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Flatness-Based Linear Active 
Disturbance Rejection Control for 
Tower Crane 
 
Controlling tower cranes presents substantial challenges due to their 
complexity, nonlinearity, and under-actuated dynamics. This paper 
introduces a control strategy integrating Linear Active Disturbance 
Rejection Control (LADRC) with differential flatness theory to achieve 
precise trolley positioning and effective swing elimination. To simplify the 
system model, we apply differential flatness theory to define the system 
output, allowing us to treat uncertainties and external disturbances as a 
singular total disturbance. The control methodology is grounded in 
LADRC principles. Additionally, we employ Simulated Annealing-Particle 
Swarm Optimization (PSO-SA) to fine-tune the controller parameters. The 
simulation results demonstrate that the proposed control method exhibits 
robust performance agains0074 uncertainties. 
 
Keywords: Tower crane, LADRC, Differential flatness, PSO-SA. 

 
1. INTRODUCTION  
 
As modern industry evolves, cranes have become 
essential transport equipment across various sectors 
[1,2]. Despite differences in mechanical structures and 
applications, all crane types share a common trait: the 
number of independent actuators is fewer than degrees 
of freedom (DOF), classifying them as underactuated 
systems. 

Underactuated systems provide notable benefits, 
including energy efficiency, cost reduction, weight 
savings, and enhanced flexibility compared to fully 
actuated systems. However, they present significant 
challenges due to limited control inputs. Consequently, 
there has been considerable research interest in crane 
systems over recent decades, particularly regarding the 
control issues associated with overhead cranes. 

In contrast to overhead cranes, tower cranes 
experience complex rotational motions that introduce 
additional inertial and centrifugal forces. Moreover, the 
intricate nonlinear kinematics of tower cranes enhance 
state coupling, making control tasks—such as precise 
positioning and swing elimination—more difficult. 
Thus, controlling tower cranes is inherently more 
challenging than controlling overhead cranes. 

 Numerous efforts have been made to address the 
control challenges of tower cranes using both 
feedforward and feedback strategies [3]. In recent years, 
various modern control techniques have been applied to 
tower cranes. For instance, robust control with input 
saturation has been explored for tower crane control [4]. 
Additionally, chattering-free sliding mode control has 
been implemented to handle uncertain disturbances [5]. 
Different variations of sliding mode control have also 
been investigated, including adaptive sliding mode [6-
7], non-singular fast terminal sliding mode [8], and 

periodic sliding mode control [9]. In [10], an adaptive 
tracking control approach has been proposed to adapt 
parameter uncertainties and external disturbances, while 
another adaptive output feedback control method has 
been developed in [11] that does not require velocity 
signal information, simplifying measurement processes. 

Intelligent control techniques have also been used to 
tower crane systems. Neural networks have been used to 
approximate uncertain or unknown dynamics [12-14], 
and reinforcement learning has emerged as an adaptive 
mechanism for controlling these systems [15-16]. 
Alongside robust and adaptive control methods, active 
disturbance rejection control (ADRC) has been 
researched for tower cranes, focusing on observing and 
mitigating total disturbances [17-18]. 

In addition to feedback control, several feedforward 
control strategies have been applied for tower cranes. 
One approach involves using smooth command inputs 
to reduce payload oscillations [19]. Another method 
combines input shaping with fuzzy logic to control the 
trolley while minimizing payload vibrations [20]. 
Furthermore, an adaptive input shaping scheme has 
been developed specifically for swing control, 
addressing variations in rope length and payload mass 
[21]. Additionally, flatness control has been utilized as a 
feedforward controller to suppress vibrations in elastic 
structure tower cranes [22-23]. 

Since tower cranes often operate in environments 
with numerous external disturbances, feedback control 
strategies are commonly employed. Nevertheless, the 
majority of these systems are characterized by their 
complexity and demand for multiple sensors and 
significant computational resources, rendering practical 
implementation challenging. Among these, Active 
Disturbance Rejection Control (ADRC) stands out as a 
promising approach due to its simplicity and effective 
disturbance rejection capabilities. Linear ADRC 
(LADRC) has been demonstrated to be an effective 
controller in various applications [24-30]. ADRC has 
also been utilized to control tower crane systems [17-
18]. However, due to the significant nonlinearity 
inherent in tower crane models, ADRC often needs to 
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be combined with fuzzy control [17] or modified to 
accommodate increased complexity [18]. The 
effectiveness of ADRC hinges on redefining the control 
problem by integrating various factors that affect system 
operation into a unified total disturbance [31]. 

