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Development of an Intelligence Vision 
for a Robot System to Pick and Place 
Objects 
 
This paper presents an automated pick-and-place robotic system utilizing 
stereo vision technology for object detection and localization in 3D 
space. Stereo vision is an optimal choice for short-range industrial 
applications due to its capability of providing accurate depth 
measurements at a reasonable cost, outperforming alternatives such as 
LiDAR or Time-of-Flight (ToF) cameras in similar settings. The 
proposed system is designed to operate reliably under natural lighting 
conditions, making it well-suited for deployment in factory production 
lines. An Intel RealSense D435 camera is employed to capture both RGB 
and depth images from the environment. Object detection is performed 
using a YOLOv11-based model, achieving high detection accuracy with a 
mean average precision (mAP50) of 98.5% across all object classes. The 
system processes depth information to identify the topmost object, 
estimates its 3D coordinates with minimal errors (average positional 
errors below 5.3 mm), and transmits the data to a robotic manipulator 
for execution of the pick-and-place task. Experimental results 
demonstrate the system's high precision and reliability in object detection 
and 3D localization. 
 
Keywords: Real-Time Object Detection; YOLOv11; Industrial robot; 3D 
vision; Intel RealSense Camera 

 
 

1. INTRODUCTION  
 
In pick-and-place applications using robots, computer 
vision plays an important role. They help robots to 
recognize the surrounding environment, and determine 
the position, size, and orientation of objects to be 
manipulated. The recognition ability of computer vision 
helps robots operate more accurately in dynamic 
environments, improving the level of robot automation 
[1-4]. Integrating computer vision into robotic systems 
has helped meet the increasing demands in industrial 
manufacturing, warehousing, and supply chains. Thanks 
to feedback from computer vision systems, robots today 
perform tasks with high speed and accuracy in real time 
[5-6]. Integrating vision systems into robots presents 
many challenges, including real-time data processing, 
ensuring accuracy in complex industrial environments, 
and calibrating cameras to synchronize with the robot 
coordinate system [7-8]. Issues such as heterogeneous 
software and hardware integration, high initial 
investment costs, and difficulties in handling complex 
objects (reflective, transparent) are also major barriers. 
In addition, optimizing algorithms to achieve high 
performance on limited hardware while maintaining 
system reliability and scalability also requires 
significant time and resources.  

Robots often work in challenging industrial 
environments such as changing lighting, dust, obscured 

objects, or objects of various shapes and sizes. 
Maintaining the accuracy of vision systems under such 
conditions is a major problem. Traditional methods use 
image processing algorithms based on geometric and 
color features to identify objects. Therefore, the 
surrounding workspace has a great influence on the 
performance of the system. Traditional methods usually 
require a stable working environment with little change. 
Moreover, image processing methods are also limited to 
a few products, making it difficult for them to meet the 
requirements of modern industrial applications [9-11]. 
To overcome the limitations of traditional methods, 
deep learning has been applied to improve the 
recognition and processing capabilities of vision 
systems in complex industrial environments. With the 
ability to automatically extract features from image data 
without manual setup, deep learning models, especially 
convolutional neural networks (CNNs), can accurately 
recognize and classify objects, even under conditions 
such as changing lighting, occlusion, or complex shapes 
[12-14]. 

