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Evaluation of Onshore Wind Power 
Potential to Maximize Renewable 
Energy-Supported Transportation 
Electrification – Applied Along the Red 
Sea Coast of Saudi Arabia 
 
This study evaluates the onshore wind power potential along the Red Sea 
coast of Saudi Arabia to inform strategic planning for renewable energy-
supported transportation electrification. Nine locations, spaced 120-240 
km apart, were selected based on 10-year wind speed data and analyzed. 
Distinct wind patterns were identified between the northwest and 
southwest coasts. Hourly meteorological data (from January 2014 to 
December 2023) was obtained and average annual wind speed and power 
density values were estimated. Sites were evaluated using NREL’s 
classification system. The study utilized the maximum likelihood estimation 
derived Weibull distribution, shape and scale parameters to model power 
density and mean speed. Capacity factors were analyzed for 36 wind 
turbine models spanning 1.5-4MW to identify the wind turbine optimally 
suited to each region's wind resources. Annual capacity factor 
performance determined the models' ability to reliably activate concurrent 
electric vehicle charging ports. Leading choices included Suzlon’s 4MW 
S146 consistently demonstrating highest median port activations. 
MingYang’s 3MW MySE3.0-135 and Windey’s 3MW WD140-3000 
emerged as optimal with stable double-digit port activations depending on 
wind resources. SANY’s 2MW SE12520 and Windey’s 2MW WD121-2000 
also performed prominently across sites. Dongfang’s 1.5MW G2000-116 
maintained strong performance. The results characterize wind energy 
potential and pinpoint optimal turbine selections capable of stably 
supporting transportation electrification targets depending on site 
conditions. In addition, the results also provide valuable information 
related to strategic integration planning to maximize the onshore wind 
sector's contribution to Saudi Arabia's renewable energy and emissions 
reduction goals through electrified transportation. 
 
Keywords: Wind power, electric vehicle, wind turbine, wind power density, 
Weibull Distribution 

 
 

1. INTRODUCTION 
 

The transition to a greener and more sustainable energy 
portfolio is imperative for attaining carbon neutrality by 
2060. As outlined in the 2014 report published by the 
Intergovernmental Panel on Climate Change, limiting 
global warming increases to 1.5°C necessitates average 
yearly investment of approximately $2.4 trillion in energy 
efficiency measures, sustainable options, and renewable 
sources until 2035 [1]. A recent study conducted by 
McKinsey & Company [2] estimated substantial 
expenses associated with facilitating this transition. 
Within a net-zero scenario projected for 2050, cumulative 
outlays on physical assets are anticipated to reach 
approximately $275 trillion between 2021 and 2050. 

Over the past three years, more than 200 GW of wind 
power capacity has been added globally, indicating a 
strong and accelerating demand for wind energy [3]. 
Previously, Europe used to dominate the wind energy 
market, however, growth in wind power capacity has 
increasingly been driven by non-European nations. For 
instance, Saudi Arabia recently commi–ssioned the 400 
MW Dumat Al-Jandal wind project and an 850 MW 
wind farm has been announced in Yanbu on the west 
coast [4]. These developments demonstrate Saudi 
Arabia's aim to incorporate greater wind power within the 
country's energy mix as part of its diversification efforts 
and transition to renewable sources of energy. 

 Transitioning to sustainable transportation will also 
be integral to achieving these climate goals. Electric 
vehicle (EV) adoption is growing rapidly worldwide 
due to emissions and fossil fuel dependence concerns. 
Remote and off-grid areas require innovative renewable 
energy solutions to enable widespread EV charging 
access. Achieving carbon neutrality will necessitate a 
transition to electric transportation on a large scale. As 
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the proliferation of EVs continues globally, expanding 
public charging infrastructure is crucial to drive further 
adoption. Although EVs possess advantages for envi–
ronmental sustainability and energy security relative to 
gasoline-powered vehicles, but inadequate infrastructure 
of charging stations poses a barrier to greater EV usage. 
Standalone wind-powered charging stations provide an 
off-grid solution to boost availability while leveraging 
renewable wind energy. Anxiety due to limited driving 
range between charges presents one of the key barriers 
to greater EV uptake. Convenient public charging infra–
structure, especially along remote highway locations, 
can help alleviate these concerns. 

 Leveraging wind energy will require thorough 
analysis and modeling of wind resource potential [5-10]. 
The size and type of turbine selected for wind farms are 
based on the avalability of wind speed at the chosen 
sites [11-13]. Wind speed vary significantly due to 
various factors such as atmospheric conditions, the 
location, tume of the eyar, height, and land surface 
roughness. Therefore, it is essential to understand the 
wind speed characteristics at a prospective site. Several 
statistical methods have been developed to describe 
wind speed, including the Weibull, Gamma, Inverse 
Gaussian, and Exponential distributions. Among these, 
the Weibull distribution is most widely used [14-20]. 
The Weibull probability density function can be applied 
to estimate the variability and magnitude of wind 
speeds. For example, a study conducted in Johanne–
sburg, South Africa found that the Weibull distribution 
provided the best fit to the data across all seasons. The 
study also identified the optimally sized wind turbine 
for the site and determined that only small, standalone 
turbines were suitable given the wind resource [14]. 
Understanding the wind speed distribution is crucial for 
the selection of an appropriately sized turbine [21-23]. 

 The wind potential of Jeju Island, South Korea was 
evaluated using data collected over five years at 
altitudes ranging from 18-513 m across nine locations. 
Six different Weibull estimation techniques were 
applied to the dataset: graphical method [GM], power 
density method [PDM], empirical method of Justus 
[EMJ], maximum likelihood method [MLM], modified 
maximum likelihood method [MMLM], and moment 
method [MM] [24]. The study concluded the graphical 
method was the least accurate, while the moment 
method provided the most accurate parameter estima–
tion. Additionally, an assessment of the wind energy 
potential in Tetouan, northern Morocco employed the 
Weibull distribution fit to wind speed data measured 
every 10 minutes at a height of 60 m over three years. 
Five estimation methods were applied: empirical 
method of Lysen [EML], MM, EMJ, GM, and PDM. 
Wind power densities were derived and statistical errors 
of the distributions were computed. The study found the 
graphical method to have the greatest error, while the 
other techniques provided comparable and accurate 
parameter fits [25]. 

