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Deep Learning-based Approach for 
Gesture Recognition with Static Hand 
Representation 
 
In the era of Artificial Intelligence (AI), our science and technology have 
reached to a lot of milestones, especially in the field of human-robot 
interaction (HRI). By fusing with the image processing techniques, AI-
based strategy to enhance mutual recognition of HRI via hand signs is 
proposed in this investigation. Primarily, robotic hardware, theoretical 
computation of gripper design and vision-based techniques are introduced 
to establish the working environment. Then, the proposed framework 
including controller design and interactive platform is demonstrated. 
Several hand signs from human operator are collected and trained. Our 
approach is experimented in two cases for validating the effectiveness and 
properness of the proposed method with varying light condition. From 
these results, it can be seen obviously that this scheme is applicable in 
different fields such as human-aware collaboration, cognitive robot or sign 
language translation system.  
 
Keywords: Deep learning, Hand gesture recognition, Human-robot 
interaction, Computer vision, Motion control. 

 
 

1. INTRODUCTION  
 

Presently, robots appear everywhere in our lives, i.e. 
mass production [1], assembly [2], autonomous tasks [3, 
4], welding [5], re-configurable body [6], bartender [7] 
or musical player [8]. Instead of working alone in the 
past time, there is a need to launch reciprocated 
communication between human and robot. To proceed 
this idea, robot must capture any motion of an operator 
and analyse them. With the best knowledge of robot, it 
can deliver more proper actions and adaptive responses 
due to many necessities of human.  

In general, human contact is performed via the 
communicative information in different manners such as 
voice [9], image [10] or gesture [11]. Gestures are an 
inevitable action of daily human life. Gesture 
recognition via image processing is a method that 
integrates the complicated perception with computer 
vision. It is used in various fields, including engineering 
and research, and is indispensable for improving 
human– machine interaction. Owing to the continuous 
changes of natural gestures, the existing gesture 
detection technologies are unable to completely attain 
socially human–machine communication. 

There are two types of gesture recognitions, for exa–
mple static and dynamic gesture recognitions [12]. 
Basically, human hand is fixed for recognition and that 
aspects such as hand sign, shape, and location do not 
alter. Dynamic gestures encompass sequential frames of 
static gestures, inferring that it could be stored in video 
format or movie. However, techniques which are dep–
loyed in static recognition successfully, are also utilized 

in dynamic one. Hence, most of researchers focus on 
investigating those developments for static gesture 
recognition.  

The organization of this research is constructed as 
following. Section 2 summarizes the cutting-edge tech–
nologies in such domains. They are investigated and 
categorized in sub-items, for instance challenges, the 
proposed solutions, hardware requirements and limita–
tions. Later, in section 3, the structure of robot, mecha–
nical computation of gripper as well as electrical 
components. Section 4 demonstrates our approach com–
prising the framework of controller design, interactive 
platform, and training procedure. In section 5, the pro–
posed method is verified in several experiments. Also, 
related discussions from these results of validations are 
noted. The content of section 6 consists of some conc–
lusions and potential developments for practitioners.  

 
2. PREVIOUS WORKS  

 
Hand gesture recognition is designated to enable the 
information exchange between human and machine or 
robot. To capture the communicative information, sen–
sing measurement [13] or visual data via digital camera 
[14] could be observed. In fact, the formers used many 
sensing devices in one robotic system. It causes some 
troubles because of the complex fusion techniques, 
difficulties in sensor management as well as high main–
tenance cost. Recently, most of investigators concern on 
computer vision and several image processing methods. 
It is reasonable for them to fuse the advanced 
algorithms such as filtering process, machine learning 
techniques and adaptive control strategies.  

In Table 1, summary of recent researches in these 
domains are listed. They are classified into two 
strategies such that sensor-aware method uses only non-
visual data to record the working conditions and orders 
from human while vision-based approach is examined 
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by image or video. Although there has been significant 
progress in hand gesture recognition and human-robot 
interaction, most existing solutions are limited to make 
real-world deployment feasible. Sensor-based appro–
aches such as data gloves or sEMG systems obtain pre–

cise movements at the expense of being cumbersome, 
needing calibration. They are also user-specific due to 
the variability of hand sizes, muscle fatigue, or sensor 
placement. Wearable systems in dynamic environments 
are less scalable and more difficult to generalize. 

Table 1. List of the cutting-edge techniques in related fields.  

