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Robotic Manipulation via the Assisted 
3D Point Cloud of an Object in the Bin-
Picking Application 
In the field of robot control, manipulation or object handling is one of the 
most critical tasks. The existing techniques reveal some challenges such as 
the unstructured nature of objects or their random orientations within 
cluttered environments. Our method has emerged as a promising solution, 
providing detailed spatial information that enhances object detection and 
pose estimation in this study. Initially, several mechanical computations 
are carried out to indicate the user-defined tool of robotic end-effector. 
Then, the image processing techniques, for instance HSV filter, are 
deployed to identify the center of target object. After that, the coordinates 
of an object can be obtained using the 3D point cloud data. This 
information is transmitted to our embedded computer via TCP/IP 
communication protocol. The outcome of the proposed approach is to 
properly enable the grasping operation without the human intervention. 
From these results, it can be seen obviously that our approach is feasible 
and can be applied in many industrial fields. 

Keywords: 3D point cloud, robotic manipulation, visual grasping, motion 
control, assisted technology. 

1. INTRODUCTION

The industrial application such as bin picking is one of 
the critical challenges in robotics, including the ability 
of intelligent robots to autonomously determine, grasp, 
and handle objects from a dense environment [1-3]. 
This mission imitates the role of an operator in sorting 
and retrieving items, and its successful implementation 
in different manufacturing, logistics or e-commerce. 

In the conventional industry, some actions (i.e. gras–
ping or placing) [4-6] are usually executed manually. 
Those missions require more labours prone to manual 
mistakes, and cause to be fatigue in respect to time. 
Instead of doing that, the automated industry could 
considerably lessen labour costs and enhance efficient 
operation and scalability [7, 8]. However, the bin-
picking application contains highly complicated chal–
lenges owing to the need for more accurate object iden–
tification as well as manipulation in various working 
conditions. 

In the real-world scenario, objects have random 
orientation, occlusion, or overlapping which becomes 
the existing barriers for robotic vision system, gripper, 
and control algorithm [9]. To overcome the above limi–
tations, our study aims to address key aspects of robotic 
problems consisting of designing a robust gripper mec–
hanism, integrating image processing algorithms for 
object detection, and achieving precise robot control 
[10]. This work not only exposes the technical contri–
bution of our knowledge but also is a good chance to 
solve the scientific and practical problems in the field of 

robotics and automation. 

2. LITERATURE REVIEW

Robots have become indispensable in modern produc–
tion, transforming industries with their ability to per–
form repetitive and complex tasks with precision, speed, 
and reliability [11, 12]. They play a pivotal role in 
improving productivity, reducing costs, and enhancing 
workplace safety. Key applications of robots in the 
production industry comprise material handling [13], 
mechanical assembly [14], or bin picking [15]. In the 
domain of material handling, robot proceeds the move–
ment, sorting, and goods delivery across the production 
lines. It is possible to manipulate a variety of items from 
small components to heavy loads with less risk of da–
mage during operation.  

In assembly tasks, high precision ensures 
consistent product quality and reduces human error, 
even if skill-enabled actions are required [16]. In the 
bin picking system, robot automates the retrieval of 
randomly ori–ented objects from containers or bins 
[17]. It is a prin–cipal step in logistics, assembly, and 
order fulfilment. The advanced control algorithm and 
modern vision system enable robotic platform to 
manipulate cluttered or overlapping objects in the 
practical scenario [18].  

To summarize the state-of-the-art researches, Table 
1 represents a list of related works in the same domains. 
According to the categories of applications such as 
automatic laundry, supportive dressing, surgery, pro–
duction, ocean-based manipulation and the others, 
several key publications are analysed and evaluated in 
the type of gripper, visual tool, technique(s) and 
limitation(s). 
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Table 1. Review of the state-of-the-art publications in related domains. 

Applica
tion 

Author(s) Publication 
year 

Gripper type Visual tool Technique(s) Limitation(s)

Automa
tic 

laundry 

Borras, 
J. et al
[19]

2020 Off-the-shell 
device with 
small planar 

fingertips 

Multiple-view 
geometric cues 

A novel framework to 
classify not only grasp types 
but also the manipulation 
primitives 

A significant gap in the 
availability of 
standardized bench-
marks and datasets 

Support
ive 

dressing 

Zhang, 
F. et al

[20]

2019 Wrist-driven 
parallel-jaw 

gripper 

RGB-D camera, 
Point Cloud 

representation  

Two-stage policy learning 
and simulation -free training 
use only the success/failure 
feedback to improve without 
external labels  

The method relies 
heavily on a custom-
designed wrist-driven 
gripper, and extreme 
geometries of object 
could reduce success 
rates. 