Deep Neural Networks for Object Detection provide 
the fastest and most accurate results for single and 
multiple object detection as CNNs can learn 
automatically with less manual effort [15-16]. Deep 
learning-based object detection models are classified 
into two classes: single-stage and two-stage detectors. 
Single-stage object detectors predict directly, 
eliminating the region proposal step. On the other hand, 
two-stage object detectors involve region proposals 
followed by classification and proposal refinement. The 
family of region-based CNN models is one of the most 
popular and advanced 2-phase architectures for object 
detection. Single-stage object detection methods aim to 
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simplify the object detection pipeline by predicting 
object class labels and bounding box coordinates in a 
single pass, thus often achieving faster processing 
speeds than two-stage methods. Given their efficiency, 
they are a popular choice for real-time object detection. 
Some prominent single-stage object detection models 
are YOLO, SSD, and RetinaNet. Among them, the 
YOLO model has become an outstanding model for 
real-time object detection [17-19]. The ability of YOLO 
to perform real-time object detection with reasonably 
good accuracy makes it versatile for a wide range of 
applications that require swift and accurate object 
recognition. In robotic applications, YOLO is used for 
object recognition and localization, enabling robots to 
perceive and interact with their environment more 
effectively. YOLO architecture is designed to optimize 
both detection speed and accuracy. This makes it 
particularly useful in robotics, where decisions often 
need to be made in milliseconds. Unlike traditional 
computer vision algorithms that may struggle with real-
time processing, YOLO’s deep learning-based approach 
enables the robot to process visual data rapidly, identify 
potential hazards, and react accordingly [20-21]. 

Most existing YOLO-based methods focus solely on 
2D object detection and require additional post-
processing techniques to estimate depth information. 
This limitation makes them less suitable for robotic 
manipulation tasks, where precise 3D position 
estimation is essential. To address this, various depth 
estimation techniques have been explored, including 
monocular depth estimation, LiDAR, Time-of-Flight 
(ToF) sensors, and stereo vision, each with its 
advantages and drawbacks. 

Monocular depth estimation relies on a single 2D 
image to predict depth but often suffers from high 
estimation errors in real-world industrial settings, 
particularly when dealing with complex object 
geometries, non-uniform textures, or reflective surfaces. 
LiDAR and ToF cameras provide high-accuracy depth 
measurements but come with significant drawbacks, 
including high costs, limited resolution, and sensitivity 
to ambient lighting conditions, making them less viable 
for cost-sensitive industrial automation. In contrast, 
stereo vision-based depth estimation offers a cost-
effective and real-time alternative by using two cameras 
to triangulate depth information. However, stereo vision 
systems can be prone to inaccuracies, particularly in 
cases where objects lack texture, are exposed to poor 
lighting, or experience significant occlusions. These 
challenges necessitate advanced depth filtering and 
calibration techniques to enhance accuracy in industrial 
applications. 

To address these limitations, this study proposes an 
intelligent robotic pick-and-place system that integrates 
YOLOv11-based object detection with stereo vision-
based 3D localization. The system utilizes an Intel 
RealSense D435 stereo camera to capture both RGB and 
depth data, enabling accurate 3D object localization and 
manipulation. Unlike previous approaches, our method 
seamlessly integrates deep learning-based object 
detection with stereo-depth estimation, ensuring robust 
and real-time performance in dynamic and unstructured 
industrial environments. 

Stereo vision is a suitable choice in robotic pick-
and-place applications. Within a range of several meters 
for manipulation, stereo vision systems provide an 
accurate measurement solution at a reasonable cost 
compared to solutions using other devices (LiDAR, ToF 
camera). Furthermore, stereo vision can operate in 
natural light conditions, thus helping robots work in 
normal lighting conditions of factory production lines 
[24-30]. In this paper, we use the Intel D435 camera for 
robotic pick-and-place applications. The system utilizes 
the camera to capture RGB images and depth images. 
An object detection model, based on YOLOv11, is 
employed to identify objects placed in a bin. The depth 
images are then processed to detect the objects and 
determine their 3D coordinates. Using this information, 
the robot moves its gripper to the object's position, picks 
it up from the bin, and places it on a conveyor. This 
approach is a common application in production lines, 
where objects are picked from containers and 
transported for processing, inspection, or packaging. 

The proposed system has significant practical 
applications in industrial automation, particularly in 
automated sorting, packaging, and assembly processes. 
By leveraging a stereo vision-based 3D localization 
approach, the system achieves high precision in object 
detection and manipulation while maintaining cost 
efficiency compared to LiDAR or ToF-based solutions. 
This research contributes to the advancement of 
intelligent robotic vision systems, demonstrating an 
effective method for real-time vision-robot coordination 
in unstructured environments. The integration of deep 
learning-based object detection with depth estimation 
techniques enhances the accuracy and adaptability of 
robotic pick-and-place operations, making the system a 
valuable solution for modern smart manufacturing and 
Industry 4.0 applications. 