Approach Type of 
strategy 

Author(s) Key challenge Proposed method Hardware device Restriction(s) 

Se
ns

or
-b

as
ed

 m
et

ho
d 

D
at

a 
gl

ov
e 

Derek W. 
Orbaugh 
Antillon et 
al [15] 

Difficulty in underwater 
hand gesture 
communication due to 
factors such as murky 
water, environmental 
obstacles, or loss of buddy 
attention 

Researchers developed a 
smart dive glove to 
capture finger move–
ments, and machine 
learning algorithms to 
classify 13 common 
diving hand gestures 

Five waterproofed 
sensors, 
StretchSense 10-
channel capacitance 
measurement board 

Unintentional mo–
vements, such as 
swimming stro–
kes, could mista–
kenly be recog–
nized as inten–
tional gestures 

Haiming H. 
et al [16] 

Traditional drones are 
operated via remote 
controllers, resulting in 
weak human-machine 
interaction and limited 
operator feedback 

They investigated a data 
glove to recognize hand 
gestures by detecting 
finger bending and palm 
flipping 

10 MPU6050 IMU 
sensors, 
STM32F103 
microcontroller 

During dynamic 
gestures, noise 
like hand jitter 
introduces 
additional errors 

El
ec

tro
m

yo
gr

ap
hy

 (E
M

G
) 

Wu, Y.,et 
al [17] 

Most existing issues focus 
on whole-hand motion 
recognition, while subtle 
finger movements and 
pinch forces were not 
studied 

An sEMG-based pattern 
recognition system was 
invented to predict pinch 
force strength and 
classify finger 
movement types 

3-channel sEMG 
from forearm 
muscles and pinch 
force using a force 
transducer 

Performance may 
vary with muscle 
fatigue or sensor 
placement 
variation 

Cao, L., 
Zhang et al 
[18] 

Gesture recognition from 
low sampling frequency 
sEMG signals faces 
accuracy loss compared to 
traditional high-frequency 
systems 

A novel AMPSO-SVM 
algorithm was innovated 
to comprise feature 
extraction, feature 
selection, classifier 
optimization and 
adaptive mutation 
probability 

8 channels of 
sEMG sensors 
placed around the 
forearm 

Classification 
accuracy still 
depends on signal 
quality, electrode 
placement, and 
muscle fatigue 

W
ifi

 a
nd

 ra
da

r 

Rahaman, 
H. et al 
[19] 

The main technical 
challenge for RF-sensing 
is the short duration of 
human walking events, 
which limits the amount 
of collected signal data 
for analysis 

A reverse RF-sensing 
system consists of single 
transmitter and multiple 
receivers which 
significantly increase 
RSS sample size and 
capture short-lived 
walking events by CNN  

IEEE 802.15.4 
CC2420 
transceivers, 1 node 
acts as a transmitter 
and 5 nodes as 
receivers 

Accuracy varies 
depending on the 
layout complexity 
(higher in simple 
environments, 
lower in complex 
corridors) 

V
is

io
n-

ba
se

d 
m

et
ho

d 

Im
ag

e 
gr

ay
sc

al
in

g 

Yakkati, R. 
R. et al 
[20] 

Efficiently classifying 
hand gestures from 
thermal grayscale images 
while ensuring low 
inference time and small 
model size suitable for 
edge devices like 
Raspberry Pi is a central 
challenge 

A custom deep (CNN) 
architecture was studied 
to optimize for grayscale 
thermal hand gesture 
images using the Adam 
optimizer for training 
and cross-entropy loss 
for classification 

FLIR Lepton 3.5 
thermal camera 
(160×120 
resolution) with 
PureThermal 2 
breakout board 
connected to 
Raspberry Pi 4 

Thermal imaging 
may not capture 
fine hand details 
compared to RGB 
or depth sensors, 
potentially 
limiting scalability 
to more diverse 
gestures 

Im
ag

e 
sm

oo
th

in
g 

Le, H. P. et 
al [21] 

Real-time and precise 3D 
object detection in chang–
ing industrial environ–
ments and robot and ca–
mera coordinate synch–
ronization, especially 
under occlusions, varying 
lighting conditions, and 
clutter are two key 
challenges 

A deep learning object 
detection model based 
on single-shot that was 
trained to specifically 
detect three classes 
(bottle, can, cup) in real 
time 

Intel RealSense 
D435, 4-DOF 
Robotic Arm 

Precision of depth 
estimation, 
especially along 
the Z-axis, is the 
primary constraint 
(average error is 
in the range of 
4.5–5.3 mm) 

Ed
ge

 d
et

ec
tio

n 

Saez, B., 
Mendez et 
al [22] 

The main challenge 
addressed is how to 
design a gesture 
recognition system that is 
privacy-preserving, low-
power, low-latency, and 
entirely self-contained on 
edge devices, using only 
ultrasound transceivers 

They implemented a 
gesture recognition 
system using ultrasonic 
active sonar principles 
with two transceivers to 
detect 2D arm/hand 
gestures 

Two ultrasound 
transceivers, two 
microcontroller 
modules 
(XMC4700), 
Bluetooth HC-05 
module, 
neuroshield AI 
board (option) 

Gestures must 
occur in a fixed 
2D plane in front 
of the sensors due 
to transducer 
directionality—
out-of-plane 
gestures are not 
detected 