Surgery Patel, R. 
V. et al

[21]

2022 End-effectors 
mimicking 

surgical tools 
(forceps, 
scissors) 

Stereo endoscopic 
camera 

Impedance control with 
haptic feedback modalities is 
manipulated by sensitive 
forces at the tool tip  

Miniaturization of force 
sensors is difficult due 
to surgical tool size 
constraints and latency 
and stability challenges 
in haptic feedback loops 

Producti
on 

Zhou, Z. 
et al [22] 

2022 Suction cup 
gripper 

Microsoft Kinect 
camera 

Pixel-wise affordance maps 
and image matching network 
trained to associate observed 
object appearances explores 
multiple grasp directions 

Not suitable for soft or 
porous items and 
grasping strategies are 
limited to top-down 
suction 

Ocean-
based 

manipul
ation  

Zarebido
ki, M. et 
al [23] 

2024 A parallel-jaw 
gripper 

Overhead RGB-D 
camera (Intel 

RealSense SR300) 

A Fully Convolutional 
Network (FCN) fused the 
pushing-grasping actions 
which indicate that pushing 
is prioritized when it 
increases the predicted grasp 
success probability 

It does not generalize to 
more complex 
manipulation like 
twisting or lifting, and 
limits applications in 
cluttered or 3D-
enclosed spaces  

Others Yang, B. 
et al [24] 

2020 Multi-
functional 

parallel 
gripper 

RGB-D camera Unified neural network to 
perform multiple tasks 
produces pixel-wise 
predictions for different 
action types 

Generalization to novel 
objects and cluttered 
scenes as well as 
scalability to more 
complex sequential 
tasks still need 
improvements 

3. PRIMITIVE STUDY

3.1 Concept of Bin-picking 

A robotic arm which is equipped with sophisticated end-
effectors, is crucial for handling and manipulating 
objects within a bin. It can navigate the bin, determine 
and pick up objects, and then place them at a specific 
location. Because of the flexibility and dexterity of 
robotic manipulator, it allows to handle a wide range of 
both the physical dimensions and shapes of objects. The 
usage of industrial robots provides consistent perfor–
mance, leverages moving speed, and allows continuous 
operation without fatigue, significantly enhancing 
efficient industrial settings. Fig. 1 describes the typical 
application of bin picking which involves one industrial 
manipulator, one or two digital cameras, a cluttered bin 
and belt conveyor.  

In such a system, the configuration of a vision-based 
approach may be either eye-in-hand or eye-to-hand. The 
first type consists of the directly mounting actuator on 
the robotic end-effector. It permits the camera to move 
with the robotic platform providing a dynamic view of 
the workspace. For the second configuration, our 
camera is attached on a fixed frame outside the robotic 
workspace. Owing to this attachment, a stable and wide 

view of the entire working environment could be reac–
hed.  

Figure 1. Description of typical concept for bin-picking 
industry. 

3.2 Technical procedure 

Commonly, there are five steps, as shown in Fig. 2, to 
grasp an object in a dense environment such as a bin or 
container via 3D point cloud data. The first step in bin 
picking is to identify and locate the objects within the 
bin/container. Using vision systems (cameras, 3D 
sensors), the system must distinguish each object and 



FME Transactions

obtain its positions in 3D workspace. Additionally, it 
must accurately detect the orientation (angle) of each 
object to schedule the best grasp, and it must measure 
the distance from the container to its position and 
compute its trajectories in 3D workspace. 

After computing the position of object, the optimi–
zation of extraction path is needed. This step is to search 
the most efficient and safest path for the robotic arm to 
reach and pick up that object while minimizing the 
unexpected movement.  

Consequently, robot must navigate around many 
obstacles in the working environment while moving to 
retrieve the object. This involves real-time adjustments 
to avoid collisions with other objects in the bin or sur–
rounding areas, ensuring safe and precise movements. 

Figure 2. Flowchart of typical technique for bin picking 
application. 

3.3 Handling gripper 

In fact, robotic gripper plays an important role in the 
solution of bin picking application. Several structures of 
this mechanism are two fingers, three fingers, or human 
hand-inspired gripper. More degree-of-freedoms (DoFs) 
are, more flexible motion of the grasping action can be 
achieved. In Fig. 3, the conceptual design of our gripper 
is demonstrated. It is the bio-inspired architecture of 
dual-finger with linear motion, soft contact, and flexible 
manipulation. In this design, a one-step motor was 
utilized to drive two fingers, and two sensing devices 
were attached to the surfaces of the contacts. In the 
control method of motor, micro-step mode is recom–
mended to maintain the highly precise driving signal. 
Fig. 4 depicts the block diagram of electrical compo–
nents for this gripper. It comprises Arduino Uno R3, 
loadcells, host computer, stepper motor, stepper driver, 
limit switch and embedded PC. Since it requires DC 
power, there are two sources such as AC source and DC 
source.  