In Saudi Arabia, researchers analyzed twenty years 
of wind speed data to estimate the Weibull distribution 
parameters, including the scale factor proportional to the 
shape parameter and the average wind speed 
proportional to the variance, for ten major locations 

[26]. For example, in the northwest coast region, the 
city of Tabuk had estimated scale and shape factors of 
2.00 and 3.44 m/s, respectively, while Al Wajh, a 
seaside city located 240 kilometers southeast of Tabuk, 
had scale and shape factors of 2.50 and 4.83 m/s, 
respectively. Based on these distribution fits, the wind 
speeds producing the maximum wind power were 
calculated to be 6.1 m/s for Al Wajh and 4.9 m/s for 
Tabuk. In another study, the proposed megacity of 
Neom, along the northwestern coast, was found to have 
an average wind speed of 10.3 m/s for power generation 
according to its Weibull distribution parameters [27].  

Given Saudi Arabia's ranking of 13th globally in 
onshore wind energy production [28], identifying 
promising wind resource areas across the kingdom to 
power standalone EV charging stations is strategic. This 
study assesses 9 coastal locations along the Red Sea: 
Neom, Duba, Umluj, Yanbu, Rabigh, Jeddah, Al Laith, 
Al Gunfuthah, and Jazan. These sites were selected to 
represent diverse geographic regions (Northwest, 
Midwest, Southwest) and proximity to major popu–
lation/industry centers. Remote coastal areas require 
innovative renewable solutions like wind power to 
enable widespread EV adoption necessary for carbon 
emissions reductions in transportation sector. This 
feasibility research evaluates the technical capability of 
standalone wind-powered fast charging stations as well 
as suitable wind turbine sizes in the range of 1.5-4.0 
MW rated capacities to support electric mobility expan–
sion in the Red Sea region. Wind speed data from 2014-
2023, for the selected sites, was obtained from meteo–
rological records. The study will determine the wind 
energy potential and optimal turbine size required to 
adequately meet projected vehicle charging station’s 
demands while gaining insight into deploying wind-
based infrastructure. 

The novelty of the present work lies in the fact that 
wind power based EV fast charging infrastructure is 
being proposed along the vast coastal areas of the Red 
Sea coast of saudi Arabia. To the best of authors 
understanding, it is first of its kind initiative in Saudi 
Arabia and the region at large. It is an effort towards the 
national goal of achieving renewable energy installation 
in accordance with Kingdom’s Vision 2030. 

 
2. SITE SELECTION AND WIND DATA ACQUISITION 

 
Ten-year wind speed data for the selected cities was 
obtained from the NASA Power Data Access portal 
[29]. The wind speed data, provided by the NASA 
Power Project, is collected using ground-based anemo–
meters as well as satellite-based scatterometers. This 
data is available in hourly intervals at various heights 
above the ground, enabling analysis of wind resource 
potential. It is widely utilized for the development and 
implementation of wind energy systems as well as for 
studying the impacts of climate change on wind 
resources. The high spatiotemporal resolution of the 
NASA Power Data Access wind dataset makes it 
suitable for assessing long-term wind energy production 
potential at prospective development sites. 

 Nine sites, along the west coast of Saudi Arabia, are 
selected (Figure 1) to examine average wind potential 
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and seasonal wind patterns. As shown in Table 1, the 
selected locations are grouped into three regions: 
Northwest, Midwest, and Southwest. On average, the 
locations are 12 km inland from the coast, around 180 
km apart from each other, and located either near a 
sizeable city or industrial area. This coastal study region 
extends from Neom in the north to Jazan in the south. 
The varying geographic conditions represented across 
these nine sites provide an opportunity to analyze wind 
energy feasibility in diverse coastal environments along 
the Red Sea. 

 
Figure 1. The selected locations along the West Coast of 
Saudi Arabia 

Table 1. Selected locations along the West Coast of Saudi 
Arabia 

Location Regions 
Coordinates 

(Lat ⁰N 
Long ⁰E 

Elevation 
(m) 

Distance 
from 
coast 
(km) 

Neom Northwest 28.12 34.64 42 2.72 
Duba Northwest 27.15 35.85 59 5.52 
Umluj Northwest 25.52 37.28 191 22.50 
Yanbu Midwest 24.40 37.55 55 9.15 
Rabigh Midwest 23.25 38.80 13 7.65 
Jeddah Midwest 20.98 39.35 45 6.76 

Al Laith Southwest 20.05 40.55 216 9.55 
Al 

Gunfuthah Southwest 18.56 41.45 45 5.82 

Jazan Southwest 17.50 42.35 25 7.50 
 
3. METHODOLOGY OF WIND ASSESMENT 
 
The 10-year hourly wind speed data is utilized to 
determine the average annual and monthly wind speeds 
at each site. The average monthly wind speeds illustrate 
the seasonal variation across locations. Furthermore, the 
hourly data was employed to estimate the parameters of 
the Weibull distribution using the maximum likelihood 
method. These distribution parameters were then used to 
calculate the mean wind velocity, most frequent wind 
speed, maximum power carrying wind speed, and wind 
power density at the nine sites. Additionally, the 10-year 
hourly wind data was analyzed to determine the hourly 
power density. This information played a critical role in 
evaluating different turbine models to identify the 
model achieving the highest capacity factor to optimally 
harness the wind resource potential. Understanding 
temporal variation in wind speeds and distribution 
characteristics at each site is vital for feasibility 

assessment and technology selection for a proposed 
wind-powered EV charging station. The results of this 
analysis will be used to determine the suitability of each 
location for providing adequate renewable energy to 
power fast charging capabilities for electric vehicles 
utilizing the station. 
 
3.1 Weibull Distribution 
 
The function of the Weibull distribution Figure 2 can be 
described by the following equation [30]. 

1
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where k is shape factor, c is the scale factor and V 
represent the wind speed. The cumulative density 
function is calculated as follow: 
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3.2 Maximum Likelihood Method 
 
The maximum likelihood method involves estimating 
the parameters of the Weibull distribution (shape and 
scale parameters) that maximize the likelihood of 
observing the wind speed data. The maximum like–
lihood method involves minimizing the difference bet–
ween the observed wind speed data and the Weibull 
distribution function using numerical optimization 
methods [30]. 

 
Figure 2. Weibull distributions for wind speeds 
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k and c, are function of altitudes, and therefore, for the 
corresponding hub heights they estimated as follows 
[31]: 
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where k0 and c0 are the parameters at the reference 
elevation z0, and z is the hub height. 

 
3.3 Wind Energy Calculations 

 
The mean wind velocity Vm and standard deviation σ 
are estimated as follows [32]. 