460 ▪ VOL. 53, No 3, 2025 FME Transactions
 

M
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al
 

im
ag

e 
pr

oc
es

si
ng

 Duan, K., 
& Zou, Z. 
[23] 

Most construction robots 
are either pre-
programmed or controlled 
with low DoF joysticks, 
which are insufficient for 
high DoF robotic systems 

A four-module 
framework for VR-based 
gesture-controlled 
teleoperation was 
designated to operate 
independently of the 
camera coordinate 
system 

Oculus Quest 2, 
UR3 Universal 
robotic arm, OAK-
D-S2 RGB camera 

Size mismatch 
and kinematic 
changes between 
human and robotic 
hands can still 
lead to minor pose 
inaccuracies 

Sk
in

 c
ol

or
 

se
gm

en
ta

tio
n 

Espejel-
Cabrera, J. 
et al [24] 

Traditional image 
segmentation methods 
perform poorly in 
uncontrolled 
environments due to 
lighting sensitivity, low 
contrast, and visual noise 

A 7-step process for 
gesture recognition from 
video, with key 
innovations was 
presented 

Consumer-grade 
cameras (e.g., 
smartphone or 
standard webcams) 

Variations in skin 
tones or 
occlusions may 
affect 
performance 

 
Vision-based techniques, on the other hand, have 

been well-liked due to their non-obtrusiveness. They are, 
however, constrained in terms of illumination sen–
sitivity, background noise, and occlusion. The majority of 
recent research is based on pre-trained models or con–
trolled laboratory datasets that generalize poorly to real-
world applications. Some work in video-based dynamic 
gestures, which are computationally expensive and have 
delay, unsuitable for real-time control applications. 

Besides, most systems fail to include the gesture 
recognition system with closed-loop control and feed–
back loops within robotic systems. The absence of real-
time or bi-directional communication reduces the func–
tionality of HRI in dynamic settings. With these limi–
tations, our study introduces a deep learning-based static 
gesture recognition system trained with user-specific 
data collected under varying lighting and background 
conditions. Our contributions in this works are (i) to 
denote a novel concept of human-robot interaction via 
the recognition of hand sign, (ii) to build a platform for 
both hardware device and algorithm, and (iii) to prove 
successfully the efficiency and suitability of the 
proposed techniques in the real-world system. 

 
3. PRELIMINARIES  

 
In the first part of this study, hardware platform and 
theoretical computation are depicted to clarify internal 
components and architecture of mechanism for our 
approach. 

 
3.1 Structure of robot 

 
Our robotic system totally has four DoFs which provide 
rotational movements. To estimate both location and 
direction of this end-effector, it is necessary to utilize 
the kinematic equations of our robot from the specified 
values of joint parameters.  
In each link, local coordinate XiYiZi is attached and 
transformation matrix 1i

iT
−  is derived according to 

represent the pose of this joint to the others. The 
forward kinematics of its platform are modeled using 
Denavit–Hartenberg (D–H) parameters as Table 2 to 
systematically describe joint transformations. Fig. 1 
exemplifies theoretical diagram of our robot with 
coordinate system and where 

αi: Link twist — the angle between zi-1 and zi 
measured about the xi axis 

ai: Link length — the distance along the xi axis from 
the intersection with zi-1 to the origin of frame i 

di: Link offset — the translation along the zi-1 axis 
from the origin of frame i - 1 to the intersection with the 
xi axis 

θi: Joint angle — the rotation about the zi-1 axis from 
xi-1 to xi 

 
Figure 1. Theoretical diagram of our robot. 

Table 2. List of D-H parameters in our robot. 

Link αi (rad)  a (m) d(m)  θ 
1 π/2 0 d1 θ1 
2 0 a2 0 θ2 
3 0 a3 0 θ3 
4 0 a4 0 -(θ2 + θ3)  
 
As following, A series of homogeneous transfor–

mation matrices 1i
iT

−  are identified for all four links.  

1

cos sin cos sin sin cos
sin cos cos cos sin sin

0 sin cos
0 0 0 1

i
i

i i i i i i i

i i i i i i i

i i i

T
a
a

d

θ θ α θ α θ
θ θ α θ α θ

α α

− =

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (1) 

cosθi, sinθi: Trigonometric functions representing 
the rotation about the z  axis 

cosαi, sinαi: Trigonometric functions representing 
the rotation about the x  axis 

ai cosθi, ai sinθi: Determine the translational displa–
cement along the x  axis due to the link length 

di: Translation along the z axis due to the joint offset 
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Totally, the final transformation matrix 0
4T  

encapsulates the entire robotic configuration in 
Cartesian workspace. It permits to compute both 
position and orientation analysis of the end-effector.  

