the Neural 
Networks Toolbox in MATLAB has been utilized. 
Specifically, a Multi-Layer Feedforward Backpropa–
gation (FFBP) ANN operating under supervised 
learning techniqueshas been employed. This is known 
for its efficacy in delivering highly precise results [24]. 
There are three built-in training algorithms namely 
Levenberg-Marquardtbackpropagation (LMBP), scaled 
conjugate gradient backpropagation (SCGBP), and Ba–
yesian regularization backpropagation (BRBP), for trai–
ning a network. Weight and bias values are updated by 
the LMBP algorithm in accordance with Levenberg-Mar 
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Figure 3. ANN Architecture

quardt optimization. Although it takeshigher me–mory 
than other algorithms, this is frequently the tool–box's 
quickest backpropagation method and comes hig–hly 
recommended as a first-choice supervised approach. 
The default algorithm is SCGBP, which uses the scaled 
conjugate gradient approach in updating the weight and 
bias values. BRBP uses Levenberg-Marquardt optimi–
zation in updating the weight and bias variables. It 
determines the optimal blend to construct a network that 
exhibits strong generalization capabilities, initially by 
reducing a composite of squared errors and weights. 
Figure 3 illustrates the ANN architecture, while Table 2 
provides details about the four target values corres–
ponding to four classes of bearings.The four classes of 
bearings are healthy bearings (target value of 1000), 
bearing with an outer race defect (target value of 0100), 
an inner race defect (target value of 0010), and a ball 
defect (target value of 0001) as presented in Table 2. 

Table 2. Target Values 

Bearing Conditions Target  
Healthy Bearing 1000 
Bearing with Defect on Outer race 0100 
Bearing with Defect on Inner race 0010 
Bearing with Defect on Ball 0001 

 
3. RESULTS AND DISCUSSIONS 
 
In the field of vibration analysis, the signals are ac–
quired from machine components and both the time 
domain data and the frequency domain data are ana–
lyzed. A fault in a bearing element is indicated by a 
peak observed in the vibration spectrum. However, the 
magnitude of this vibration peak depends on parameters 
like the size, shape, location, and type of defect. The 
theoretical bearing characteristic frequencies for the 
outer race defect, inner race defect, rolling element 
defect, and cage defectare typically labeled as BPFO, 
BPFI, BSF, andFTF, respectively. These theoretical 
bearing characteristic frequencies depend on both the 
bearing's geometry and the shaft speed, as given in 
equations (5-8) [25]. The theoretical bearing charac–
teristic frequencies for the test bearing, with specified 
geometric details from Table 1 for a shaft speed of 1490 
rpm, have been determined using the equations (5-8), 
and are presented in Table 3. 
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Table 3. Characteristic Frequencies of Test Bearing 

Characteristic Frequencies (Hz)	
BPFO 64 
BPFO 110 
BSF 43,6 
FTF 87.2 

 
The experiments were conducted using the setup and 
procedure explained in Section 2.1. Bearings with 
various conditions, including both healthy ones and 
those with defects in different elements, were tested at a 
motor speed of 1490 rpm. Even for healthy bearings, 
some level of vibration, referred to as variable compli–
ance [7], is observed. When a defect is present in the 
interface between the ball and the raceways, it results in 
a distinct peak in the amplitude of vibration due to the 
impact. These defects can occur in theinner race, in the 
outer race, or in the balls themselves. Figures 4-6 depict 
the time domain plots and frequency domain plots of 
vibration signals acquired from the outer race defect 
bearing, the inner racedefect bearing, andthe bearing 
with balldefect, respectively. 

This can be observed from Figure 4(b) that the first 
prominent peak occurs at approximately 25 Hz, 
representing the shaft frequency. Additionally, there are 
peaks at approximately 65 Hz, 130 Hz, and 196 Hz, 
corresponding to the frequencies linked to a bearing 
having an outer race defect (fod) and its harmonics. The 
theoretical bearing characteristic frequency, ball pass 
frequency for an outer race defect (BPFO), is 64 Hz. 
This observation suggests an outer racedefect.In Figure 
5(b), an initial prominent peak is seen at around 25 Hz, 
representing the shaft frequency. There are also 
noticeable peaks at 112 Hz and 225 Hz. These 
frequencies are related to an inner race defect (fid) and 
its harmonics. The expected theoretical bearing 
characteristic frequency for an inner race defect (BPFI) 
is 110 Hz, indicating the presence of adefect in the inner 
race.In Figure 6(b), the first significant peak is observed 
at around 25 Hz, representing the shaft frequency.  
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                                                  (a)                                                                                                        (b) 