0.5
21 2 11 ;  1 1mV c c

k k k
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The wind power density Pd and wind energy E are 
given as: (t is the time period, Γ is the Gamma function, 
and ρ is air density) 
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The most frequent wind speed Vfmax and the velocity 
VEmax, that yields maximum output energy are calculated 
as follows: 
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The output power density for any model turbine is 
estimated using (Manwell et al. 2010). 
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where Vcut in, Vcut out, Vrated, and Pd,rated are the cut-in 
speed, cut-out speed, rated speed, and power density at 
rated speed; respectively. The capacity factor for a wind 
turbine is found as: 
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4. ELECTRIC VEHICLE CHARGING STATION 
 
4.1 Characteristics of Common Electric Vehicle 

Charger Levels 
 
The most common levels of electric vehicle chargers 
established by SAE International include Level 1, Level 
2, and Level 3/DC Fast Charging. Level 1 chargers use 
a standard 120V outlet and are best suited for locations 
where vehicles are parked for extended periods 
overnight or during the workday. Level 2 chargers are 

typically located where vehicles are parked for an 
extended period, like at homes, apartments or 
workplaces, as they allow drivers to charge their EVs 
over the course of a few hours while doing other 
activities like relaxing at home or working at the office. 
Level 3 fast chargers are commonly placed along major 
roads and highways where people are traveling between 
locations. The faster charging capability suits drivers 
who need to quickly charge before continuing their 
journey. Level 3 chargers help minimize stops for those 
constantly on the go. They can also be useful for 
commercial fleet vehicles that cover large distances 
daily and need to charge rapidly to maximize uptime. 
Given that the current study involves designing an 
electric vehicle charging station for a highway location, 
Level 3 fast charging would be the most appropriate 
option since it best suits the needs of drivers.  
 
4.2 Load Assessment 
 
The proposed charging station would be located along 
various locations along the Red Sea coast to facilitate 
electric vehicle travelers and commercial transport 
between these major population centers. A renewable 
energy microgrid, employing hybrid wind-battery 
technology, is well-suited to provide zero-carbon power 
independent of the main electric grid, in this remote 
coastal area. The station would contain four 50 kW 
direct current (DC) fast chargers to serve the growing 
electric vehicle traffic demands. Auxiliary energy loads 
accounted for in the feasibility analysis include EV 
supply equipment controls, interior and exterior lighting 
for the facility and surrounding area, heating ventilation 
& air conditioning (HVAC) systems to maintain 
comfort year-round, an on-site 100 kW backup diesel 
generator, battery storage and associated power condi–
tioning equipment for energy time-shifting and resili–
ence during intermittent generation periods from wind. 
Peak energy needs will include power requirements for 
supplemental infrastructure like on-site labor housing 
units, a convenience and coffee shop and prayer room to 
support station workers and visitors. 

 The majority of fast chargers installed worldwide 
are currently limited to 50kW rated capacity. However, 
several projects have recently been announced to install 
fast charging points up to 350kW. Currently, there are 
no EVs capable of accepting a 350kW charge (Bryden 
et al. 2018). With this in mind, it is estimated that the 
power demand of each DC fast charger could reach 50 
kW while in use. Lighting, HVAC and other constant 
facility loads are projected based on building designs 
accounting for the coastal climate. The backup 
generator and battery storage inverters are each sized to 
provide 100 kW of redundant power capacity during 
periods when the charging station must continue 
operating without wind assistance. Table 2 summarizes 
these peak load estimates for the major energy 
consuming components that the renewably-powered 
microgrid must adequately supply using locally 
harnessed wind energy. These load estimates are based 
on the following assumed requirements: a) DC fast 
chargers estimated at maximum 50 kW each, b) interior 
lighting load ~300 m2 facility size, c) Interior and 
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exterior lighting includes parking area, d) HVAC sized 
for 650 m2 total facility area, d) Battery storage scaled 
to provide 1-hour backup at total peak load, e) Labor 
housing for 5 residential units, f) Shop/workshop sized 
for minor maintenance/repairs, g) prayer room 
estimated at 50 m2, h) coffee shop estimated at 100 m2 
space, including coffee brewing/storage, refrigeration, 
lighting, small kitchen, for simultaneous food prep and 
customer usage. In this case the total peak load is 
rounded up to 400 kW for feasibility analysis. 

A detailed load assessment must involve developing 
an hourly/sub-hourly energy demand profile for the 
charging station and associated facilities over different 
timescales to appropriately size the renewable microgrid 
system. Key components should be analyzed to 
determine their estimated peak power loads under 
worst-case operating scenarios, accounting for 
equipment specifications, typical usage patterns, 
environmental conditions, and occupancy. Assumptions 
are usually made on facility attributes like building area 
and expected processes to estimate equipment counts. 
The current modeling establishes the maximum 
instantaneous power requirements and total energy 
needs that the integrated wind and battery resources 
must reliably meet on an around-the-clock basis. 
Particularly, the projected total peak load serves as the 
baseline capacity target for system design. Through load 
profiling, the microgrid design can be optimized to meet 
demand while avoiding over or under-sizing generation, 
ensuring technical feasibility and supporting project 
economic viability over the long-term. 

The current feasibility analysis will determine if the 
identified sites can reliably meet the projected 400 kW 
load. Multiple wind turbine models will be evaluated to 
identify the best technology for each location, 
considering wind turbine power curves, and capacity to 
reliably meet the 400 kW peak load over the charging 
station's lifetime. If feasible, this study could 
demonstrate innovative renewable energy solutions for 
powering onshore infrastructure for electric vehicle 
adoption along coastal highways nationwide. 
Table 2. Estimated Peak Energy Loads for Proposed 
Charging Station (N = number of charging ports) 

Load Component Peak Load (kW) 
DC Fast Chargers (N × 50 
kW) 

50 N 

Lighting (facility & grounds) 25 
HVAC Equipment 45 
Battery Energy Storage 
Systems 

75 

Housing Units (5) 15 
Convenience Shop 10 
Multipurpose Hall 5 
Coffee Shop/Cafe 20 
Bathroom Facilities 5 
Total Peak Load 50 N + 200 