1 1

1 10
1

1

0 0
0 0

0 1 0
0 0 0 1

c s
s c

T
d

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (2) 

2 2 2 2

2 2 2 21
2

0
0

0 0 1 0
0 0 0 1

c s a c
s c a c

T

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3) 

3 3 3 3

3 3 3 32
3

0
0

0 0 1 0
0 0 0 1

c s a c
s c a c

T

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4) 

23 23 4 23

23 23 4 233
4

0
0

0 0 1 0
0 0 0 1

c s a c
s c a c

T

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (5) 

where 
0
1T : homogeneous transformation 4 × 4 matrix rela–

ted frame 1 to frame 0 
1
2T : homogeneous transformation 4 × 4 matrix re–

lated frame 2 to frame 1 
2
3T : homogeneous transformation 4 × 4 matrix re–

lated frame 3 to frame 2 
3
4T : homogeneous transformation 4 × 4 matrix rela–

ted frame 4 to frame 3 
Hence,  

0 0 1
2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2 2 1

.

0
0 0 0 1

T T T
c c c s s a c c
s c s s c a s c
s c a s d

=

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥+
⎢ ⎥
⎣ ⎦

 (6) 

We denote the following symbols as  

( ) ( )

1 2 2 3 3

4 4 1 1 1 1

2 2 2 2

23 2 3 23 2 3
0 0 1 2
3 1 2 3

s sin cos
sin cos
sin cos

. .

d d a L a L
a L c
s c
s c

T T T T

θ θ
θ θ
θ θ θ θ

= = =

= = =
= =

= + = +

=

 (7) 

1 23 1 23 1 2 1 2 3 1 23

1 23 1 23 1 2 1 2 3 1 23

23 23 2 2 3 23 10
0 0 0 1

c c c s s a c c a c c
s c s s c a s c a s c
s c a s a s d

− +⎡ ⎤
⎢ ⎥− − +⎢ ⎥=
⎢ ⎥+ +
⎢ ⎥
⎣ ⎦

  

And, 

0 0 1 2 3
4 1 2 3 4

1 1 2 1 2 3 1 23 4

1 1 2 1 2 3 1 23 4

2 2 3 23 1

. . .
0
0

0 1 0
0 0 0 1

T T T T T
c s a c c a c c a
s c a s c a s c a

a s a s d

=

+ +⎡ ⎤
⎢ ⎥− + +⎢ ⎥=
⎢ ⎥+ +
⎢ ⎥
⎣ ⎦

 (8) 

where  
Then, the Jacobian matrix J is used to convert joint 

velocities into end-effector velocities, an important 
requirement for control and trajectory planning. 

4
0
0
0,4

1 2 3 4

1 2 3 4

v

v v v v

v J
q

J

J J J J
q

J J J J

ω

ω ω ω ω

ω

⎡ ⎤ ⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (9) 

With 

( )0 0 0
1 1vi i n iJ z O O− −= × −   (10) 

0
1i iJ zω −=   (11) 

And 

1
0
1 1

0

s
z c

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

  (12) 

1
0
2 1

0

s
z c

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

  (13) 

1
0
3 1

0

s
z c

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

  (14) 

0
1

1

0
0O
d

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (15) 

2 1 2
0
2 2 1 2

2 2 1

a c c
O a s c

a s d

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎣ ⎦

  (16) 

2 1 2 3 1 23
0
3 2 1 2 3 1 23

2 2 3 23 1

a c c a c c
O a s c a s c

a s a s d

+⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 (17) 

2 1 2 3 1 23 4
0
4 2 1 2 3 1 23 4

2 2 3 23 1

a c c a c c a
O a s c a s c a

a s a s d

+ +⎡ ⎤
⎢ ⎥= + +⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 (18) 

Then, 

( )
( )

1 2 2 3 23 4

1 1 2 2 3 23 4
0

v

s a c a c a
J c a c a c a

⎡ ⎤− + +
⎢ ⎥= + +⎢ ⎥
⎢ ⎥⎣ ⎦

 (19) 
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( )
( )

1 2 2 3 23

2 1 2 2 3 23

2 2 3 23 4

v

c a s a s
J s a c a c

a c a c a

⎡ ⎤− +
⎢ ⎥= − +⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 (20) 

3 1 23

3 3 1 23

3 23 4

v

a c s
J a s s

a c a

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥+⎣ ⎦

  (21) 

And 

4

4

0
0vJ

a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (22) 

1

0
0
1

Jω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (23) 

1

2 1
0

s
J cω

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

  (24) 

1

3 1
0

s
J cω

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

  (25) 

1

4 1
0

s
J cω

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

  (26) 

The Jacobian is essential for inverse kinematics, 
control, and trajectory planning, allowing the controller 
to translate desired end-effector motions into 
appropriate joint commands. 