 
2. MATERIAL AND METHODS 

 
2.1 Robot arm system performance and 

characteristics 
 

In this paper, the 4-DOF palletizing robot arm is 
developed to grasp objects in a bin and place them on 
the conveyor. Figure 1 describes the design of the robot 
arm. The robot arm is designed with four degrees of 
freedom and is driven by AC servo motors connected to 
harmonic gearboxes to create precise movements. The 
use of AC servo motors and harmonic gearboxes in the 
design improves the robot's performance and precision, 
and it can operate stably for a long time. AC servo 
motor provides precise control of position, speed, and 
torque thanks to the high-resolution encoder. With the 
zero backlash transmission mechanism, the harmonic 
gearbox minimizes vibration and position error, 
enhancing the precision of the robot. In addition, 
harmonic gearboxes provide a very large transmission 
ratio in a compact size, increasing output torque without 
using a larger motor. This helps reduce the overall size 
and weight of the robot. We use Yaskawa's 100w sigma 
5 AC servo motor and a 1/50 harmonic gearbox. We 
chose aluminum alloy to manufacture the robot's joints 
to reduce weight, increase rigidity, and improve energy 
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efficiency. The lengths of the robot's arms are 450mm, 
400mm, and 100mm respectively. This combination 
allows the robot to reach a maximum reach of 1050mm 
and carry a payload of up to 500g, meeting the high 
requirements for performance and stability in diverse 
applications. Table 1 shows the specifications of the 
robot arms. 

 
Figure 1. Robot arm design  

Table 1. Specifications of the robotic arm. 

Specification Value 
Degree of freedom 4 
Maximum reach 1050mm 

Payload 4kg 
Power supply 220V-500W 

Weight 8kg 
Actuator 100w AC servo motor 
Gearbox Harmonic drive 

Max speed of joint 1 1800/s 
Max speed of joint 2 1800/s 
Max speed of joint 3 2000/s 
Max speed of joint 4 3000/s 
 
The robot's electrical and control system is designed 

with the PLC acting as the central controller, ensuring 
accuracy and stability in controlling the movement of 
the robot joints. The PLC generates high-speed pulse 
signals, transmitted to the AC servo drivers, thereby 
controlling the motor to rotate at the required angle. 
Thanks to the fast and reliable processing capabilities of 
the PLC, the system can accurately adjust the speed and 
position of the robot joints, ensuring fast and stable 
response to tasks. This combination not only helps 
optimize operating performance but also brings high 
reliability to the entire robot control system. The control 
system uses Delta's DVP28SV11T PLC (shown in 
Figure 2), a mid-range PLC with powerful performance 
and integrated features suitable for controlling 4-joint 
robots. This PLC is equipped with 4 high-speed output 
pins, ideal for accurately controlling the signal pulses 

sent to the AC servo driver, ensuring that the robot 
joints move at the desired angle and speed. In addition, 
the PLC has a built-in RS485 communication port, 
making it easy to communicate with computers and 
other industrial devices, supporting flexible connection 
and system control. Thanks to these features, the 
DVP28SV11T PLC not only meets the requirements for 
accuracy and speed but also provides superior connec–
tivity, suitable for automatic control applications in 
modern industrial environments. Table 2 shows the 
technical specifications of Delta PLC. 

 
Figure 2. PLC delta DVP28SV11T PLC   

Table 2. Technical Specifications off PLC. 

Specification Value 
Dimensions (L x W x H) 70 mm x 60mm x 90mm 

Power Supply 24 VDC 
Number of Input Pins 16 

Number of Output Pins 12 
Output Type NPN 

Working Capacity 16000 steps 
Operating Temperature 00C to 550C 

Memory Capacity 10000 words 

 
Figure 3. Practical system  

Figure 3 shows the actual robot system that has been 
developed. The robot will pick up objects moving on the 
conveyor belt and put them into containers. The 
coordinates of the objects on the conveyor belt will be 
determined by the 3D vision system using the Intel 
D435 camera. 
 