 
4.3 Sizing the Wind Generation Asset Based on 

Predicted Energy Performance 
 

Capacity factor is a performance metric used to 
evaluate the expected long-term energy output of wind 
power systems. It represents the ratio of actual energy 

produc–tion over a given period to the theoretical 
maximum output if the system operated at full 
nameplate capacity continuously. To properly size the 
wind turbine instal–lation cpacity to meet the facility's 
energy demands, a standard capacity factor analysis is 
performed. The capacity factor is determined based on 
regional wind resource data and the wind turbine power 
curve. It represents the long-term average power 
production of the turbines compared to the theoretical 
maximum output rating and accounts for variability in 
wind speeds and downtime over the course of a year 
that affects the total annual energy generated. In the 
methodology adopted, the total facility load is used to 
determine the average annual energy production target 
required from the wind turbines. This energy target is 
then divided by the capacity factor to calculate the 
necessary installed wind turbine capacity needed to be 
deployed to achieve the annual generation goal and 
reliably. By following this methodology, which relates 
the site loads to energy output capacities based on 
realistic wind resource assumptions and the wind 
turbine power curve, the optimal turbine configuration 
can be identified to cost-effectively meet the microgrid's 
power demands. A thorough evaluation is conducted of 
36 different wind turbine models spanning from 1.5MW 
to 4MW capa–cities. The characteristics of each turbine 
type are sum–marized in Table 3. These turbines are 
comprehensively analyzed based on the annual capacity 
factor data to determine their reliability in activating 
concurrent EV charging port levels across the nine 
locations under consideration. 
 
4.4 Energy Storage Requirement 
 
To provide a stable output from the wind-powered 
system, a battery storage system (BSS) is required. This 
is due to the intermittent nature of wind speed. The BSS 
utilizes lithium-ion battery technology, offering a depth 
of discharge of 80% and 96% efficiency along with an 
impressive life of 10,000 cycles.  
      The inclusion of the BSS improves the stability of 
the system, allowing an uninterrupted power supply for 
EV charging while efficiently utilizing wind energy. 
When energy output from the wind turbine exceeds 
demand, the BSS can be charged and the excess energy 
stored. Leading Class 3 EV charging equipment like the 
BTCPower Matrix, XCharge Megawatt or Power 
Electronics ARC stations could provide this with 
optional battery capacities scaled to the site's average 
daily or weekly demand. 
Table 3. Specifications for the 36 selected turbines used in 
site assessment 

Wind Turbine 
Model 

Hub 
height 

(m) 

Cut-
in 

Speed 
(m/s) 

Rated 
Speed 
(m/s) 

Cut-
out 

Speed 
(m/s) 

Rotor 
Dia 
(m) 

Selected 1.5 MW Rated Power Turbines 
Dongfang 
FD93-1500 80 3 9.5 20 93 

Goldwind 
GW 87 / 1500 85 3 9.9 22 87 

Lagerwey 
L100 1.5 MW 135 2.1 10 28 100 
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SANY 
SE10015 80 3 10 22 102 

MingYang 
MY1.5/89  

100 3 10 25 89 

Envision EN 
87-1.5 70 3 10 25 87 

Windey 
WD93-1500 80 3 10.1 20 93 

GE 1.5xle 80 3.5 11.5 20 82.5 
Nordex N82 80 3.5 12 25 82 
Selected 2 MW Rated Power Turbines 
SANY 
SE12520 90 2.5 8.5 22 125 

Windey 
WD121-2000 140 2.5 8.6 20 121 

Dongfang 
G2000-116 90 3 9 20 116 

MingYang 
MY2.0/118 90 3 9.5 25 118 

AMSC 
wt2000fc TC 100 3 11 20 113 

Vestas V100-
2.0 120 3 12 22 100 

Hitachi, Ltd. 
HTW2.0-86 78 4 12 24 86 

Soyut Wind 
2000 50 4 12 25 88 

Enercon E-82 
E2 2.000 138 2 12.5 34 82 

Selected 3 MW Rated Power Turbines 
Windey 
WD140-3000 140 2.5 9.1 25 140 

MingYang 
MySE3.0-135 140 3 9.3 20 135 

SANY 
SE12730 138 3 9.5 25 127 

Goldwind 
GW 140 / 

 

120 2.5 10.5 20 140 

Dongfang 
G3000-119 90 3 10.5 20 119 

Nordex 
N131/3000 134 3 10.5 20 131 

Envision EN 
120-3.0 90 3 11 25 120 

Aerodyn SCD 
3.0/115 basic 85 3 11.5 20 115 

Senvion 
3.0M122 122 3 11.5 22 139 

Selected 4 MW Rated Power Turbines 
Suzlon S 146 160 3 9 20 146 
MingYang 
MySE4.0-156 140 2.5 9.7 25 156 

Envision EN 
136-4 0 

80 3 10 25 136 
Goldwind 
GW 136 / 

 

110 2.5 11 25 136 

Dongfang 
D4000-148 

90 2.5 11.5 20 148 

Vestas V117-
4.2 114 3 12 27 117 

Enercon E-
126 EP3 

 

135 2 12.1 30 127 

Siemens 
SWT-4.0-120 90 4 13.5 32 120 

GE General 
Electric GE 
4.1-113 

85 3.5 14 25 113 

5. RESULTS AND DISCUSSION 
 
This section provides an in-depth evaluation of the wind 
resource potential and viability for powering electric 
vehicle charging stations at nine coastal locations along 
the Red Sea in Saudi Arabia. Analyses were conducted 
on wind speed and direction data obtained from mete–
orological records spanning 2014 to 2023.  

The findings on the variations of average annual 
wind speeds observed across the different study areas 
are presented.  

Examination of the predominant wind directions 
characterizing each site is also discussed. Seasonal 
fluctuations in wind speeds are then addressed. A 
Weibull distribution analysis is used to statistically 
characterize the regional wind patterns. The section also 
covers turbine performance assessments tailored to the 
wind conditions at each location. Finally, the EV 
charging capacity supported by wind turbines based on 
projected demands is evaluated.  
 
5.1 Variations of Average Annual Wind Speeds 

Across Study Sites 
 
The analysis of average annual wind speed results from 
2014-2023 revealed notable differences among the 
selected locations along the west coast of Saudi Arabia 
[33]. Specifically, three locations on the Southwest 
Coast, namely Al Laith and Jazan, exhibited 
significantly lower average wind speeds compared to 
other locations. In fact, the wind speeds in these areas 
were approximately 30% lower than that at the 
remaining locations.  

 The relatively low wind speeds in the Southwest 
Coast can be attributed to the distinct topographical and 
climatic features that characterize this particular region 
of the Saudi Arabia along the Red Sea coast. A 
prominent topographic feature is the presence of the 
Asir Mountain range, which spans across the Southwest 
coast and acts as a barrier to northeasterly winds. Con–
sidering the wind potential for power generation, the 
lower prevailing wind speeds in the Southwest coast 
areas may not provide sufficient kinetic energy to 
efficiently generate electricity using wind turbines. As a 
result, these regions may not be the most suitable for 
wind energy projects due to their suboptimal wind 
resources. 