Arduino: it would play the role of controlling the 
gripper and receiving feedback signals from load cells. 
Embedded PC: this device is responsible for controlling 
the joints of the robot arm. Additionally, it exchanges 
signals such as open/close commands for the gripper 
with the Arduino and identifies whether the gripper has 
successfully grasped an object or not. 
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Limit switch: whenever one finger moves to open 
this gripper, it is essential to attach one sensor to limit 
its traveling distance.  

Figure 3. Illustration of the proposed gripper. 

Figure 4. Block diagram of the relative connections bet–
ween electrical components. 

Host computer: our personal laptop receives images 
from the camera, then runs the image processing 
techniques to determine the location of grasping targets. 
The required positions are then transmitted to the 
embedded computer via the TCP/IP protocol, and the 
results of the actions are received back. 

Step driver and stepper motor: these components 
drive the gripper to execute grasping task. 

Total power of the electrical gripper: 

24sum driver source loadP P P P= + + (1)

With: 
sumP : power of electric gripper 

loadP : power of load 

driverP : power of the stepper motor driver,  
42driverP W=

24sourceP : power of the power supply 24V, 

24 720sourceP W=  
42 720 762sumP W→ = + =

Computation of conductor cross-section for 220V 
supply and branch wires is as below: 
Rated current: 

( )762 4,33
.cos 220.0,8
sum

rated
rated

P
I A

U ϕ
= = =  (2) 

Conductor cross section: 
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( )24.33 1.08
4

rated

copper

I
S mm

J
= = = (3)

With Jcopper = 4 (current density for copper conductors). 
The selection of conductor sizes is as follows: 
According to the standard tables for conductor cross-

sections, our design chooses a 2 mm² conductor for the 
main power supply to the driver and a 1 mm² conductor 
for signal branch wires from the Arduino. 

3.4 Electrical system of robotic platform 

Since there are various electrical devices in our robot, 
two separated power systems for instance 220V-AC and 
24V-DC must have to maintain the full operations. 
Additionally, one DoF in our robot consists of both 
servo driver and motor. Hence, 220V-AC power is 
supplied for five sets of drivers and motors. Fig. 5 
describes the schematic diagram of electrical connec–
tions for overall devices. In that scheme, dot line indi–
cates DC wire for the sensing signal and continuous line 
represents AC wire for the power supply.  

Figure 5. Schematic diagram of the electrical system in our 
robot. 

Computer master: An industrial computer with a PCI 
slot for motion control cards. 

Motion card: A module that generates pulse signals 
to control the AC servo drive system. 

Digital IO card: A module for managing digital IO 
input and output signals. 

Signal conversion circuit: Isolates and boosts signal 
levels from 5V to 24V. 

Buffer circuit: An isolation circuit with output pins 
for connecting to digital IO devices. 

Servopack: A driver for controlling AC servo motors. 
5-degree-of-freedom robotic arm: A mechanical

structure equipped with AC servo motors. 
Computer slave: A computer responsible for 

processing data from Realsense D435 Stereo cameras. 
RealSense camera: Used for human recognition. 

3.5 Robotic platform 

Most of the work in our investigation is to install five 
DoF robotic arms. In this platform, there are only 
rotational movements depending on the turning angles of 
servo motors. To provide the commanding drive, they are 
supplied by AC (Alternative Current) power. These servo 
motors need to be carefully configured to ensure accuracy 
and compliance with the requirements of manufacturer. 
Fig. 6 illustrates the architecture of our robotic platform 
with some parameters between the links and joints. 

where: 
+ Link length ai: the length of the common normal

of axis (i) and axis (i+1)  
+ Link twist αi angle between the two axes
+ Link offset di: distance between the two common

normal lines 
+ Joint angle θi: angle between the two common

normal lines 

Figure 6. Diagram of the relative joints and links in our 
robot. 

4. OUR APPROACH

Our concepts are to (i) propose a novel framework 
including two phase: offline and online phase for object 
detection and pose estimation, (ii) establish the vision-
based system with both pre-processing and post-
processing techniques and (iii) validate the efficiency 
and robustness of this method in the practical robotic 
system. In Fig. 7, there are two phases for our routine of 
object detection and pose estimation. In the offline 
phase, the features are extracted from our model. In the 
online phase, the features extracted from the scene are 
matched to the model features to finally retrieve the 
model pose in the scene. 