Figure 4. Vibration Signal for Bearing with Outer Race Defect (a) Time Domain and (b) Frequency Domain 

 
                                                        (a)                                                                                         (b) 

Figure 5. Vibration Signal for Bearing with Inner Defect (a) Time Domain and (b) Frequency Domain 

 
                                                        (a)                                                                                        (b) 

Figure 6. Vibration Signal for Bearing with Ball Defect (a) Time Domain and (b) Frequency Domain 
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Additionally, there are peaks at approximately 87 Hz 
and 131 Hz.These are the harmonics of a ball defect 
frequency (fbd). The theoretical bearing characteristic 
frequency, ball spin frequency (BSF), is 87.2 Hz. This 
observation indicates a ball defect. 
 
3.1 Fault Classification using ANN 
 
The six essential time-domain features - RMS,crest fac–
tor, kurtosis, impulse factor, peak-to-peak, and energy - 
have been extracted from the vibration signals using a 
MATLAB program. Table 4 presents the statistical 
parameters, namely range (minimum and maximum 
values), mean, and standard deviation, of the six time-
domain features for four distinct bearing conditions.  

The next step in ANN modeling is selecting the 
number of hidden neurons. A back-propagation neural 
network's predictionaccuracy is greatly influenced by 
the quantity of hidden layers. An inadequate number of 
nodes can hinder learning and lengthen the training 
process, which will impact accuracy. On the other hand, 
using too many layers can result in over-fitting and 
prolonged training times. The quantity of hidden layers 
can be calculated using the formula provided in 
equations (9,10) [26]. 

 1 m n a      (9) 

21 log n    (10) 

With the number of output nodes (m), the number of 
input nodes (n), 'a' being a constant, that varies from one 
to ten.In this case, the value of ‘m’ and ‘n’ are 
respectively four and six. These values have been 
substituted in equation (9) resulting in 'l' ranging from 
four to thirteen. However, as per equation (10), 'l' 
should be greater than six. Table 5 presents the 
classification accuracy varying the number of hidden 
layer nodes from 7 to 13. 

From Table 5, it is evident that the highest accuracy 
is achieved with 12 hidden layers. Consequently, 12 
hidden layer nodes were selected for the ANN model. A 
total of 360 samples (90 samples each from the four 
classes of bearings) were provided as input. The scatter 
plots of the input data are shown in Figures 7-9. 

 
Figure 7. Scatter Plot (RMS Vs Peak) 

 
Figure 8. Scatter Plot (Kurtosis Vs Crest Factor)

Table 4. Time Domain Features of Test Bearings 

Bearing Condition Statistical 
Parameters 

RMS Kurtosis 
Crest 
Factor 

Impulse Factor Peak to Peak Energy 

Minimum Value 1.54 1.90 2.15 2.53 7.10 11.18 
Maximum Value 1.99 2.66 3.22 3.97 9.23 13.86 
Mean 1.76 2.20 2.55 3.04 8.06 12.65 

Good Bearing 

Standard Deviation 0.09 0.17 0.28 0.35 0.58 0.60 
Minimum Value 1.45 2.03 2.32 2.72 8.21 10.12 
Maximum Value 1.95 3.75 4.69 5.74 11.68 14.72 
Mean 1.67 2.74 3.45 4.20 10.04 11.67 

Bearing with 
Outer Race 

Defect 
Standard Deviation 0.11 0.37 0.49 0.64 0.99 0.97 
Minimum Value 1.96 4.51 4.20 5.57 20.05 12.88 
Maximum Value 2.93 9.06 7.30 9.83 28.95 17.19 
Mean 2.46 5.94 5.65 7.48 24.49 15.28 

Bearing with 
Inner Race Defect 

Standard Deviation 0.17 0.94 0.72 0.98 2.46 0.95 
Minimum Value 1.33 2.00 2.17 2.58 6.39 9.25 
Maximum Value 1.86 3.93 4.37 5.23 10.04 12.85 
Mean 1.55 2.58 3.08 3.73 8.14 10.92 