 
3.2 Design of mechanical gripper 

 
In our design, a parallel-linkage-based gripper is 
selected due to its mechanical strength, compactness, 
and finger orientation under working conditions. 
Symmetric linkages have four major pivot points, 
enabling synchronized motion of the fingers. The 
mechanical parameters like link lengths (L1 = L2 = 40 
mm) and base distances (d1 = 54 mm, d2 = 20 mm, d3 = 
43 mm) were calculated to ensure the gripper is able to 
grasp objects with maximum width 80 mm.  

Important design limits such as collision avoidance 
between links, admissible angular range, and mecha–
nical clearances are addressed. The motion profile of the 
gripper is optimized in a way that facilitates large 
opening span with tight closing force. Mechanical 
linkage converts rotary motion of a servo motor into 
synchronized lateral motion of the gripping jaws and is 
optimally suited for gesture-commanded gestures such 
as pick-and-place or interactive object manipulation. 

Subsequently, diagram of a gripper with parallel 
linkage is shown in Fig. 2, where d1, d2 are the distance 
between fixed points A – B and C – D; and d3, d4 are the 
distance between fixed points A – D and B – C. L1, L2, 
L3are lengths of the corresponding links. 

 
Figure 2. Theoretical diagram of our robotic gripper. 

Owing to the width of target object as 54 mm, we 
choose the initially opening range of our gripper from 0 
to 80mm. Firstly, it is essential to estimate the optimal 
distance of d2 such that two bars CC’ and DD’ are not 
touched when the gripper is fully closed. Based on their 
dimensions, we select:  

2 20mmd =   (27) 

Similarly, the distances d1, d3, are evaluated so that 
when the gripper is fully closed, two bars AA’ and DD’ 
are not reached. According to our experiences, 
minimum lateral distance Ahmin = 21 mm is obtained 
before they contact. We have: 

1min min 22 2 12 20 44 mmd AH d= + = × + =   

Then, 

1 54mmd =   (28) 

The distance d3 is computed such that the spur gears 
do not contact with the links CC’ and DD’. Hence, 

3 4 43mmd d= =   (29) 

Later, the angle α is:  

( )
3

90 arcsin

54 20 / 2
90 arcsin 113.28

43

AH
d

α = °+

−
= °+ = °

 (30) 

Therefore, the link lengths L1, L2 can be calculated. 
As our requirements, maximum opening range of our 
gripper can reach to 80 mm. We elect L1 = L2 to form a 
parallelogram linkage. Minimum length of this gripper 
is 

1min 2min

280 80 20 30 mm
2 2

L L
d
=
− −

= = =
  (31) 

From above computation, we decide to pick as 

1 2 40 mmL L= =   (32) 
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Figure 3. 3D design of the proposed gripper. 

 

3.3 Design of electric components 
 

In Fig. 4, the electrical arrangement includes sensors, 
actuators, a microcontroller, and communication modu–
les for robot control and real-time gesture recognition. 
The TIVA C TM4C123G microcontroller is employed 
as the central controller owing to its processing power, 
GPIO (General Purpose Input Output) flexibility, and 
PWM functionality. It regulates three DC motors (each 
of which is interfaced with an encoder) for joint 
actuation, and an RC servo for gripper control. 

 
Figure 4. Block diagram of electrical components. 

It gives feedback via three proximity sensors for 
environmental interaction and an FSR-402 force sensor 
for grip contact detection. Motor drivers are used for 
power supply control to the DC motors for accurate 
speed and position control. The system operates from a 
24V power rail with regulated supply lines for logic-
level devices. The signal path between sensors, drivers, 
and the controller is shielded to reduce electromagnetic 
interference, which is critical to maintaining control 
fidelity in gesture recognition applications. 

 
4. THE PROPOSED METHOD  

 
In this section, our concept introduces the control archi–
tecture and gesture-based interaction framework deve–
loped in the study. In the controller design, mechanism 
selections of driver and signal control are exemplified to 
handle properly. Far ahead, the proposed framework to 
detect and classify the hand sign from human is 
portrayed.  

4.1 Controller design 
 

Controller structure is derived from either modular 
control logic, MPC (Model Predictive Control) [25] or 
PID (Proportional-Integral-Derivative) feedback loops 
[26] with gesture-driven decision modules. Each motor 
is controlled by a PID controller with empirically 
adjusted individual gains for minimum overshoot, fast 
settling time, and minimal steady-state error. Velocity 
of each motor is regulated to 30 RPM (Round Per 
Minute) to balance responsiveness and control stability.  

Selecting the proper driver for high-precision speed 
control involves one that would respond quickly during 
high-gain operation and be able to stabilize far-away 
pole positions in its dynamic response. We check this by 
comparing the linearity of the motor speed against the 
supply voltage input modulated by the PWM (Pulse 
Width Modulation) duty cycle.  