4.1 Point Cloud Pre-processing 

This technique is useful for enhancing the quality, 
efficiency, and feasibility of raw data in various appli–
cations, especially visual information, or image. Any 
sensor like laser scanner or stereo camera regularly 
releases the unexpected noise because of the environ–
mental factors or hardware limitations which can lead to 
some inaccuracies in manipulating tasks. Consequently, 
pre-processing procedure guarantees cleaner data while 
refining the computational efficiency by diminishing the 
size of dense point cloud, rapidly estimating the theo–
retical scheme and less intensive expenditure of resource. 
Furthermore, it can combine with the other steps such as 
outlier filtering, coordinate alignment, and standardi–
zation, ensuring compatibility with downs–tream tasks 
like segmentation, registration, or feature extraction, 
which often require well-structured and reliable data. 
• Down sampling: this process is to reduce the rates

of density in the point cloud data while retaining its
geometric structure and specific features. Additi–
onally, it provides two standard methods for down-
sampling: voxel down-sampling and uniform down-
sampling.
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Figure 7. Description of pipeline for object detection and pose estimation. 

• Noise reduction: An exception in a point cloud refers
to a point that does not imitate to the desired spatial
pattern or density of the nearest points. These points
are usually caused by the sensing noise, envi–
ronmental reflections, or faults in data acquisition.
Those exceptions can degrade the quality of the point
cloud, leading to inaccuracies in downstream tasks
like segmentation, registration, or feature extraction.
Hence, it is important to remove them in the pre-
processing step to ensure data reliability.

• Evaluation of the normal vector and coordinate
normalization: this procedure is to determine which
manner the surface at each point is dealing and
providing valuable information for the orientational
and geometrical surface. Similarly, the process for
normalization of a point cloud is to modify the
points so that they are centered and fit within a
standard size.

4.2 Point Pair Feature Scheme 

The Point Pair Feature (PPF) algorithm based on the 
geometrical approach is powerful for object recognition 
and pose estimation in 3D workspace. In [25], it 
surpasses in scenarios involving noise, partially 3D data 
occlusion. As a result, it is principally valuable in 
robotics and computer vision applications like grasping, 
sorting, and scene understanding. This algorithm uses a 
local descriptor and is extracted from only two points 
obtained in the 3D data. 

In fact, a point pair feature can be achieved from a 
pair of oriented points. It is supposed that m1 and m2 are 
points in a 3D space, n1 and n2 are their corres–ponding 
normal vectors which represent their orientational 
surface, and d  is the vector between both points (m1 - 
m2). Finally, the feature F  is defined as following: 

( ) ( ) ( ) ( )( )1 2 1 2 1 22
, , , , , , ,F m m d n d n d n n= ∠ ∠ ∠  (4) 

where ( )1,n d∠ ; ( )2 ,n d∠  and ( )1 2,n n∠ : are the angle 
between vectors n1 and d; vectors n2 and d, vectors n1 
and n2. 
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4.3 Global model description  

In the offline phase, the global model description is 
constructed to utilize the point pair feature. This process 
starts by demonstrating the model as a set of point pair 
features. With similar feature vectors, they are grouped 
together for efficient matching. The feature vector F  is 
computed to deploy all point pairs ,i jm m M∈  on the 
model surface. 

These computations involve the discretized distances 
and angles. It is noted that distance ddist and angle 

2
angle

angle

d
n
π

=  are represented while nangle is the number 

of angles. After that, feature vectors with the identically 
discretized values are gathered and enabled efficiently 
during object recognition. 

The output of this step is to map the sampled point 
pair feature space to the corresponding model surface 
pairs. This mapping is formally defined as: 

4 2:L Z A M→ ⊂ (5) 
where:  

Z4 : the discretized 4D feature space 
A: the set of all point pairs ( ) 2,i jm m M∈ that cor–

responds to the feature vector F. 

4.4 Voting scheme  

In the online phase, a voting scheme is employed to 
identify the optimal pose of an object by estimating 
potential matches between scene and model points. This 
method leverages local coordinates and an efficient 
accumulator-based strategy. Given the point pair feature 
F , the rotation angle α is computed as 

m sα α α= − (6)

where αm and α2 are precomputed angles dependent only 
on model and scene point pairs, respectively. 

For each reference point sr in the scene, this scheme 
is proceeded as following: 
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• Feature matching: Each point si in the scene
is paired with reference point sr, and the
point pair feature function Fs(sr, si) is com–
puted. This feature is matched to the global
model description, and saving all model
point pairs (mr, mi) with similar features.

• Local coordinate computation: For each
matched point pair (mr, mi), the respecti–
vely rotational angle α is identified by using
equation (6).

• Vote casting: One vote is completed for the
local coordinates (mr, α). This voting pro–
cedure collects evidence for various poses
of object based on the relations between
scene and model point pairs.