To harness the efficacy of Active Disturbance 
Rejection Control (ADRC) while maintaining a 
minimally complex control structure, this paper presents 
a flatness-based Linear Active Disturbance Rejection 
Control (LADRC) approach for tower crane systems. 
Unlike previous studies, we convert the system into a 
canonical plant represented by cascaded integrators to 
facilitate the effective application of LADRC. Utilizing 
flatness theory [32], we confirm that the tower crane 
model qualifies as a flat system. The model is then 
transformed into a controllable canonical form with a 
flat output, enabling the design of a LADRC tailored for 
this configuration. 

Additionally, we introduce a cost function that 
integrates the system's settling time and payload swing 
angle to enhance overall performance. To optimize the 
controller parameters and minimize this cost function, 
we apply Simulated Annealing-Particle Swarm 

Optimization (PSO-SA) [33]. The key contributions of 
this research are as follows: 
• Flatness theory is employed to transform the tower 

crane system into a canonical form, facilitating the 
application of LADRC.  

• LADRC is designed for the equivalent canonical 
form of the tower crane system.  

• A cost function incorporating settling time and 
payload swing angle is proposed to evaluate system 
performance and controller parameters are 
optimized to minimize this cost function using 
Simulated Annealing - Particle Swarm 
Optimization (PSO-SA).  

The subsequent sections of this paper are organized 
as follows: an overview of the dynamics of a tower 
crane is provided in section 2. Section 3 demonstrates 
the flatness of the tower crane model. Section 4 details 
the controller design and the parameter determination 
process using Particle Swarm Optimization - Simulated 
Annealing (PSO-SA). The simulation results and 
analysis are presented in section 5. Finally, conclusions 
and directions for future research are shown in section 
6.  

 
Figure 1. System model of tower crane 
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2. DYNAMICS OF TOWER CRANES 
 
The tower crane system is shown in Figure 1 This study 
focuses solely on the translational movement of the 
trolley, the rotational motion of the tower boom, and the 
vibrational dynamics of the payload. Notably, variations 
in rope length and the elastic deformations of the crane 
are disregarded. The dynamic formulation (1) of the 
tower crane is derived using the Euler-Lagrange 
approach, detailed in [34]. The meanings of model 
parameters are shown in Table 1.  

Equation (1) exhibits a character of nonlinearity and 
complexity. Moreover, the first two equations in (1) 
describe the relation between system inputs and the 
motion of the tower crane. The last two equations 
express the relation between the payload’s swing angles 
and jib-trolley movement, conspicuously devoid of any 
direct system inputs. Consequently, the system is 
classified as under-actuated, featuring a mere two inputs 
yet yielding four outputs. This complexity presents a 
formidable challenge in designing a controller suitable 
for a tower crane. 
Table 1. List of tower crane model parameters 

Symbol Meaning 
mt Trolley mass (kg) 
mp Payload mass (kg) 
R Trolley displacement (m) 
γ Jib slew angle (rad) 
φ,θ Payload swing angle (rad) 

l Length of rope (m) 
g Gravity acceleration (m/s2) 
ut Control force of trolley translation (N) 
ur Control torque of jib slew (N.m) 

 
3. FLAT ATTRIBUTE DETERMINATION 
 
Given the constraint of limited swing angles, where the 
maximum oscillation angles of the tower crane φmax and 
θmax are constrained to 10°; the proposed control 
methodology guarantees adherence to this condition. 
Under this assumption, the approximation is satisfied: 
sinα ≈ α; cos α ≈ 1with α = φ,θ. Consequently, the 
coordinates of the payload (x, y, z) in the coordinate 
system OX1Y1Z1 affixed to the tower crane are 
delineated accordingly by the following equations: 

cos cos sin
sin sin cos

x R l l
y R l l
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⎪ = −⎩

 (2) 

By introducing an additional system variable, na–
mely the cable tension force T, the motion of the paylo–
ad can be written according to Newton’s second law as: 
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From (2) and (3), all system variables (R, γ, φ, θ) can 
be parametrized as functions of x, y, x , y , as follows: 
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 (4) 

By expressing all state variables in terms of load 
coordinates (x, y), it follows that the tower crane system 
possesses flatness, with load coordinates serving as the 
flat output. Leveraging this flatness property, the tower 
crane model can be transformed into a canonical form, 
facilitating the straightforward design of a simple yet 
efficient controller for the system.  
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Figure 2. Structural Diagram of ADRC Controller  

4. DESIGN OF LARDC METHOD FOR TOWER 
CRANE 

 
4.1 Controller Structure 
 
As demonstrated earlier, a tower crane is a flat system 
where the payload coordinates (x, y) serve as the flat 
output. This characteristic enables the transformation of 
the tower crane model into canonical form, facilitating 
the design of a Linear Active Disturbance Rejection 
Controller (LADRC) tailored for the converted system. 
The structural diagram depicting the comprehensive 
system is delineated in Figure 2. 