The PWM signal, generated by the microcontroller 
and fed to the BTS7960 driver, is step-wise increased 
from a duty cycle representing a pulse width value of 10 
to 250. The encoder is utilized to measure the resulting 
motor speeds, and the relationship between PWM input 
and motor output speed is given as Table 3. 
Table 3. Relation between duty and speed of three main 
driving motors. 

Duty Motor 1 Motor 2 Motor 3 
10 0 0 0 
30 6 6 6 
50 13 13 13 
70 19 19 19 
90 26 23 23 

110 29 26 29 
130 36 33 33 
150 39 39 39 
170 46 43 46 
190 53 49 49 
210 59 56 53 
230 63 59 59 
250 66 66 66 
255 66 66 66 

 
The driver is powered at 24�V supply voltage. A 

50% duty cycle PWM signal is employed to transfer an 
average of 12�VDC to the motor. From the linear 
relation of PWM duty cycle and motor speed previously 
derived, we get the unit of transfer function for the 
integrated driver–motor system. The PWM signal is 
modulated at a frequency of approximately 5�kHz to 
suppress high-frequency harmonics involved in square 
wave modulation to provide stable and smooth motor 
operation. 

To estimate the transfer function of a motor using 
the system identification toolbox as Fig. 6, the measu–
rement data must be typically imported into MATLAB 
and apply pre-processing operations like filtering or 
detrending. The model order, poles, and zeros can be 
specified and evaluated. The resulting identified model 
can be validated using independent data sets or grap–
hical comparison between simulated and actual outputs. 
This transfer function can serve as the main source to 
develop control systems for the dynamic behavior of the 
motor. 
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Figure 6. Illustration of the computational method for transfer function using system identification tool. 

 

4.2 Interactive platform 
 

Gesture inputs are classified based on a deep learning-
based model that has been trained with image data 
collected in controlled environments. Upon recognition 
of a gesture, corresponding control commands are 
converted into motor actuation signals. Smooth state 
transition and fast response for human-robot interaction 
are ensured with this approach. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Experimental graph of the driving response in 
motor 1 (a), motor 2 (b) and motor 3 (c). 

The interactive system is used to connect the robotic 
hardware and the visual recognition system. It 
comprises the camera system for gesture input, the 
processing unit (GPU-enabled PC), and the robotic 
controller. Hand gestures are captured and pre-
processed and transmitted to the trained deep neural 
network for classification. 

The identified label is subsequently transmitted to 
the robot controller via UART or USB serial com–
munication. Bi-directional communication is also offe–
red by the platform for feedback, e.g., confirmation of 
gesture completion or grip pressure alerts. The modu–
larity of our platform offers scalability for future tasks 
of higher complexity and integration of additional 
sensors or end-effectors. In Table 4, a set of hand 
gestures which are commonly met in daily activities, 
becomes nine signs to train our robotic system. These 
actions are defined by users and could be extended due 
to each specific application.   

 In training process, we consider that current average 
loss is less than 0.01 and the mAP (mean Average 
Precision) nearly reach to 100% as Fig. 7. Nevertheless, 
file weights should be checked to avoid overfit con–
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ditions. If our training file is overfit, execution soft–
ware just recognizes images that are the same as trained 
data and do not recognize gestures if different lighting 
conditions, background… and reduce the various input 
data.  

 
Figure 7. Chart of the training result after 18000 iterations. 

 

4.3 Novelties and motivation 
 

In this research work, the novelty of our design is the 
development of a tightly integrated system combining 
deep learning-based gesture recognition with real-time 
robot control in changing, unconstrained settings. In 
contrast to several recent studies that use controlled data 
or pre-trained models with poor flexibility, our tech–
nique consists of training a proprietary deep neural net–
work from scratch on static hand gesture images 
attained specifically from our experiments. This 
information was captured with various lighting condi–
tions and with different backgrounds, resolving one of 
the main challenges of gesture-based human–robot 
collaboration: environmental variance robustness. 

The deep learning architecture is trained to recog–
nize nine basic hand gestures, which are then assigned 
to specific robot commands such as movement direc–
tions, gripper operation, or stop actions. For ensuring 
real-time performance, we train the model for rapid 
inference on a GPU-based processing unit offering high 
responsiveness suitable for interactive applications. 
These results validate the capability of the model to 
generalize in diverse test environments, additionally 
validated in the experimental phase. 

Another relevant innovation is the direct incor–
poration of this AI-based recognition module within a 
modular robotic control system. Our system features 
closed-loop motor control with PID algorithms and bi–
directional communication between perception unit and 
robot controller. This allows the robot not only to 
respond to gesture inputs but also provide status 
feedback, promoting usability and safety in collabo–
rative work. 