4.5 Pose clustering 

As mentioned above, the voting scheme determines 
potential poses of object. The occurrence of noise, 
sampling inconsistencies, and occlusions may be 
displayed in multiple approximated poses. Thus, pose 
clustering is presented as an additional stage to refine 
and validate this data.  

4.6 Identification of the intrinsic parameters 

Basically, digital camera is an electronic device which 
can capture visual data from the environment. From this 
captured image, colour data consists of many pixels that 
each storing the colour of the actual image, usually 
through three colour values: Red, Green, and Blue 
(RGB). In our study, the RealSense D435 camera is 
chosen as the main sensing device for visual data. This 
camera requires the calibration process which contains a 
calibration board to predefine patterns that assist our 
camera detect and correct any discrepancies in its 
intrinsic parameters for a resolution of 640 x 480 pixels 
with the form above.  

The intrinsic parameter matrix of the camera is 
typically represented as follows:  

0
0
0 0 1

x x

y y

f c
K f c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

(7) 

where: 
fx, fy are the focal lengths of the camera in the x and 

y directions, respectively, measured in pixels. 
cx, cy are the coordinates of the optical center (also 

known as the principal point) in the image, typically 
expressed in pixels. 
Table 2. List of the intrinsic parameter for the RealSense 
D435 camera 

Parameter Value Unit 
fx 611 px 
fy 610 px 
cx 313 px 
cy 231 px 

The exact values for fx, fy and cx, cy would be provided 
by the calibration tool as Table 2. These values are critical 

for ensuring that our camera correctly maps 3D data points 
to 2D image coordinates, especially for the industrial 
applications like object detection and robotic navigation.  

After completing the calibration, distortions would 
be automatically eliminated by using API commands in 
the RealSense library to capture images. This process 
ensures that any distortion caused by the lens of a 
camera or other optical factors is corrected in real time 
and provides accurate and undistorted image data for 
further processing. 

4.7 Identification of the extrinsic parameters 

Basically, a set of the extrinsic parameters is repre–
sented by the transformation matrix which defines the 
relationship between the coordinate system of camera 
and the coordinate system of robot. Furthermore, it al–
lows us to convert the position and orientation of 
objects captured by the camera into the coordinate sys–
tem used by the robot for accurate location and mani–
pulation. The extrinsic parameter matrix typically takes 
the following form: 

11 12 13 14

21 22 23 24

31 32 33 34

11 12 13 14

21 22 23 24

31 32 33 34

0 0 0 1

.

1 0 0 0 1 1

robot cam

robot cam

robot cam

p p p p
p p p p

P
p p p p

x p p p p x
y p p p p y
z p p p p z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(8)

To determine this transformation matrix, several 
corresponding points between the coordinate system of 
robot and the coordinate system of camera need to be 
established. In the eye-to-hand calibration method, a 
recognizable pattern, such as a chessboard which can be 
easily detected by the camera, is utilized. In this rese–
arch, its dimensions of 100 x 100 mm attached to a mica 
sheet are fixed to the end-effector of robot. 

Through the known coefficients, for instance dimen–
sions of the chessboard, the size of the mica sheet, and 
forward kinematics, the position of the central point of 
chessboard could be computed as below: 
1) Attaching the chessboard: Locked the chessboard

onto the mica sheet and fix it to the robotic end-
effector.

2) Using forward kinematics: By utilizing the
computational kinematics, the coordinates of the
center of the chessboard are determined in the
coordinate system of robot.

3) Capturing images: The camera captures multiple
images of the chessboard from different positions.

4) Matching points: Identify the corresponding points
on the chessboard in both the coordinate system of
robot and the coordinate system camera.

The outputs of this process are to compute the rota–
tion and translation between the camera and coordinate 
systems of robot. Certainly, our camera would be loca–
ted near the robot in such a way that its field of view 
covers the entire working area. 
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Figure 8. Detection of the central point by manual adjustment. 

+ Robot Positioning: The robot is sequentially moved to
predetermined positions within the working space.
At each position, the camera captures an image 
using API functions provided by the RealSense 
library. Our programming language is C++ in the 
Microsoft Visual Studio environment. 

+ Capturing Central Coordinates of Chessboard: After
obtaining an image, our next step is to identify the
pixel coordinates and the depth value at the center 
point of the chessboard. The OpenCV library [26] 
provides a function that can automatically detect 
the center of the chessboard. However, in some 
cases, if the image is overexposed or the shooting 
angle is too steep, our algorithm might fail to detect 
the center precisely. 

+ Manual Adjustment: In case that automatic detection
is unsuccessful, the central point of the chessboard
must be manually determined as Fig. 8. This is 
done by moving the mouse pointer to the center of 
the chessboard in the image and extracting the pixel 
coordinates and depth values manually. 