2.2 The 3D intelligence vision system  
 
A 3D intelligent vision system is developed to provide 
the ability to accurately locate objects in three-dim–
ensional space for robots to perform pick and place 
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operations. In this study, we use the Intel RealSense 
D435 camera, a high-performance stereoscopic vision 
device, to collect both RGB images and depth images of 
the working environment. 

The Intel RealSense D435 camera operates on the 
stereoscopic principle, with the ability to provide 
accurate depth data within a few meters. The advantages 
of this camera are reasonable cost, stable operation in 
natural light conditions, and suitable resolution for 
industrial applications. The vision system uses RGB 
images to detect objects and depth information to 
determine the spatial coordinates of objects. 

For object detection and classification, the 
YOLOv11 model is deployed thanks to its real-time 
processing capability and high accuracy. Once objects 
are identified in the RGB image, depth data is utilized to 
pinpoint the topmost object, reducing detection errors 
caused by occlusion or overlapping objects. The 3D 
coordinates of the detected object are then calculated 
and transmitted to the robot through RS485 
communication, enabling precise positioning of the 
gripper for the gripping operation. The integration of the 
Intel RealSense D435 camera and the YOLOv11 model 
allows the vision system to deliver high performance in 
industrial applications. Notably, the system 
demonstrates stable operation in real production 
environments, even under changing or complex lighting 
conditions. 

 
2.2.1 Data collection 

 
The vision system uses an Intel RealSense D435 camera 
to collect data including RGB images and depth maps of 
the work area. The camera is fixed on a bracket above 
the container, with a panoramic view to observe the 
entire surface of the container. 

The data collection process is carried out under 
different lighting conditions to simulate a variety of 
real-life environments and increase the generalization 
ability of the model. Furthermore, objects are placed in 
different positions and postures to ensure that the model 
learns to recognize in many situations. 

In total, about 400 images were collected: 
200 images: Contains only objects of interest, 

arranged neatly in the container to provide clear data for 
the learning model. 

200 images: Includes additional objects placed 
around the target blocks, simulating a more messy and 
complex logistics environment. 

This data not only increases diversity but also 
ensures that the system can operate effectively in real 
production lines, where the environment is often not 
completely clean. The captured images are used to train 
and evaluate the object detection model. 

 
2.2.2 Data Annotation 

 
After collecting the data, the data annotation process is 
performed to label the objects of interest in the image 
set. The Roboflow tool is used for this, thanks to its 
friendly interface and features that support accurate 
labeling. Objects are annotated by bounding boxes, and 

labeled according to specific categories to serve the 
object detection model training process. 

To improve the performance and generalization 
ability of the model, data augmentation techniques are 
applied, including: 

Rotation: Helps the model learn to recognize objects 
at different angles. 

Brightness adjustment: Simulates diverse lighting 
conditions in reality. 

Random cropping: Helps the model learn to handle 
incompletely displayed parts of the object. 

Gaussian noise: Increases the model's tolerance to 
errors in noisy data conditions. 

The labeled and augmented data is divided into two 
sets, 75% for the training set, used to train the object 
detection model, and 25% for the test set, used to 
evaluate the performance of the model after training. 

 
2.2.3 Model training 

 
To improve the object detection performance, the 
YOLOv11 model was trained using transfer learning on 
a custom dataset. The dataset consisted of 900 RGB 
images captured using the Intel RealSense D435 ca–
mera, representing three object classes: bottle, can, and 
cup. Each class contained approximately 300 images, 
ensuring a balanced distribution. The images were col–
lected under varying lighting conditions and object 
arrangements to enhance the model’s robustness. Anno–
tation was performed using the Roboflow platform, 
where each object was labeled with bounding boxes and 
exported in a YOLO-compatible format. The dataset 
was then split into 75% for training and 25% for 
validation. 