In Figure 2, Rd, γd, φd, θd symbolize the reference 
positions for the trolley along the jib, the jib's angular 
rotation, and the payload's oscillation angles. Corres–
pondingly, R, γ, φ, θ  represent the actual tower crane 
model outputs. Likewise, (xd, yd) and (x, y) denote the 
reference flat output and the actual flat output, 
achievable through computations based on the tower 
crane's reference and actual positions. The setup 
integrates a Tracking Differentiator (TD), a core 
controller, and a Linear Extended State Observer 
(LESO). The TD softens the flat reference signal and 
computes the reference state input vij(i = x, y; j = 1, 2, 3, 
4) for the controller. Concurrently, the LESO estimates 
the model states zij(i = x, y; j = 1, 2, 3, 4) alongside the 
total disturbances zx5, zy5 inherent in the transformed 
model. The controller derives the control signal by 
considering the estimated total disturbances and the 
differences (vij – zij) between the reference state inputs 
and the estimated states.   

Set Fx and Fy respectively are the two forces acting 
on the payload along the x and y axes in a fixed 
coordinate system OX1Y1Z1. The relation between (Fx, 
Fy) and (Ut, Ur) is expressed in (5): 
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Set the state variables as x1 = x, x2 = x , x3 = x , x4 = 
x(3), y1 = y, y2 = y , y3 = y , y4 = y(3). From equations 
(1), (4), and (5), the tower crane model is converted to 
the form as follows: 
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functions fx and fy correspond to total disturbances of the 
system. It is noted that LESO will estimate these two 
functions, the detailed calculation of them is not 
necessary. 

 Next, to decouple the x and y channels, we set   
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And the model (6) becomes: 
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Choosing (b0x, b0y) = const are the estimated values 
of bx, by respectively, (9) can be rewritten as (10). 
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where (s0x, f0y) are the total disturbances, 
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 A LADRC controller will be designed for the sys–

tem in (10), where the control signal (Ux, Uy) are 
established from the reference state vij, estimated states 
and estimated total disturbances zij of the system. 

 
4.2 LADRC Controller Design 

4.2.1 Design a Tracking Differentiator (TD) 
 
In the context of the tower crane system featuring the 
flat output (x, y), the designated reference flat output is 
denoted by (xd, yd, zd). According to (2): 
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In (11), xd and yd are the reference horizontal and 
vertical displacement of the payload. Angles φd and θd 
are the desired oscillation angles of the system, and they 
are set to 0 for vibration suppresion. Therefore, (11) can 
be furthert implied as: 
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The input of the TD can be calculated using (12). 
The TD is designed as follows: 

1 2

2 3

3 4

4 1 0 2 3 4

                , ( , )
                  
( ( ( ( ) 4 ) 6 ) 4 )

i i

i i

i i

i i i i i i i i i i

v v
v v i x y
v v
v r r r r v v v v v

=⎧
⎪ = =⎪
⎨ =⎪
⎪ = − − + + +⎩

 (13) 

where,  
 vi0 is the set value corresponding to the xd, yd. 
 vi1 is the orbit converted by the TD. 
 vi2 is a derivative of vi1. 
 vi3 is the second derivative of vi1. 
 vi4 is the third derivative of vi1. 
 ri is the time constant used to adjust the perfor–
mance of the TD unit. 

4.2.2 Design of a Linear Extended State Observer 
(LESO) 

 
A Linear Extended State Observer is built as follows: 
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In which zi1, zi2, zi3 and zi4 are the estimated values of 
. .. (),i  i, I, i3, and zi5 is the estimated value of f0i (i=x, 

y). 1 2 3 4 5, , , ,i i i i iβ β β β β  are the coefficients of the ob–
server. To ensure the convergence of the observer, the 
coefficients must satisfy the following relationship: 
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where oiw lies on the left half-side of the complex plane. 
Therefore, the coefficients of the observer are calculated 
as follows: 
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with woi is the bandwidth of the observer. 