To enhance the accuracy of calibration data, both 
automatic and manual method can be combined, despite 
potential issues with image clarity or orientation. Once 
the pixel coordinates and depth values are found, they 
are used in conjunction with the known positions of 
robot to compute the extrinsic transformation matrix. 

After obtaining the pixel coordinates and depth 

value 
pixel

pixel

depth

x
y
d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, the point cloud coordinates in the 3D 

space of the camera 

1

cam

cam

cam

x
y
z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 using the intrinsic para–

meter matrix and the depth value ddepth can be const–
ructed. 

( )
.pixel x

cam depth
x

x c
x d

f

−
= (9) 

( )
.pixel y

cam depth
y

y c
y d

f

−
= (10) 

To find the coefficients of the extrinsic parameter 
matrix, it needs to be decomposed and solve in each 
row. 

1

2

3

1

P
P

P
P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

(12)

For the first row of the extrinsic parameter matrix, 
we obtain as below: 

[ ] [ ]11 12 13 14 .

1

cam

cam
robot

cam

x
y

x p p p p
z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

(13)

[ ] [ ]
11

12

13

14

1 .robot cam cam cam

p
p

x x y z
p
p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

(14)

Figure 9. Result of our computation for the extrinsic matrix. 
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Figure 10. Simulation result of the proposed approach using triangle interpolation. 

Figure 11. Simulation result of the proposed approach using Poisson disk sampling. 

From equation (13) and (14), it consists of four 
unknowns such as xrobot, xcam, ycom and zcam thus it is 
essential to regulate at least four arbitrary points to 
solve it. However, it might lead to the extrinsic 
parameter matrix being overfitted if too few points are 
detected. To prevent this phenomenon, 40 points within 
the working area are captured. 

1 1 1 1

2 2 2 2

40 40 40 40

11

12

13

14

1

1
.

... ... ... ... 1
1

robot cam cam cam

robot cam cam cam

robot cam cam cam

x x y z p
x x y z p

p
px x y z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (15) 

1.robot camX X P=  (16) 

To solve the system of equations, the pseudoinverse 
matrix method of camX  would be deployed. In our case, 
the system is over-identified, and using the pseudo–
inverse allows us to find the best-fitting solution. The 
equation becomes: 

1.cam robotX X P+ = (17) 

The formula for determining the pseudoinverse 
camX +  is: 

( ) 1
. . .T T

cam cam cam camX X X X Iλ
−+ = + (18) 

where λ =0.0001. 

irobotx : location thi  of robot.  

icamx : location thi  of camera. 
T
camX : pseudoinverse of matrix camX

After identifying P1, similar steps to solve for P2 and 
P3 could be performed. The resulting extrinsic para–
meter matrix after calibration is: 

0.988166 0.166914 0.154067 0.573011
0.258132 0.675378 0.665424 0.569819
0.0630075 0.702442 0.691218 0.51468

0 0 0 1

P

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

 (19) 

This matrix represents the calibrated transformation 
between the coordinate system of camera and the 

coordinate system of robot, including both rotation and 
translation. After testing with 10 different points, the 
maximum average error along the three axes was found 
to be 1.5 mm. 

5. RESULTS OF OUR STUDY

5.1 Model feature extraction 

To estimate the pose of an object, the point pair features 
of the target object need to be known. For this reason, 
its representation as a computer-based model in 3D 
space is necessary. In our case, this program can be 
adapted to work with polygon mesh models. 

5.1.1 Point Sampling with Triangle Interpolation 

Firstly, a good point cloud representation of a 3D model 
would be obtained by generating points on the triangle 
surfaces of the mesh. To distribute all the points over 
the mesh, a set of n random indices of the triangular 
surfaces is required, while n is the size of the point 
cloud that needs to be generated.  

Additionally, the quantity of points on a surface 
must depend on the area of the triangular shape. As a 
result, these indices are weighted such that smaller 
triangles have a minor probability. Otherwise, a bad 
distribution could occur since large or fewer triangles 
end with an equivalent quantity of generated points. 

5.1.2 Poisson Disk Sampling 

The Poisson Disk Sampling approach offers a filtered 
distribution of the points or plays a role as a blue noise 
distribution. This technology certifies that there are no 
two points to be closer than a specified minimum 
distance, resulting in a well-spaced and uniform point 
cloud. Our implementation utilizes an efficient iterative 
process to reach this distribution, matching quality, and 
computational efficiency. 

5.1.3 Scene Feature Extraction 

To obtain the features from the target object, it is 
required to have the point cloud of the scene. In our stu–
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dy, the Intel Realsense Stereo Camera D435 is deployed 
to capture the color images to save the RGB information 
of the scene, and store the depth information in a few 
array forms.  