 
Figure 3. The yearly average wind speed (m/s) for the nine 
selected sites at 50 m 
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5.2 Predominant Wind Direction at the Selected 
Sites 

 
The prevailing wind direction along the west coast 
(Figure 4), is influenced by global atmospheric circu–
lation patterns, the regional topography, and proximity 
to large bodies of water. Analysis of the prevailing wind 
directions reveals a clear distinction between the 
environments in the Northwest and Midwest coastal 
zones versus the Southwest coast. At northerly 
locations, analysis reveals the dominant prevailing 
winds originate from northwesterly flows with greater 
persistence than other directions. In contrast, analysis of 
three southwesterly sites—Al Laith, Al Gunfuthah and 
Jazan— demonstrates prevailing winds predominantly 
from the southwest direction. This difference in 
prevailing winds between the upper coastal zones and 
southerly locales can likely be attributed to interactions 
between large-scale atmospheric patterns and the 
region's shifting coastal topographies.  
 
5.3 Wind Speed Seasonal Variation 
 
Understanding of the seasonal change of wind speed is 
important to match the load of the area based on the 
wind power availability. In Saudi Arabia, usually the 
load is high in summae time due to excessive usage of 
air-conditioning systems. Figure 5 shows the seasonal 
variation in wind speed for the selected locations. The 
Northwest and Southwest coasts show two different 
wind speed patterns and seasonal changes. The 
northwest coast had three of the highest four potential 
areas and showed the highest average monthly wind 
speeds in January-February and April-September. The 
lowest monthly average wind speeds are seen in March 
and October-December.  

The seasonal variations in wind speeds can be partly 
attributed to changes in atmospheric pressure systems, 
the temperatures, and wind circulation patterns throug–
hout the year. In winter months, the region typically 
experiences stronger north-easterly winds as lower 
pressure systems track over the Mediterranean Sea and 
northern Saudi Arabia. During spring and summer, wind 
speeds remain high along the northwest coast due to the 
formation of a thermal low over the Middle East, 
strengthening pressure gradients and wind flows. On the 
other hand, the Southwest coast had average wind 
speeds approximately 30% less and showed the lowest 
monthly wind speeds in January, February, and August. 
This is likely due to the topographic influence of the 
Asir Mountains disrupting and weakening winter wind 
flows, along with weaker pressure systems tracking over 
the Gulf of Aden during summer. The seasonal 
differences can also be attributed to the different 
atmospheric conditions and topography between coasts. 
For example, the Northwest Coast is located closer to 
the Mediterranean Sea and experiences a predominantly 
north-easterly wind, while the Southwest is closer to the 
Gulf of Aden and Indian Ocean with a predominantly 
easterly and south-easterly wind regimes. 
 
5.4 Characterizing Regional Wind Patterns using 

Weibull Analysis 

 
Figure 6 illustrates the wind speed probability 

distributions for the nine sites based on 10 years of data 
alongside fitted Weibull curves. For each location, a 
histogram shows the observed frequeny of wind speeds, 
and a superimposed curve displays the Weibull 
distribution fitted to the data. Significantly, the Weibull 
fit closely matches the probability patterns at all 
locations. This strong alignment indicates the model 
effectively characterizes various wind regimes observed 
across the west coast. The Weibull distribution captures 
not only the overall shape but also subtle variations 
between sites. The close fit provides confidence in using 
Weibull parameters derived from the measured data. 
Metrics like the shape and scale parameters provide 
meaningful insights into energy potentials. The Weibull 
distribution is highly useful for energy modeling like 
production forecasting under varied scenarios. 

Table 4 provides a technical analysis of the wind 
resource potential across nine coastal cities. By 
characterizing the Weibull distribution parameters, sig–
nificant insights are gained regarding variations in wind 
conditions and energy conversion. The shape (k) and 
scale (c) parameters effectively model the frequency of 
wind speeds, directly correlating to predicted power 
outputs. Average wind speed (Vm), peak probability 
speeds (Vfmax), and wind speed corresponding to maxi–
mum energy capture (VEmax) are useful indicators for 
preliminary energy estimation. Ultimately, the derived 
power density (Pd) and annual energy generation values 
(Ed) benchmark the sites on a common scale. 
 The analysis revealed substantial divergences bet–
ween the selected regions. The three cities in the south–
west exhibit signs of limited wind power viability, with 
median wind speeds below 5 m/s correlating to power 
densities of 105 W/m2or below it. In contrast, the five 
locations (Neom, Duba, Umluj, Yanbu and Jeddah) 
along the northwest and central coastal regions demon–
strate more favorable wind resources for productive 
harvesting. Surpassing average speeds of 5.3 m/s, distri–
butions show higher probabilities of winds exceeding 
typical turbine cut-in thresholds. Accordingly, wind 
power densities exceed 150 W/m2 and annual output 
values reflect stronger energy conversion potential. 
 These variances characterize the climatic 
determinants of viable wind power deployment across 
diverse coastal topographies. The analysis revealed 
variation in wind potential across sites, most locations—
except Yanbu and Neom—demonstrated limited 
prospects for wind energy projects. However, when 
benchmarked against the National Renewable Energy 
Laboratory's (NREL) wind resource classification system, 
only Yanbu and Neom fell within the marginal wind 
power class, Table 5. This indicates that these areas may 
have some potential for wind energy development. 

However, it is important to note that power density 
alone does not provide a complete assessment of a site's 
wind resource potential. Additional factors like wind 
speed variability, turbulence, and atmospheric stability 
may also influence the feasibility of wind power 
projects. Key wind characteristics, beyond power 
density, are considered to better understand each 
location's suitability for wind energy generation. 