Bearing with Ball 
Defect 

Standard Deviation 0.11 0.38 0.47 0.62 0.94 0.86 

Table 5.Classification Accuracy for Different Hidden Layer Nodes 

No. of Hidden Layers 7 8 9 10 11 12 13 
Accuracy (%) 47 60 63 65 68 87 80 

 
 	



456 ▪ VOL. 52, No 3, 2024 FME Transactions
 

 
Figure 9. Scatter Plot (Impulse Factor Vs Energy) 

This can be observed from the scatter plots as shown in 
Figures 7-9 that the data points are clustered for good 
bearings and bearings with defects in the outer race and in 
rolling element. However, the data points for inner race 
defects are distinct from the other three classes of bearings. 

These samples are categorized into three types: trai–
ning samples, validation samples, and testing samples. 
During training, the network is exposed to training sam–
ples and adjusted based on its error. Validation samples 
are utilized to evaluate the network's generalization 
ability and to cease training when generalization ceases to 
improve. Testing samples remain unaffected by training 
and thus offer an independent assessment of network 
performance both during and after training. The ANN 
model randomly allocated 70% of samples for training 
and reserved 15% for both testing and vali–dation each 
for LMBP and SCGBP algorithms. How–ever, in the 
BRBP algorithm, for training 85% samples have been 
utilized, and the remaining 15% samples have beenused 
for testing. The ANN model underwent training with 
these three algorithms, and the respective confusion 
matrices are displayed in Figures10-12. The cross-
entropy (CE) and the mean squared error (MSE) values 
are presented in Table 6 to compare the per–formance of 
these three algorithms. Cross-entropy measures the 
performance of a network by comparing the targets and 
outputs, with the option to include performance weights 
and other parameters. A lower cross-entropy value 
indicates better classifier performance. For each output-
target pair, cross-entropy is calculated as (11), 

 logCE t y      (11) 

where ‘t’ is the target value and ‘y’ is the output value. 
The overall cross-entropy performance is the average of 
these individual values. MSE is the average of the 
squared differences between the outputs and the targets. 
Lower MSE values indicate better performance, with a 
value of zero signifying no error.For the arrays of 
output-target pair, MSE is calculated as (12), 

 2
1

1 N
i i

i
MSE y t

N 
    (12) 

where 'N' is the number of data points, ‘yi' is the output 
value, and 't' is the target value. 

In the confusion matrices, the rows represent 
predicted output values, while the columns display 

actual target values. In each confusion matrix, correct 
classifications are represented by green background 
squares along the diagonal, while misclassifications are 
indicated by red background squares off the diagonal. 

The last row of each matrix displays the percentages 
of correctly classified samples in green text and 
misclassified samples in red text, out of the actual 
samples of a particular class. The square in the last row 
and last column of each matrix uses a gray background: 
the percentage of all the correctly classified samples are 
in green text, and the percentage of all misclassified 
samples are in red text.  

As observed in Figures 10-11,252 samples (70%) 
were utilized for training, and 54 samples (15%) were 
utilized for validation and testing each, for the networks 
trained with LMBP and SCGBP algorithms. However, 
for the network, trained with BRBP algorithm, 306 
samples (85%) and 54 samples (15%) were used for 
training and testing, respectively. In this algorithm, the 
generalization took place within the training process 
without validation. This can be observed fromFigure 12’s 
validation confusion matrix that all values are zeros. It is 
evident from Figure 10's all-confusion matrix that each 
row gives the predicted output values. Out of 90 samples 
of class 1, 86 were classified correctly, however, 4 were 
misclassified as fourth class.In the second column, out of 
90 samples belonging to class 2, 5 samples were 
misclassified as class 1 (first row), 75 samples were 
correctly classified (diagonal element), no sample was 
misclassified as class 3 (third row), however fourth row 
shows 10 samples were misclassified as class 4. From the 
third column, it is evident that al OF THE 90 samples of 
class 3 wwre classified correctly. And out of 90 samples 
of class 4, 73 samples were classified correctly, whereas 
17 samples were misclassified. 