Figure 12. Result of the captured image using Intel 
Realsense D435.  

Figure 13. Result of the 3D point cloud using our approach. 

After taking the images as Fig. 12, we have two 
arrays: one contains RGB colour, and the other image 
comprises depth information on every pixel. It has been 
known that in the computational process of extrinsic 
parameters, the point cloud coordinate in the 3D space 
of the camera can be identified. Later, normalization of 
the colour by dividing its value of pixel to 255 is needed 
because many 3D processing libraries, including 
Open3D, output the color values to be in the range [0, 1] 
rather than the standard 8-bit [0, 255] range. To visu–
alize the point cloud that was created, these images are 
saved in a PLY file form which stores the information 

of x, y, and z coordinates of each point, and information 
of each point in normal form nx, ny, nz.  

5.2 Robotic simulation 
 

In Fig. 14a, platform of our robot is established in 
SolidWorks for 3D space. Later, with Simscape add-in, 
our model is transferred to Matlab for initial settings as 
Fig. 14b. To simulate its motion, robot model is built in 
Matlab/Simulink as Fig. 14c for estimating the traveling 
trajectory. Some illustrations of numerical simulations 
are completed as Fig. 14d and Fig. 14e respectively.  

5.3 Mechanical calibration 

To manipulate the robotic manipulator accurately, 
mechanical structure of this platform should be consi–
dered in both theory and experiment. There are many 
mechanisms in the body of robot such as gearbox, hard 
coupling, or mechanical bearing. Therefore, the calib–
ration process should be validated to estimate the 
tracking errors. Typically, target location is represented 
in x, y, and z coordinate. Several steps for mechanical 
calibration should be completed. Firstly, hardware 
configuration is set as Fig. 16 in order to measure error 
in X direction. This test is repeated 20 times with the 
same motion command. Each time, data is collected 
from mechanical indicators. A list of our measurements 
in the X-axis is gathered in Table 3. 
 Table 3. List of the measured error in X direction 

No. 1 2 3 4 5 6 7 
Error 0.08 0.05 0.05 0.06 0.05 0.05 0.05 
No. 8 9 10 11 12 13 14 

Error 0.06 0.04 0.08 0.05 0.07 0.05 0.03 
No. 15 16 17 18 19 20 

Error 0.05 0.05 0.03 0.03 0.04 0.04 

a) b) 

c)
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d)  e) 

Figure 14. Robot 3D model in SolidWorks (a) and in Matlab/Simscape (b), its function blocks in Matlab/Simulink (c), results of 
simulation in side view (d) and top view (e).  

a) b) 

Figure 15. Simulation result of the tracking performance for the pre-defined trajectory, (a) 3D view and (b) top view. 

Figure 16. Experimental result of the measured error in X 
axis.  

Similarly, the calibration process in both Y and Z 
axis is entirely done. The hardware setups for these tests 
are illustrated as Fig. 17 and Fig. 18 while Table 4 and 
Table 5 synthesize its results correspondingly. Due to 
these validations, target object can be evaluated 
precisely by our control program. 

Figure 17. Experimental result of the measured error in Y 
axis.  
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Figure 18. Experimental result of the measured error in Z 
axis.  

Table 4. List of the measured error in Y direction 

No. 1 2 3 4 5 6 7 
Error 0,04 0,03 0,02 0,02 0,05 0,01 0,02 
No. 8 9 10 11 12 13 14 

Error 0,06 0,06 0,05 0,05 0,05 0,01 0,01 
No. 15 16 17 18 19 20 

Error 0,01 0,02 0,01 0,05 0,04 0,04 

Table 5. List of the measured error in Z direction 

No. 1 2 3 4 5 6 7 
Error 0,01 0,01 0,01 0,02 0,02  0,01 0,01 
No. 8 9 10 11 12 13 14 

 Error 0,01 0,01 0,02 0,03 0,01 0,01 0,01 
No. 15 16 17 18 19 20 

 Error 0,02 0,02 0,01 0,01 0,01 0,01 

5.4 Experimental validation 

In this stage, data from digital camera is analysed 
deeply. In Fig. 19, the practical result is established 
using our model. Initially, some simple objects, i.e. sha–
pes of rectangular or cube object. Owing to the mat–
ching scheme as Fig. 20, a virtual model is launched and 
measured accurately. For more details, location of each 
point belonged to these objects could be identified and 
ensured to grasp its in 3D workspace. In the following 
verifications, more complicated objects with various 
shapes are suggested to deploy. In Fig. 21, there are five 
objects including cube, rectangle, cone, star and sphere. 

a) 

b) 

Figure 19. Experimental result of (a) model and (b) scene in 
3D point cloud.  