Furthermore, we heavily encourage user-defined 
gesture mapping and on-line adaptability to allow non-

expert users to tailor the system to their own operational 
needs. Unlike several earlier works that focus on 
software or algorithmic efficiency alone, our work is the 
whole gamut - perception to physical actuation—so that 
the system is very valuable in real-world applications 
such as industrial HRC, assistive robotics, and sign-
language interfaces. These combined traits emphasize 
the innovation and utility of our approach in enabling 
intelligent, vision-based human–robot interaction.  

 
5. RESULT AND DISCUSSION  

 
To verify the efficiency and properness of the proposed 
system comprising robotic execution and gesture 
recognition, the real-world platform as Fig. 8 has been 
built according to our design. In this system, host 
computer is highly computational ability with Core i9 
14900K, 64GB DDR5, RTX 4070 Super VGA, 1TB 
SSD, OS Windows 10 Professional. The working envi–
ronments of whole system are both indoor and outdoor 
where daily light might change continuously. Human 
stands in front of digital camera and perform numerous 
gestures by hand to control robot arm.  

 
(a) 

 
(b) 

Figure 8. Computer-based 3D design and practical 
manipulator in our platform.  

Two experiments are conducted under different li–
ghting conditions such that test case 1 (TC1) has high 
light intensity with minimal background noise and test 
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case 2 (TC2) contains moderate lighting with same 
controlled background. Nine gestures are utilized to 
command actions (up, down, left, right, forward, back, 
open, close and stop). To evaluate the output 
performance of our system, it is required to construct 
the confusion matrix as Fig. 9.  
where: 

True Positives (TP): The model predicted a label and 
is correctly matched with ground truth. 

True Negatives (TN): The model has not made the 
prediction for the label and is not covered in the ground 
truth. 

False Positives (FP): The model has predicted a 
label but is not in the ground truth (Type I Error). 

False Negatives (FN): The model does not make a 
prediction, but it is part of the ground truth. (Type II 
Error). 

Precision: The accuracy of our model told us in 
general how often we were correct when we predicted a 
hand gesture. 

Recall: How often our model correctly predicted in 
general and how good our model is at predicting a 
specific hand gesture.  

Accuracy: How often our model accurately 
predicted all classed.  

 
Figure 9. Properties of confusion matrix. 

 
Figure 10. Confusion matrix of test case 1 

Both test condition confusion matrices indicate high 
classification accuracy at an average of more than 97%. 
Most gestures were correctly identified, while there was 
minimal confusion between term Left and Right due to 
their visual similarity in bounding box features. 

 
Figure 11. Confusion matrix of test case 2 

Due to two confusion matrices in both Fig. 10 and 
Fig. 11 for different environments, it could be observed 
that: 

+ Accuracy in both working conditions is greater 
than our initial prospect (>90%). 

+ The proposed algorithm does not obscure hand 
gestures with bounding box that differs significantly 
from each other. 

+ However, right, and left gestures are regularly 
jumbled with each other because their bounding boxes 
are quite similar. 

In practice, the setting parameters of above PID 
controller is not suitable because of the external impact 
(device errors, noise and so on). Thus, we regulate PID 
scheme again with the initially setting values which take 
in three sets of the proposed controller in previous 
section. In our design, we deliver 30 rpm to all motors 
because at this speed, the driving motor would move in 
our control and would not be very slow. It is expected 
that tuning PID control in the real-world application is 
approximately in the numerical simulation: 

+ Settling time: Ts < 0.333 s 
+ Overshoot: OS < 5% 
+ Steady – state error:  ESS < 5% 
For instance, we obtain the updated set of PID 

controller for the driving motor 1 is K1P = 2.5; K1I = 
35.2; K1D = 0. According to this adjustment, experi-
mental result to validate the driving performance of 
motor 1 is exemplified as Fig. 12. 

Table 4. A collection of nine hand gestures used for our robotic arms 

Hand gesture Label Action Hand gesture Label Action 

 

Front Motor 1 
rotates 

clockwise 

Back Motor 1 rotates 
counter – 
clockwise 



FME Transactions VOL. 53, No 3, 2023 ▪ 467
 

 

Down Motor 2 
rotates 

clockwise 

Up Motor 2 rotates 
counter – 
clockwise 

 

Left Motor 3 
rotates 

clockwise 

Right Motor 3 rotates 
counter – 
clockwise 

 

Open RC servo 
rotates to 

0° position 

Close RC servo 
rotates to 

120° position 

 

Stop Stop all 
system 

   

 

 
Figure 12. Experimental response of the tracking velocity 
for the driving motor 1. 

At this moment, the performance of this PID set is 
measured as: 

+ Settling time: Ts = 0.03 s 
+ Overshoot: OS = 0% 
+ Steady – state error:  ESS = 2.5% 
This set of PID scheme satisfies our design criteria. 

In the same way, we have sets of PID control for motor 
2 and 3 as following K2P = 2.9; K2I = 34.6; K2D = 0; K3P 
= 1.8; K3I = 26.4; K3D = 0. 