< 



92 ▪ VOL. 53, No 1, 2025 FME Transactions 
 

 

                    Table 4. Annual wind characteristics for all sites 

Location Latitude 
( ⁰N) k C 

(m/s) 
Vm 

(m/s) 
Vfmax 
(m/s) 

VEmax 
(m/s) 

Pd 
(W/m2) 

E 
(kW/m2.y) 

Neom 28.12 2.09 6.45 5.71 4.73 8.88 208.31 1824.82 

Duba 27.15 2.09 6.02 5.33 4.41 8.29 169.69 1486.48 

Umluj 25.52 2.24 6.01 5.33 4.62 7.99 159.05 1393.29 

Yanbu 24.40 2.63 6.89 6.12 5.75 8.54 213.89 1873.70 

Rabigh 23.35 1.96 4.96 4.40 3.45 7.10 101.55 889.59 

Jeddah 20.98 2.13 6.06 5.37 4.49 8.28 170.56 1494.13 

Al Laith 20.05 1.85 4.27 3.80 2.81 6.34 69.26 606.75 

Al Gunfuthah 18.56 1.95 4.96 4.40 3.43 7.14 102.68 899.51 

Jazan 17.50 1.76 4.03 3.59 2.51 6.20 62.09 543.90 

 
Figure 4. Wind direction and speed for the selected locations 

 
 
< 
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Figure 5. Seasonal (monthly average) variation in wind speed for the selected locations 

Table 5. Calculated power density and NREL wind class 

Location Power density 
(W/m2) 

NREL Wind 
class 

Neom 208.31 Marginal 
Duba 169.69 Poor 
Umluj 159.05 Poor 
Yanbu 213.89 Marginal 
Rabigh 101.55 Poor 
Jeddah 170.56 Poor 
Al Laith 69.26 Poor 
Al Gunfuthah 102.68 Poor 
Jazan 62.09 Poor 
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Figure 6. Measured probability density distribution and fitted Weibull distribution for all selected sites 

 

5.5 Wind Turbine Performance Assessment at the 
Selected Sites 
 

This section examines capacity factor data for wind 
turbines ranging in size from 1.5 MW to 4.0 MW 
across all the sites. The data is evaluated to support 
planning of locations for wind-powered EV charging 
stations. Optimal siting of charging infrastructure 
requires understanding how turbine productivity may 
vary both with technology and wind resources. A total 
of 36 turbine models are assessed for each of 1.5 MW, 
2.0 MW, 3.0 MW, and 4.0 MW rated capacities. Some 
details about these selected turbine models are 
summarized in Table 3 above. When selecting a system 
for the proposed EV charging stations, the seasonal and 
annual wind resources variability  is important. Box 
plots are utilized to identify how annual capacity 
factors differ for each turbine-site combination based 

on 10-year simulations. Comparing detailed perfor–
mance trends to determine which combinations are best 
suited to reliably power EV charging stations and 
supporting continued expansion of sustainable 
transportation. 
 Figure 7 shows the distribution of annual capacity 
factors for each 1.5 MW turbine model across the 9 
simulated sites.. Each box shows the interquartile range 
(IQR) of the data, which is the difference between the 
25th and 75th percentiles, with a line at the median. 
The "whiskers" extend to the highest and lowest 
values, excluding outliers which are plotted indivi–
dually. Each of the 9 graphs represents one site, for the 
selected 1.5 MW capacity turbines. On the x-axis, the 
turbines are spaced equally from left to right, though 
their actual rated wind speeds increased from 9.5 m/s 
to 12 m/s (Table 3). The box plots reveal some 
interesting trends in the capacity factors of the selected 
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turbines under varying site conditions. In general, an 
inverse relationship can be seen between rated wind 
speed and achieved capacity factor, as expected from 
turbine performance curves. Turbines with lower rated 
speeds of 9.5-10 m/s tend to perform better on average 
across most sites. Some sites, such as Rabigh, Laith 
and Jazan, exhibit more consistent capacity factors 
over the years with less spread in the IQR boxes. 
Meanwhile, sites like Duba, Yanbu and Jeddah show 
higher variability between turbine performances, 
indicating less consistent wind patterns. Having no 
outlier points in the box plots indicate no individual 
yearly extremes. Some of the highest median capacity 
factors were observed for the Dongfang FD93-1500 
turbine, ranging from 0.316 at Neom to 0.108 at Jazan. 

The box plot in Figure 8 shows the variation of 
capacity factors with increasing turbine size from 1.5 
MW to 2.0 MW. The SANY SE12520 achieved the 
highest median capacity factors between 0.374 at 

Neom and 0.147 at Jazan, comparable to top 
performing 1.5 MW turbines. Sites like Rabigh, Laith 
and Jazan continued exhibiting relatively small 
capacity factors for most 2.0 MW sized wind turbines. 
Locations with greater variability for 2.0 MW turbines 
included Duba, Yanbu and Jeddah, where the capacity 
factors Enercon dropped below 0.08. Comparatively, 
the average capacity factors reduced more substantially 
for some turbines such as Soyut and Enercon for 2.0 
MW sized wind turbines. 

Figure 9 depict capacity factor variability for 3.0 
MW rated capacity wind turbines. The Windey 
WD140-3000 achieved the highest median CFs from 
0.315 at Neom to 0.121 at Jazan. Similarly, Figure 10 
shows capacity factor for each selected turbine in the 
4.0 MW range for the 9 sites under consideration. The 
Suzlon S 146 achieved the highest median CFs ranging 
from 0.312at Neom to 0.122 at Jazan.  

Figure 7. Capacity factor for 9 selected 1.5 MW turbines for all selected sites 
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The capacity factor distributions provide valuable insights 
for strategically deploying wind-powered EV charging 
infrastructure. Both component sizing and local wind 
conditions must be carefully considered during techno–
logy selection for each charging location. Ongoing rese–
arch can further optimize siting and turbine scaling to 
maximize energy yields available for powering electric 
vehicle adoption and transitioning the transportation sec–
tor towards a greener future. When selecting a wind 
power system for the proposed charging station project, 
accounting for differences in annual variability is impor–
tant. However, economic assessments, which are left for 
future study, are required to determine a specific location's 
optimal wind turbine model. The economic assessment 
should consider factors such as the cost of the wind tur–
bine, installation, maintenance, and electricity to deter–
mine the levelized cost of energy, simple payback period, 
and overall financial viability of wind energy projects. 