4.2.3 State feedback controller design 
 
The control law can be designed as follows: 
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In which αi1, αi2, αi3, and αi4 are the coefficients of 
the controller. 

To ensure the stability of the system, four closed-
loop poles are placed at -wci. Then, the coefficients of 
the controller must be satisfied: 

4 3 2 4
1 2 3 4 ( )i i i i cis s s s s wα α α α+ + + + = + αi1  (18) 
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where oiw lies on the left half-side of the complex plane. 
Therefore, the coefficients of the controller are calcu–
lated as follows: 
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With wci is the bandwidth of the controller. 
Through fine-tuning w0i and wci, one can identify the 

optimal controller and observer tailored for the tower 
crane system. 

 
4.3 Controller Parameter Optimization 
 
Due to the alignment between w0i and wci, and the un–
certain rules for synchronizing the settings of the ADRC 
controller, adjusting its parameters is still a significant 
challenge. By studying intelligent optimization algo–
rithms in the control field, the PSO-SA optimization 
algorithm is proposed to determine the optimized para–
meters for ADRC controllers. PSO-SA [33] is an ef–
fective global optimization method that can avoid local 
optimization points. 

The optimization problem’s goal is to minimize the 
settling time of the trolley-jib motion and the total 
deviation of the swing angle during operation while the 
control input signal is limited. On that basis, the fitness 
function for the optimal algorithm is chosen as follows: 

( ) ( )( )
0

xlJ T t t dtμ ϕ θ
∞

= + +∫  (20) 

In which, 
• ( )max ,xl xlRT T Txlγ=  is the maximum of the set–

tling time of the trolley and jib motion;  

• ( ) ( )( )0
t t dtϕ θ

∞
+∫ is the total deviation of the 

two swing angle values from the beginning to the 
end. 

• μ is the scale parameter between setting time and 
total deviation of swing angles. In this research, μ is 
set to be 2. 

The control input signals for trolley and jib control 
are constrained within the threshold limits of Utlim and 
Urlim, respectively. In this study, for simulation pur–
poses, Utlim and Urlim are predetermined at a value of 10. 

 
5. SIMULATION RESULTS 
 
Simulation was conducted within the Matlab/Simulink 
framework to validate the performance of the proposed 
controller. A comparative analysis was also performed 
between the proposed controller and the SMC 
controller. The system model parameters are delineated 
in Table 1. The simulation scenario is described as 
follows: Initially, the trolley is positioned at R0 = 0.5 m, 
and the jib is aligned at an angle of γ = 0°. The target 
positions for the trolley and jib are set at Rd = 2 m and γd 

= 60°, respectively. The simulation outcomes are 
depicted in Figure 5. 
Table 2. System simulation model parameters 

g l mt mp J w0x 
9.81m/s2 1m 7kg 1kg 6.8kg.m2 40.765 

wcx w0y wcy rx ry - 
1.699 46.131 1.979 1.186 1.186 - 

 
(a) First scenario – trolley motion 

 
(b) First scenario – jib motion 

 
(c) First scenario – swing angle ϕ 

 
(d) First scenario – swing angle θ 
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(e) First scenario- trolley control input 

 
(f) First scenario – jib control input 

Figure 5. Simulation results 

Employing the proposed controller ensures rapid and 
precise positioning of both the trolley and jib. The 
trolley's settling time is recorded at 7.65 seconds, while 
the jib achieves stability in 5.92 seconds. Additionally, 
the maximum swing angle remains minimal (under 2 
degrees), leading to swift suppression of payload 
vibration. A comparison with the SMC controller was 
conducted to validate the effectiveness of the proposed 
controller. The comparative results are presented in 
Figure 5 and Table 2. 
Table 3. Comparison results between the proposed and the 
SMC controllers 