To improve generalization and prevent overfitting, 
various data augmentation techniques were applied. 
These included geometric transformations (random 
rotations, scaling, and flipping), photometric adjus–
tments (brightness and contrast variations, Gaussian 
noise), and synthetic occlusion to simulate real-world 
cluttered environments. These augmentations aimed to 
improve the model’s ability to recognize objects under 
different conditions and enhance its robustness in real-
world applications. 

The training process was conducted on Google 
Colab with GPU acceleration, leveraging the pre-trained 
YOLOv11 weights to reduce computational cost and 
training time. The model was fine-tuned using a batch 
size of 16, trained for 100 epochs, with an input image 
resolution of 640 × 480 pixels. The AdamW optimizer 
was employed, incorporating a cosine annealing lear–
ning rate scheduler to ensure stable convergence. The 
loss function used was CIoU loss for bounding box 
regression and focal loss for object classification, both 
of which helped improve detection accuracy for small 
and occluded objects. 

Throughout the training process, real-time moni–
toring was performed to track key performance metrics, 
including loss, precision, recall, and mean Average 
Precision (mAP). The model was periodically evaluated 
on the validation set to assess its learning progress and 
detect any potential overfitting. This systematic app–
roach to training ensured that the model adapted 
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effectively to the requirements of dynamic industrial 
environments, making it well-suited for real-time pick-
and-place applications. 

After the training process is completed, the best 
model (best.pt) is downloaded and deployed on the 
hardware to perform the task of detecting objects in 
camera images. The model is integrated into the robot's 
vision system, using RGB images from the Intel 
RealSense D435 camera as input. When detecting an 
object, the model outputs the coordinates of the 
rectangle surrounding the object, including information 
about the center coordinates, length, width, and 
confidence score. Only objects with a confidence score 
higher than 0.5 are accepted to ensure high accuracy 
during the detection process. This information is 
transmitted to the robot control system via RS485 
communication, helping the robot accurately determine 
the location and size of the object to perform the pick-
and-place operation. With fast processing speed and 
high accuracy, the YOLOv11 model has well met the 
system requirements in the real production environment. 
Figure 4 shows the flowchart to train the object 
detection model. 

 
Figure 4. Flowchart to train the model for object detection   

2.3 Robot control methodology  
 

After determining the coordinates of the object in the 
RGB image through the YOLOv11 model, the vision 
system combines with the depth image data from the 
Intel RealSense D435 camera to calculate the three-
dimensional (3D) coordinates of the object. The 
information including the coordinates of the center of 
the object on the image plane (X, Y) and the depth (Z) 
are used to determine the actual position of the object in 
three-dimensional space. 

The 3D coordinates of the object are then converted 
to the coordinate system of the robot through the 
calibration process between the camera and the robot, 
ensuring synchronization between the axis systems. 
Next, the inverse kinematics problem is applied to con–
vert the 3D coordinates of the object to the corres–
ponding rotation angles of the robot joints. The inverse 
kinematics problem calculates the necessary motion 
parameters for each joint of the robot to bring the 
gripper to the correct position and orientation in space. 

These rotation angle parameters are transmitted to 
the robot control system via the PLC controller, 
enabling the robot to perform smooth and precise 
movements. This process allows the robot to identify 
and pick up objects efficiently, meeting the requi–
rements of accuracy and speed in industrial manufac–
turing applications. The combination of the vision 

system and the inverse kinematics problem not only 
improves performance but also expands the application 
capabilities of the robot in complex environments. 

 
2.3.1 Coordinate System Conversion 

 
Figure 5 illustrates the coordinate relations in the 
computer vision robotic system. The coordinate system 
OCXCYCZC represents the camera coordinate system, 
while the coordinate system ORXRYRZR refers to the 
robot's base coordinate system. To enable the robot to 
interact with objects based on visual data, it is necessary 
to convert the coordinates from the camera system to 
the robot system. This conversion can be mathe–
matically described using the following equation: 
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  (1) 

where R is the rotation matrix that represents the 
orientation of the camera relative to the robot's base, T 
is the translation vector that defines the displacement 
between the origin of the camera coordinate system and 
the robot coordinate system, [XR, YR, ZR]T, and [XC, YC, 
ZC]T are the coordinates of the object in the robot and 
camera coordinate systems, respectively. 