(a) 

(b) 

Figure 20. Experimental result of the matching scheme. 

For more details as Fig. 20a, result of pose esti–
mation using the proposed algorithm is depicted. The 
output shows four clustered and averaged 6D poses of 
the matched object in the scene. Each pose is associated 
with a confidence score and a 4×4 transformation matrix 
(both rotation and translation), representing the position 
and orientation of an object in the camera coordinate of 
this system. Additionally, the score specifies the 
confidence level or the matching quality for that pose, 
based on the accumulated PPF votes. Also, transfor–
mation matrix describes the estimated pose: In our 
result, the top-left 3×3 submatrix characterizes the rota–
tion matrix R. The rightmost 3×1 column (excluding the 
last row) is the translational vector T, given in units 
corresponding to the scene. And the bottom row [0, 0, 0, 
1] is standard in homogeneous transformation matrices.
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Figure 21. Illustration of the target objects in our test.  

The purpose of our experiment involves picking up an 
object from bin 1, where each bin contains a single object 
of varying sizes and shapes, placed randomly. A stereo 
camera is used to capture an image of the bin. As 
described in Fig. 22, the point cloud is generated from the 
image, pre-processed, and analyzed to extract relevant 
features. Later, our approach can provide robust pose 
estimation and optimize the handling works for dynamic 
environments with high accuracy and reliability. 

Figure 22. Experimental result of the target objects using 
our approach.  

6. CONCLUSION

Our research introduced a novel concept for robotic 
manipulation using assisted 3D point cloud techniques. 
Several preliminary studies were conducted to develop 
both the hardware platform and technical procedure. 
The calibration process of the mechanical structure was 
discussed in detail to ensure the driving manipulation of 
our system is both accurate and reliable. Vision-based 
processing technologies were also exemplified 
throughout the work. To verify the feasibility of our 
approach, real-world tests were conducted. The results 
demonstrate that our method is effective and 
particularly applicable in bin picking tasks, where 
complex object shapes and cluttered environments pose 
significant challenges.  

The practical applications of this investigation 
might extend to different scenarios of industrial auto–
mation, including warehouse logistics, smart manufac–
turing, and precise assembly lines, where intelligent 
robotic manipulation is essential for handling produc–
tivity and flexibility. Furthermore, this system can be 
adapted for service robots operating in unstructured 
environments (such as in healthcare or domestic set–
tings) where object recognition and manipulation are 
crucial. 

Future research would focus on enhancing the 
learning capabilities of this system through integrating 
with reinforcement learning and improving the robus–
tness of object detection in dynamic lighting and occ–
lusion conditions. Additionally, expanding this frame–
work to assist multi-robot collaboration and motion 
planning in shared workspaces could explore new 
directions in both industrial and human-robot interactive 
environments. 
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APPENDIX 1 

From above parameters, we can establish the trans–
formation matrix at the (i) joint:  
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Hence, the transformation matrices of our robotic 
system are 
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and 
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And, 
Consequently, we have 

0 0 0 1 2 3 4
5 1 2 3 4 5toolT T T T T T T= = (A1.7)

where 0
toolT : transformation matrix from link 0 to ro–

botic tool 
1i
iT

− : transformation matrix from link i  to link 
1i +  

РОБОТСКА МАНИПУЛАЦИЈА ПУТЕМ 
ПОТПОМОГНУТОГ 3Д ОБЛАКА ТАЧАКА 

ОБЈЕКТА У АПЛИКАЦИЈИ ЗА САКУПЉАЊЕ 
ИЗ КОНТЕЈНЕРА 

Д.М. Фан, Х.К.Т. Нго 

У области управљања роботима, манипулација или 
руковање објектима један је од најкритичнијих 

задатака. Постојеће технике откривају неке изазове 
као што су неструктурирана природа објеката или 
њихове случајне оријентације у претрпаним окру–
жењима. Наша метода се показала као обећавајуће 
решење, пружајући детаљне просторне информације 
које побољшавају детекцију објеката и процену по–
ложаја у овој студији. У почетку се врши неколико 
механичких прорачуна како би се назначио ко–
риснички дефинисани алат роботског крајњег 
ефектора. Затим се примењују технике обраде сли–
ка, на пример HSV филтер, да би се идентификовао 
центар циљног објекта. Након тога, координате 
објекта могу се добити коришћењем 3Д података 
облака тачака. Ове информације се преносе на наш 
уграђени рачунар путем TCP/IP комуникационог 
протокола. Резултат предложеног приступа је пра–
вилно омогућавање операције хватања без људске 
интервенције. Из ових резултата се јасно види да је 
наш приступ изводљив и да се може применити у 
многим индустријским областима. 