5.6 Evaluation of Electric Vehicle Charging 
Capacity Supported by Wind Turbines 

 
In addition to evaluating turbine-site capacity factor 
combinations, the number of concurrently active 
electric vehicle charging ports is also modeled to 
provide further insight into sustainable transportation 
infrastructure planning. As EV adoption grows, deter–
mining optimal wind power installations to reliably 
meet charging demand is important. The equation (11) 
is used to calculate concurrently active EV ports 
considered both wind turbine capacity factor perfor–
mance as well as an estimated auxiliary power load for 
supporting systems at each charging station location. 

  arg

rated auxiliary

per EV ch er

CF P P
N

P
× −

=  (11) 

 
Figure 8. Capacity factor for 9 selected 2 MW turbines for all selected sites 
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Figure 9. Capacity factor for 9 selected 3 MW turbines for all selected sites 

By multiplying the rated wind turbine power output 
by the annual capacity factor, an estimate of available 
wind energy was obtained for each turbine-site. This 
value was then reduced by the auxiliary power needs to 
attain the net power available for EV charging. When 
auxiliary load exceeded wind generation in certain low-
wind conditions, negative port values resulted, 
indicating insufficient renewable output to activate 
chargers. However, pairings with positive and 
consistently higher port activation levels across multiple 
years would be preferable. It is also important to note 
that the numbers of concurrently active EV charging 
ports shown represent annual averages, which include 
fractional values. This means the numbers should not be 
interpreted as the exact count of ports active at all times 
throughout the year. For example, a value of 4.5 ports 
for a given turbine-location combination would indicate 
that on average, 4 charging ports will be operational 
year-round to provide full-time charging availability. 

However, the 0.5 portion of that value suggests one 
additional port can be active for approximately 6 
months of the year, while being inactive for rest of the 
months. 

The box plots in 33. allow comparison of the 
number of concurrently active EV charging ports sup–
ported by each 1.5 MW turbine-location combination 
based on the calculated value from annual capacity 
factors. In Neom, Dongfang and SANY turbines exhi–
bited the highest median port activation ranging from 
4.5 to 5 ports, with interquartile variability under 1 port. 
GE and Nordex pairs saw lower values. In Duba, 
Dongfang maintained the top performance with 4 active 
ports while GE and Nordex turbines again struggled. 
Goldwind and Lagerwey showed reduced port activa–
tion at Neom. In Umluj, port counts declined further 
across most turbines, with Dongfang retaining the lead 
with 3.7 ports. Low-wind conditions hindered the per–
formance of GE and Nordex turbines. In Yanbu, higher 
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resource potential boosted the performance of all the 
turbines, with Dongfang leading the way with above 6 
active ports. Even GE and Nordex offered limited 
charging under 2 ports on average. Locations like Ra–
bigh, Jeddah, Laith and Gunfuthah encountered serious 
difficulties activating EV ports for many turbines while 
using 1.5 MW capacity turbines due to con–sistent 
negative values, highlighting poor wind regimes. Over-
all, Dongfang revealed a robust capability to reliably 
power transportation electrification across locations. 

The results for 2.0 MW turbines are presented in 
Figure 12. For 2.0 MW turbines at Neom, SANY and 
Windey models exhibited the highest median port 
activation of more than 9 ports, with narrow 
interquartile ranges depicting consistent performance. 
Dongfang and MingYang also surpassed 7.5 ports 
activation on average. In Duba, Umluj and Jeddah, port 

counts decreased slightly but the top performers 
remained SANY, Windey and Dongfang with 7 ports 
and more. AMSC dropped to around 3.5 ports while 
Vestas and Hitachi fell below 2 ports. Performance 
continued declining at the weaker wind sites including 
Rabigh and Gunfuthah, however, SANY and Windey 
maintained leadership with over 4 ports. AMSC and 
Enercon struggled with fractional or negative median 
values. Yanbu, because of high wind potential, showed 
higher port activation for all the turbines. SANY peaked 
with more than 12 ports with Windey and Dongfang 
with 11 ports. Even AMSC exceeded 5 ports, a boost 
compared to other locations. Laith and Jazan observed 
extensive fractional and negative port counts while  
SANY and MingYang turbine were able to activate only 
2 ports each. 

 
Figure 10. Capacity factor for 9 selected 4 MW turbines for all selected sites 
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Figure 11. EV charging ports active concurrently using 9 selected 1.5 MW turbines for all selected sites. (negative value 
implies insufficient wind turbine power to run auxiliary systems at EV charging stations) 

 The results for 3.0 MW turbines, shown in Figure 
13, indicate that at Neom, Windey and MingYang 
models demonstrated the highest median port 
activations exceeding 14 ports. SANY also exceeded 13 
ports. Consistent interquartile ranges indicated reliable 
charging support at this site. In Duba, port counts 
remained high for top performers but declined slightly, 
with Windey over 12 ports. Goldwind dropped to 
around 9 ports while Aerodyn reamined at around 6 
ports. Umluj and Jeddah showed similar trends like 
Duba. Yanbu's stronger winds amplified the 
performance of all turbines, with Windey having more 
than 17 active ports. Lower-wind tolerant Goldwind 
turbine resulted in the activation of  12.5 ports while  
Aerodyn was able to active 9 ports. Rabigh and 
Gunfuthah showed similar trends with limited port 
activation. Only Windey, MingYang and SANY were 
able to activate 6 ports on average. Laith and Jazan, as 

before, were weaker sites from wind resources point of 
view thus eliminating charging potential. 

 For the largest 4.0 MW sized turbines, the results 
are shown in Figure 14. In this case, Suzlon 
demonstrated premier port activation potential at all 
locations. At Neom, Suzlon exceeded 22 ports while 
MingYang and Envision surpassed 18 ports activation. 
In Duba, counts remained impressively high with 
Suzlon maintaining nearly 19 ports while MingYang 
and Envision sustained over 15 ports on average. Umluj 
and Jeddah showed similar trend to Duba as before. For 
Yanbu, with high wind potential, Suzlon peaked above 
25 ports with MingYang and Envision over 21 ports. 
Even Vestas was able to activate above 12 ports. At 
Rabigh and Gunfuthah - Suzlon, MingYang and 
Envision activated 11 ports on average. Overall, Suzlon 
exemplified resilience powering transportation across 
diverse meteorological conditions. 
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Figure 12. EV charging ports active concurrently using 9 selected 2 MW turbines for all selected sites. (negative value implies 
insufficient wind turbine power to run auxiliary systems at EV charging stations) 

Figure 13. EV charging ports active concurrently using 9 selected 3 MW turbines for all selected sites. (negative value implies 
insufficient wind turbine power to run auxiliary systems at EV charging stations) 
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Figure 14. EV charging ports active concurrently using 9 selected 4 MW turbines for all selected sites. (negative value implies 
insufficient wind turbine power to run auxiliary systems at EV charging stations) 