 
Figure 5. Robot and camera coordinate relation   

To convert the pixel coordinates obtained from the 
camera image into the camera's 3D coordinate system, 
we use the intrinsic camera parameters. This 
relationship can be expressed using the following 
equation, which utilizes the camera’s intrinsic matrix: 
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 (2) 

where u and v are the pixel coordinates of the object in 
the image, fx and fy are the focal lengths of the camera 
in the x and y directions (in pixels), u0 and v0 are the 
coordinates of the principal point (typically the image 
center), ZC is the depth of the object in the camera's 
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coordinate system, which is obtained from the depth 
image or stereo vision system. 

The equation above describes how to map pixel 
coordinates to 3D coordinates in the camera frame. To 
convert from pixel coordinates (U,V) to camera 
coordinates [XC, YC, ZC]T, the inverse of the camera's 
intrinsic matrix can be applied, with depth ZC as a 
scaling factor: 

0

0

C C
x

C C
y

u u
X Z

f
v v

Y Z
f

−
=

−
=

  (3) 

 

2.3.2 Motion control using PLC commands 
 
In the motion control system of the robot, the WPLSoft 
software is used to program and configure Delta PLCs 
for controlling the robot's movements. This software, 
developed by Delta Electronics, is lightweight and 
features a user-friendly interface compared to other PLC 
programming tools such as Mitsubishi's GX Works or 
ISPSoft. It supports programming for a wide range of 
Delta PLC models and allows for easy integration with 
robotic systems. 

One of the key commands for controlling motor 
movement in Delta PLC systems is the DDRVI com–
mand, which is used to generate output pulses that 
control the speed and direction of motors. This com–
mand is specifically designed for controlling stepper 
motors, servo motors, or other devices that operate 
based on pulse signals. 

The DDRVI command structure is as follows: 

1 2 1 2DDRVI S S D D   (4) 

where: 
S1: Represents the position pulse for the SV2 series 

motor. This 32-bit value specifies a range from -
2,147,483,648 to +2,147,483,647. If the value of S1 is 
0, it indicates that no output will be generated, and no 
action will take place. 

S2: Specifies the speed pulse for the SV2 series 
motor. This 32-bit value can be set within the range of 0 
to 200,000 Hz. 

D1: Specifies the pulse output pin. For the SV2 
series, the pulse output can be directed to pins Y0, Y2, 
Y4, or Y6. 

D2: Determines the direction of the pulse. The 
action of D2 depends on the sign of S1. If S1 is 
negative, D2 will be turned off. It will not immediately 
turn off after the pulse output ends; it will only turn off 
when the control contact specified by the command is 
deactivated. 

To convert the joint angles into the necessary 
number of pulses, the inverse kinematics calculations 
first provide the required angles for each joint. These 
angles are then converted into pulses by considering the 
step angle of the motor: 

Joint AnglePulse
ANGLER PER PULSE

=  (5) 

Each motor's rotation is divided into a number of 
discrete steps (pulses). The angle corresponding to one 
pulse, also known as the "pulse resolution," depends on 
the motor's specifications and the gear ratio of the joint. 

360
. .

Angle per pulse
N o pulses per revolution

°
=  (6) 

The DDRVI command also supports smooth 
acceleration and deceleration of the motor’s movement 
by adjusting the time parameters for these phases. The 
time required for acceleration and deceleration can be 
configured for each output pin (Y0, Y2, Y4, Y6) using 
specific data registers, ensuring smooth transitions 
during movement. The registers for adjusting 
acceleration and deceleration times are as follows: 

D1343: Configures the acceleration and deceleration 
time for the pulse output on Y0. 

D1353: Configures the acceleration and deceleration 
time for the pulse output on Y2. 