Overall, 90% of the samples were correctly iden–
tified and 10% of the samples were misclassified when 
the network was trained with the lmbp algorithm. Simi–
larly, the network, when trained with SCGBP algorithm, 
gives 83.6% correct classification and 16.4% miscla–
ssifications. However, the BRBP algorithm improves 
the capability of the network in correctly classifying 
97.2% samples.The same conclusion can be observedin 
Table 6; the BRBP algorithm exhibits the highest per–
formance in terms of CE and MSE, followed by the 
LMBP and SCGBP algorithms. Unlike the other three 
classes, the class 3 samples were 100% correctly classi–
fied, without confusion, by all three algorithms. This 
result is due to the fact that the class 3 data points are 
distinct from the other three classes of bearings, as seen 
in the scatter plots. 

 
3.2 Prediction of Bearing Condition by Simulating the 
Trained ANN 
 
To further evaluate the capability of the network trained 
with the three algorithms in bearing fault classification, 
they have been simulated to predict the bearing conditions 
using a separate dataset of the six time-domain features. 
The trained ANN models were fed these data for each 
bearing and the respective predicted values were noted. 
Table 7 presents a comparison of the predicted values by 
the three algorithms for the four classes of bearings. 
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Figure 10. Confusion Matrices for the ANN trained with LMBP Algorithm 

 
Figure 11. Confusion Matrices for the ANN trained with SCGBP Algorithm 
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Fig. 12. Confusion Matrices for the ANN trained with BRBP Algorithm 

Table 6. Comparison of 3 Algorithms’ Performance 

Cross Entropy (CE) Mean Squared Error (MSE)        Performance 
Indicator 

 
Algorithm 

Training Validation Testing Training Validation Testing 

LMBP 0.0500 0.0427 0.0246 0.0511 0.0372 0.0496 
SCGBP 1.3682 3.6727 3.7072 0.0529 0.0637 0.0493 
BRBP 0.0189 0.0000 0.0408 0.0269 0.0000 0.0565 

Table 7. Comparison of Predicted Values with the Target Values for 3 Algorithms in Bearing Fault Classification 

BearingCondition 

Algorithm
 
 
Values 

LMBP SCGBP BRBP 

Target 1 0 0 0 1 0 0 0 1 0 0 0 
Predicted 0.9891 0.0052 0.0001 0.0056 0.9424 0.0337 0.0002 0.0237 1.0000 0.0000 0.0000 0.0000 Good 
Error 0.0109 0.0052 0.0001 0.0056 0.0576 0.0337 0.0002 0.0237 0.0000 0.0000 0.0000 0.0000 
Target 0 1 0 0 0 1 0 0 0 1 0 0 
Predicted 0.0085 0.9722 0.0040 0.0154 0.0028 0.9957 0.0012 0.0004 0.0000 1.0000 0.0000 0.0000 OuterRaceDefect  
Error 0.0085 0.0278 0.0040 0.0154 0.0028 0.0043 0.0012 0.0004 0.0000 0.0000 0.0000 0.0000 
Target 0 0 1 0 0 0 1 0 0 0 1 0 
Predicted 0.0000 0.0006 0.9994 0.0000 0.0000 0.0025 0.9975 0.0000 0.0000 0.0000 1.0000 0.0000 InnerRaceDefect 
Error 0.0000 0.0006 0.0006 0.0000 0.0000 0.0025 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000 
Target 0 0 0 1 0 0 0 1 0 0 0 1 
Predicted 0.0000 0.0288 0.0000 0.9711 0.0046 0.0143 0.0000 0.9811 0.0000 0.0000 0.0000 1.0000 

Ball Defect 
 

Error 0.0000 0.0288 0.0000 0.0289 0.0046 0.0143 0.0000 0.0189 0.0000 0.0000 0.0000 0.0000 

 
As observed from Table 7, the network with the 

BRBP algorithm predicts all four classes of bearings 
with zero errors. The LMBP algorithm performs with 
higher accuracy than the SCG BP algorithm. Even the 
networks trained with LMBP and SCG BP algorithms 
predictminimal errors for inner race defect bearings 
(class 3). 