 These box plots effectively benchmark turbine-site 
pairings, establishing frontrunners capable of consis–
tently supporting sustainable mobility through wind-
powered EV charging infrastructure under varying cli–
mate regimes. In summary, when considering the 1.5 
MW rated power turbine data, Dongfang emerged as the 
most reliable option for supporting EV charging across 
all the locations due its consistently high median port 
activations. For 2.0 MW models, SANY and Windey 
demonstrated prominent stability in port activation  at 
diverse sites. Examining the 3.0 MW rated power wind 
turbines,  Windey, MingYang and SANY emerged as 
pacesetters with remarkably consistent double-digit me–
dian ports activation depending on local resource 
strength. Finally, among 4.0 MW sized turbines Suzlon 
stood to be maintaining high charging infrastructure 
support potentials even at locations with marginal res–
ources. In general, progressively larger turbine models 

increased the number of sites viable for wind-powered 
EV charging. However, optimal matching to a location's 
wind regime remained imperative. Sites with weaker 
wind conditions necessitated preferential pairings 
showcasing endurance to low generation. This com–
parative evaluation effectively benchmarks different 
turbine-location combinations and establishes selected 
turbines capable of reliably meeting transportation elec-
trification demands through wind energy. With careful 
multi-factor planning, the findings can help maximize 
deployment of wind power in support of wider sus-
tainable mobility goals. Additional statistical analyses 
may further distinguish performance characteristics. 
 
6. CONCLUSIONS 
 
This study comprehensively evaluated the onshore wind 
power potential along the Red Sea coast of Saudi Arabia 
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to provide preliminary strategic planning for 
maximizing wind energy-supported transportation 
electrification. Nine coastal locations were selected 
based on 10-year hourly mean wind speed data analyzed 
interms of  monthly/annual average speeds, wind power 
density classification, and Weibull modeling. The 
northwest locations demonstrated higher wind potential 
overall. However, even moderately lower wind speed 
sites may still be suitable with optimized technology 
choices. This was reinforced by wind turbine models 
evaluations showing that certain machines among from 
1.5-4.0 MW rated capacities were capable of reliably 
supporting electrified transportation across various 
locations. Capacity factor analyses of 36 turbine models 
provided valuable insights into optimal options tailored 
to each region's resources. Leading large-scale models 
like Suzlon's 4.0 MW S146 and MingYang's 3.0 MW 
MySE3.0-135 emerged as top performers consistently 
activating the highest numbers of concurrent EV 
charging ports. SANY's 2.0 MW SE12520 and 
Dongfang's 1.5 MW G2000-116 also demonstrated 
strong and stable port activations depending on site 
conditions. By characterizing regional wind patterns and 
identifying turbines, well-matched to local wind speeds, 
this study offers key information for decision-makers to 
maximize the potential contribution of onshore wind 
power resources towards Saudi Arabia's renewable 
energy and electrified transportation goals. Ongoing 
assessments and techno-economic analyses can further 
optimize project planning and rollout in suitable coastal 
territories. 
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Nomenclature 
BSS   Battery Storage System 
c   Weibull Scale Parameter (m/s) 
c0   Scale Parameter at reference elevation z0 
CF   Capacity Factor 
DC   Direct Current 
E   Wind Energy (MWh) 
EML  Empirical Method of Lysen 
EMJ  Empirical Method of Justus 
EV   Electrical Vehicle 
HVAC  Heating Ventilation & Air Conditioning 
(HVAC) 
GM   Graphical Method 
IQR   Interquartile Range 
k   Weibull Shape Parameter 
k0   Shape Parameter at reference elevation z0 
kW   Kilowatt 
MLM  Maximum Likelihood Method 
MM   Moment Method 
MMLM  Modified Maximum Likelihood Method 
MW  Megawatt 
MWh  Megawatt Hour 
N   Number of Charging Ports 
Pd   Wind Power Density (W/m2) 

Pd,rated  Wind Power Density at Rated Speed 
(W/m2) 
Pd,output  Output Wind Power Density (W/m2) 
PDM  Power Density Method 
t   Time Period 
V   Wind Speed (m/s) 
Vcut in  Cut in Speed (m/s) 
Vcut out  Cut out Speed (m/s) 
Vrated  Rated Speed (m/s) 
Vm   Mean Wind Speed (m/s) 
Vfmax  Most Frequently Occurring Wind Speed 
(m/s) 
VEmax  Maximum Energy Carrying Wind Speed 
(m/s) 
W   Watt 
Z   Hub height (m) 
 
Greek symbols 
ρ   Air Density (kg/m3) 
σ   Standard Deviation 
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Арабији како би се информисало о стратешком 
планирању за електрификацију транспорта 
подржаног обновљивим изворима енергије. Девет 
локација, међусобно удаљених 120-240 км, одабрано 
је на основу десетогодишњих података о брзини 
ветра и анализирано. Идентификовани су различити 
обрасци ветра између северозападне и југозападне 
обале. Добијени су метеоролошки подаци по сату 
(од јануара 2014. до децембра 2023. године) и 
процењене средње годишње вредности брзине ветра 
и густине снаге. Локације су процењене 
коришћењем НРЕЛ-овог система класификације. 
Студија је користила процену максималне 
вероватноће изведене из Вејбулове дистрибуције, 
облика и параметара размере за моделирање густине 
снаге и средње брзине. Фактори капацитета су 
анализирани за 36 модела ветротурбина снаге 1,5-
4МВ да би се идентификовала ветротурбина која је 
оптимално прилагођена ресурсима ветра у сваком 
региону. Годишњи учинак фактора капацитета 
одредио је способност модела да поуздано 

активирају истовремене прикључке за пуњење 
електричних возила. Водећи избори укључивали су 
Сузлонов 4МВ С146 који доследно показује највећу 
средњу активацију порта. МингИанг-ов 3МВ 
МиСЕ3.0-135 и Виндеи-јев 3МВ ВД140-3000 су се 
показали као оптимални са стабилним двоцифреним 
активацијама портова у зависности од ресурса ветра. 
САНИ-јев 2МВ СЕ12520 и Виндеи-јев 2МВ ВД121-
2000 такође су били истакнути на свим локацијама. 
Донгфанг Г2000-116 од 1,5 МВ задржао је јаке 
перформансе. Резултати карактеришу потенцијал 
енергије ветра и одређују оптималне изборе турбина 
које су способне да стабилно подрже циљеве 
електрификације транспорта у зависности од услова 
на локацији. Поред тога, резултати такође пружају 
вредне информације у вези са стратешким 
планирањем интеграције како би се максимизирао 
допринос копненог сектора ветра обновљивим 
изворима енергије и циљевима смањења емисија у 
Саудијској Арабији путем електрификованог 
транспорта.
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