D1381: Configures the acceleration and deceleration 
time for the pulse output on Y4. 

D1382: Configures the acceleration and deceleration 
time for the pulse output on Y6. 

By adjusting these parameters, the robot’s motors 
accelerate smoothly to the desired speed and decelerate 
gradually to avoid jerky movements, which can cause 
mechanical stress or inaccuracies. This capability en–
hances both the performance and longevity of the system. 

 
3. EXPERIMENT RESULTS  

 
Figure 6 illustrates the training results for the YOLOv11 
model, demonstrating the loss reduction and perfor–
mance metrics over 100 epochs. The graphs indicate 
significant convergence in training and validation 
losses, alongside improvements in precision, recall, and 
mAP metrics. Table 3 summarizes the quantitative 
results of the model's performance on the test dataset, 
providing a breakdown of precision, recall, mAP@50, 
and mAP@50-95 for all classes and specific object 
categories (bottle, can, cup). The results demonstrate 
that the model achieves high detection performance 
across all categories, with particularly strong recall 
values for the "bottle" class and near-perfect precision 
for the "cup" class. The mAP@50 score of 0.985 
signifies robust detection capabilities, while the 
mAP@50-95 score of 0.942 confirms the model's ability 
to generalize across varying intersection-over-union 
(IoU) thresholds. This performance establishes the 
effectiveness of the YOLOv11 model in object 
detection tasks for industrial applications. 
Table 3. Performance metrics for object detection model. 

Class precision recall mAP50 mAP50-95 
All 0.973 0.987 0.985 0.942 

bottle 0.955 1.000 0.971 0.939 
can 0.970 0.975 0.994 0.942 
cup 0.993 0.986 0.990 0.945 

 
To evaluate the performance of the YOLOv11 

model in real-world scenarios, object detection was 
conducted under various conditions, including different 
backgrounds, object positions, and angles. 
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Figure 6. The training results for the YOLOv11 mode 

The evaluation included images containing one or 
multiple target objects alongside other unrelated items. 
As illustrated in Figure 7, the model consistently 
demonstrated high accuracy in detecting and classifying 
objects with confidence scores exceeding 0.8. Despite 
variations in environmental factors, such as object 
orientation or the presence of occlusions, the YOLOv11 
model effectively localized and identified objects such 
as bottles, cans, and cups. These results highlight the 
robustness and adaptability of the model, making it 
suitable for applications in complex and dynamic 
environments. The capability to maintain high precision 
and recall across diverse conditions further emphasizes 
the potential for integrating the system into industrial 
automation workflows. 

 
Figure 7. The detection and classification results  

 
Figure 8. The depth image was taken by the D435 camera  

Once the objects have been located in the RGB 
image, the depth values extracted from the depth image 
are used to determine the 3D coordinates of the objects.  
Figure 8 shows the depth image taken from the D435 
camera. After being aligned, the pixel coordinates of the 
objects in the RGB image and the depth image will be 
the same. Therefore, from the centroid coordinates of 
the object in the RGB image, we extract an ROI region 
to get the depth value of the object.  
Table 4. Performance metrics for 3D coordinate calculation. 