Parameter SMC Flatness-ADRC 
Trolley settling time 7.15 7.65 

Jib settling time 6.18 5.92 
 φmax  2.65 1.04 
θmax  1.71 1.75 

Utmax (N) 2.15 1.45 
Urmax (Nm) 10 8.2 

 
(a) Payload mass change- trolley position 

  
(b) Payload mass change – jib position 

 
(c) Payload mass change – swing angle ϕ 

 
(d) Payload m/ass change – swing angle θ 

Figure 6. Simulation results of payload mass change 

From the comparison results in Table 2, it is 
observed that the proposed controller's settling time for 
trolley motion is slightly slower than that of the SMC 
controller, while the settling time for the jib motion is 
faster. The difference in settling times is marginal (0.5 
seconds for trolley motion and 0.26 seconds for jib 
motion). However, the maximum oscillation amplitude 
of the payload oscillation angles is significantly smaller 
with the proposed controller (φmax of SMC is twice as 
large as the proposed controller). Notably, the number 
of payload oscillations with the SMC is greater than 
with the proposed controller. Thus, the effectiveness of 
the proposed method is clearly demonstrated. 

Furthermore, to demonstrate the robustness of the 
proposed controller under system uncertainties, the 
following simulations were conducted: 

• The payload mass was varied to 2 kg and 4 kg. 
• The rope length was adjusted to 2 m and 3 m. 
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The simulation results are illustrated in Figure 6 for 
varying payload mass and Figure 7 for changing rope 
length. 

The system remained stable, exhibiting excellent 
position tracking and effectively suppressed payload 
vibration despite the variations in payload mass and 
rope length. As shown in Figure 6, an increase in 
payload mass slightly prolongs the settling time, while 
the oscillation amplitude diminishes. In Figure 7, as the 
rope length increases, the maximum oscillation angle 
φmax increases, whereas θmax slightly decreases. The 
settling time for both trolley and jib motions increases 
marginally. The controller demonstrates strong resili–
ence to disturbances, maintaining performance even wi–
th inaccurately assessed payload mass and rope length.  

 
(a) Rope length change- trolley position 

 
(b) Rope length change - jib position 

 
(c) Rope length change- swing angle ϕ 

 
(d) Rope length change- swing angle θ 

Figure 7. Simulation results of rope length change. 

6. CONCLUSION 
 
This paper proposes a flatness-based Linear Active 
Disturbance Rejection Control approach for tower crane 
systems. The tower crane system is reformulated into a 
canonical form, thereby enabling the effective imple–
mentation of Linear Active Disturbance Rejection 
Control. The designing process is clearly specified and 
the control parameters can be determined using Simu–
lated Annealing - Particle Swarm Optimization to mini–
mize swing angles and settling time. Despite the sys–
tem’s inherent lack of an implementation mechanism 
and the dynamic model’s complex nonlinear constraints 
and coupling among state variables, the proposed 
flatness-based ADRC controller successfully meets the 
anti-vibration requirements. The system rapidly reaches 
a steady state, completely suppressing residual osci–
llations. Compared to the SMC controller, the proposed 
controller exhibits superior performance. Additionally, 
the robustness of the proposed controller against model 
parameter uncertainties has been validated through 
simulation.  

With a clear and streamlined design process, the 
proposed methodology can be readily implemented in 
practical applications utilizing widely adopted industrial 
controllers, such as Programmable Logic Controllers 
(PLCs).In the near future, the practical implementation 
of the proposed controller in a tower crane system will 
be evaluated. Furthermore, the flexibility of the tower 
crane structure will be considered. 
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КОНТРОЛА ОДБАЦИВАЊА ЛИНЕАРНИХ 

АКТИВНИХ ПОРЕМЕЋАЈА ЗАСНОВАНА НА 
РАВНОСТИ ЗА ТОРАЊСКИ КРАН 

 
Т.Л. Тонг, Т.А. Нгујен, М.Д. Донг 

 
Контролисање торањских кранова представља зна–
чајне изазове због њихове сложености, нелинеар–
ности и недовољно активиране динамике. Овај рад 
представља стратегију управљања која интегрише 
Linear Active Disturbance Rejection Control (LADRC) 
са теоријом диференцијалне равности да би се пос–
тигло прецизно позиционирање колица и ефективно 
елиминисање замаха. Да бисмо појед–ноставили сис–
темски модел, примењујемо теорију диференцијалне 
равности да дефинишемо излаз система, омогу–
ћавајући нам да третирамо несигур–ности и спо–
љашње сметње као сингуларни тотални поремећај. 
Методологија контроле је заснована на принципима 
LADRC. Поред тога, користимо симу–лирану опти–
мизацију роја честица жарења (PSO-SA) за фино 
подешавање параметара контролера. Резултати симу–
лације показују да предложени метод управљања 
показује робусне перформансе у односу на 0074 
несигурности. 

 