4. CONCLUSION 
 
Timely fault detection in rotating machinery is crucial 
to minimize the costs associated with downtime, 
unexpected failures, and potential casualties. This 
paper aims at fault diagnosis of rolling element 
bearings using artificial intelligence techniques, 
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specifically artificial neural networks. The following 
conclusions can be drawn: 
(1) Experiments were conducted and vibration signals 
were acquired for the test bearings using NI DAQ and 
LABVIEW. Six time-domain features were extracted 
using MATLAB to create a comprehensive dataset for 
training, validation, and testing of the ANN models. 
(2)  The networks were trained with three algorithms: 
Levenberg-Marquardt backpropagation, scaled 
conjugate gradient backpropagation, and Bayesian 
regularization backpropagation. It was observed that 
the BRBP algorithm achieved the highest percentage of 
correct classification (97.2%), followed by LMBP 
(90%) and SCGBP (83.6%). 
(3) To evaluate their efficacy in bearing fault classi–
fication, these three networks were simulated for pre–
diction. It was observed that BRBP could predict all 
four classes of bearings with zero errors from the target 
values. 

The proposed model’s accuracy in predicting bea–
ring conditions enhances maintenance strategies, pre–
venting failures, and extending machinery lifespan. 
This investigation advances condition monitoring and 
predictive maintenance, laying the groundwork for 
future fault diagnosis in mechanical systems. 
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NOMENCLATURE 

B Race Width 
d Ball Diameter 
D Pitch Diameter  
fbd Ball Defect Frequency  
fid Inner Race Defect Frequency  
fod Outer Race Defect Frequency 
fs Shaft Frequency 
ID Inner Diameter 
IF Impulse Factor 
KU Kurtosis 
l Number of Hidden Layers 
m Number of Output Nodes  
n Number of Input Nodes 
z Number of Balls 
ϕ Contact Angle 

ABBREVIATIONS 

AI Artificial Intelligence  
ANN Artificial Neural Network 
BP Back-Propagation 

BPFI 
Ball Pass Frequency for the Inner 
Race 

BPFO Ball Pass Frequency for the Outer race 

BRBP 
Bayesian regularization 
backpropagation 

BSF Ball Spin Frequency  
CF Crest Factor 
CM Condition Monitoring  
EI Energy Index 
FFBP Feed-Forward Back-Propagation 
FFNN Feed-Forward Neural Network 
FFT Fast Fourier Transform  
FTF Fundamental Train Frequency 

LMBP 
Levenberg-Marquardt 
backpropagation 

MFS Machinery Fault Simulator 
OD Outer Diameter  
REB Rolling Element Bearing 
RMS Root Mean Square  

SCGBP 
scaled conjugate gradient 
backpropagation 

VFD Variable Frequency Drive 
 

 
ДИЈАГНОСТИКА КВАРОВА У ЛЕЖАЈЕВИМА 

КОТРЉАЈУЋИХ ЕЛЕМЕНАТА 
ПОБОЉШАНА АИ: СВЕОБУХВАТАН 

ПРИСТУП АНАЛИЗИ ВИБРАЦИЈА 
 

П.К. Самал, К. Сунил, И.М. Јамадар, Р. Сриниди 
 
Ово истраживање представља свеобухватан 

приступ за дијагностику кварова лежајева кориш–
ћењем вештачке интелигенције (АИ), посебно кроз 
примену вештачких неуронских мрежа (АНН). 
Интеграцијом ових мрежа у анализу вибрација, 
приступ има за циљ да задовољи критичну потребу 
за брзим откривањем квара. Методологија се 
састоји од три кључна корака: аквизиција сигнала 
вибрације, издвајање карактеристика и класифи–
кација грешке. Експерименти су спроведени за 
добијање сигнала вибрација за испитне лежајеве на 
симулатору грешке машине. Шест карактеристика 
временског домена екстраховано је коришћењем 
МАТЛАБ-а, стварајући свеобухватан скуп података 
за обуку АНН модела са три алгоритма: Левенберг-
Маркуардт бацкпропагатион (ЛМБП), скалиран 
коњуговани градијент бацкпропагатион (СЦГБП) и 
Баиесиан регуларизатион бацкпропагатион (БРБП). 
БРБП алгоритам је постигао највећу тачну стопу 
класификације (97,2%), а следе ЛМБП (90%) и 
СЦГБП (83,6%). Да би се проценила њихова 
ефикасност у класификацији кварова лежаја, ове 
три мреже су симулиране, откривајући да БРБП 
може предвидети све четири класе лежајева са нула 
грешака. 

 
 
 

 
 