Object Errors (mm) 
X Y Z 

bottle 2.18 2.35 4.5 
can 2.20 2.41 4.8 
cup 2.51 2.44 5.3 

 
Table 4 shows the accuracy performance of the 3D 

vision system to calculate the position of three objects. It 
can be seen that the largest error is always at the Z 
coordinate (depth value), ranging from 4.5 mm to 5.3 mm 
depending on the object. The error in Z coordinates (depth 
value) when using depth cameras is often quite large, 
especially when measuring objects with curved surfaces. 
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The main reason is that the sensor receives many different 
depth values at points on the surface, and when taking the 
average value to extract the depth, this method cannot 
accurately reflect the true shape of the curved surface. In 
addition, the limited resolution of the sensor and noise 
from the environment or the device itself also contribute to 
the error. Although averaging helps reduce noise, it loses 
detailed information in curved or non-uniform areas. To 
minimize the error, advanced processing algorithms can be 
applied such as smoothing or 3D surface reconstruction, 
increasing the resolution of the camera, or using advanced 
filters such as Gaussian or median filters to reduce noise 
while preserving information. The error of the Z coordinate 
(depth value) not only directly affects the accuracy of the 
depth value but also leads to errors in the calculation of the 
X and Y coordinates. Since the X and Y coordinates are 
usually derived from the Z value through projections and 
formulas related to the camera's field of view, any 
deviation in the Z value will propagate and cause errors in 
determining the position on the X-Y plane. For the X and 
Y coordinates, the error ranges from 2.18 mm to 2.51 mm, 
which is much smaller than the Z error. 

 
4. CONCLUSIONS 

 
In this study, we developed a 4-degree-of-freedom pick-
and-place robotic system integrated with a high-
precision control mechanism and an intelligent 3D 
vision system. The robotic system employs an AC servo 
motor combined with a harmonic gearbox, ensuring 
high accuracy and stability in industrial environments. 
The vision system, built upon an Intel RealSense D435 
depth camera and a YOLOv11-based object detection 
model, enables real-time 3D localization of objects with 
high precision. The experimental results demonstrate 
that the proposed system achieves robust performance, 
with the YOLOv11 model obtaining a mAP@50 of 
0.985 and a mAP@50-95 of 0.942, ensuring reliable 
object detection in complex, dynamic environments. 

A key novelty of this research lies in the integration of 
stereo vision-based depth estimation with real-time object 
detection and robotic manipulation, which enhances the 
system’s ability to operate in unstructured industrial 
settings. The proposed coordinate system processing and 
correction techniques improve synchronization between 
the vision system and the robotic arm, ensuring precise and 
stable picking operations. Experimental evaluation of the 
3D coordinate calculation shows that the system achieves 
an average localization error of 2.29 mm in the X-axis, 
2.40 mm in the Y-axis, and 4.87 mm in the Z-axis. These 
errors are within an acceptable range for industrial pick-
and-place applications, demonstrating the system’s 
suitability for real-world deployment. 

Future research will focus on further improving depth 
estimation accuracy, integrating higher-resolution sensors, 
and optimizing error compensation algorithms to enhance 
the system’s adaptability to more complex industrial 
environments. 
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РАЗВОЈ ИНТЕЛИГЕНТНЕ ВИЗИЈЕ ЗА 
РОБОТСКИ СИСТЕМ ЗА БИРАЊЕ И 

ПОСТАВЉАЊЕ ОБЈЕКАТА 
 

Л.Х. Фуонг, Ф.К. Трунг, Ф.Т. Кујен, Т.Т.Т. Маи 
 

Овај рад представља аутоматизовани роботски 
систем pick-and-place који користи технологију 
стерео визије за детекцију и локализацију објеката у 
3Д простору. Стерео визија је оптималан избор за 
индустријске апликације кратког домета због своје 
способности да обезбеди тачна мерења дубине по 
разумној цени, надмашујући алтернативе као што су 
ЛиДАР или Time-of-Flight (ТоФ) камере у сличним 
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подешавањима. Предложени систем је дизајниран да 
поуздано ради у условима природног осветљења, 
што га чини веома погодним за примену у 
фабричким производним линијама. Интел 
РеалСенсе Д435 камера се користи за снимање РГБ 
и дубинских слика из окружења. Детекција објеката 
се врши коришћењем модела заснованог на 
ИОЛОв11, чиме се постиже висока тачност 
детекције са средњом просечном прецизношћу 

(мАП50) од 98,5% у свим класама објеката. Систем 
обрађује информације о дубини да би 
идентификовао највиши објекат, процењује његове 
3Д координате са минималним грешкама (просечне 
позиционе грешке испод 5,3 мм) и преноси податке 
роботском манипулатору за извршење задатка 
бирања и постављања. Експериментални резултати 
показују високу прецизност и поузданост система у 
детекцији објеката и 3Д локализацији. 

 