In such module of computer vision, one graphical 
user interface as Fig. 13 which utilizes both OpenCV 
(library for image processing) and convolutional neural 
network (a deep net combining convolutional layers and 
connected layers), is implemented by Visual C# lan–
guage programming. In the left side, there are several 
functional buttons for an operator to manipulate. Screen 
which is displayed in the right-centre side, is captured 
from our digital camera.  

 
Figure 13. Graphical user interface in our design. 
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(a)             (b) 

Figure 14. FPS range display in our program, (a) 35 FPS and (b) 37 FPS. 

Whenever an operator clicks on Start button, this 
program would create a separate thread for image 
processing tasks, the main thread still works to control 
our interface. To proceed the image processing 
technique, we use the Otsu threshold - multi level 
algorithm to extract the error prone area with a suitable 
small size. To associate with peripherals, the open-
source YOLO is mainly deployed. By editing this 
source code to alter the input parameters and increase or 
decrease the selective thresholds for the prediction 
probability of each class, NET framework is also 
embedded this program.  

To estimate the response time of our system, the 
processing sequence could be divided into two routines 
such that the consuming time comprises the image 
processing routine and motion control routine. In the 
module of image processing, from when the digital 
camera takes these pictures, recognizes the hand 
gesture, and transmits the signal to the CPU. Hence, the 
processing time in this stage is computed and shown on 
the right corner of the screen. In this experiment, our 
time ranges from 0.027 – 0.028 second (from 35 to 37 
FPS approximately). In the module of motion control, 
from receiving signal, our program evaluates the PID 
scheme and transfers signal to the specific motor. This 
time is nearly equal 0.005 second. Therefore, our 
system archives the real time condition since the total 
response time is about 0.032 – 0.033 second which is 
less than 0.03333 second (maximum sampling time of 
our camera). 

 
6. NOTES TO PRACTITIONERS  

 
The gesture-controlled robot platform introduced in this 
investigation has a huge prospect in numerous real-life 
scenarios of intuitive, touchless, and adaptive man-
machine interaction. First, in manufacturing environ–
ments, the system can be used for human-robot colla–
boration in assembly or material handling where the 
operator issues motion instructions through simple hand 
gestures without the need for physical interfaces, redu–
cing downtime and enhancing safety. Second, in assis–
tive robotics, the platform assists individuals with phy–
sical disabilities in terms of enabling control of robotic 
devices using gesture commands, making them capable 
of independent living in their everyday activities such as 
object grasping or navigation in our home. 

In addition, the ability of the system to detect user-
declared static hand gestures accurately under varied 
lighting conditions categorizes it as a candidate for sign 
language recognition, which is a fundamental aspect of 
real-time hearing-impaired translation tools. The 
structure can also be implemented in distant and 
adversarial situations, such as search-and-rescue 
missions or servicing of high-risk zones, where gesture-
based teleoperation enables secure and efficient robot 
teleoperation at a distance. 

Due to its modularity and ability to respond in real-
time, the platform is perfectly suitable for educational 
and research purposes, and it serves as a tangible 
example of our integration of AI with mechatronic 
systems. It serves as a testbed for researching a variety 
of problems with regard to control systems, computer 
vision, and human-centered robotics design. On the 
whole, the flexibility, non-invasiveness, and scalability 
of the system ensure it can be modified to meet the 
requirements of various fields that require human-in-
the-loop control of robots. 

 
7. CONCLUSION  

 
In this investigation, an innovative concept to mani–
pulate the robotic platform via gesture recognition 
scheme was developed. Firstly, the real-world system 
including industrial manipulator, software program–
ming, digital camera and design of mechanical gripper 
are shown. A set of hand signs from an operator is then 
defined to represent their orders. Later, host computer 
would drive the robotic hardware owing to those signs. 

Further developments are encouraged. In the comp–
licated scenario such as multiple persons or crowded, 
the advanced detection method should be deployed to 
enhance. To deal with the series of hand signs, more 
precise and faster processing techniques could be 
integrated in the video analysis. Additional vision-based 
filtering procedure could be considered to achieve high 
quality of data although the working conditions are 
either inside or outside environment. 
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NOMENCLATURE 

αi 
Link twist — the angle between zi-1 and zi
measured about the xi axis 

ai 
Link length — the distance along the xi
axis from the intersection with zi-1 to the 
origin of frame i 

di 
Link offset — the translation along the zi-1
axis from the origin of frame i - 1 to the 
intersection with the xi axis 

θi 
Joint angle — the rotation about the zi-1 axis 
from xi-1 to zi 

0
1T  Homogeneous transformation 4 × 4  matrix 

related frame 1 to frame 0 
1
2T  Homogeneous transformation 4 × 4  matrix 

related frame 2 to frame 1 
2
3T  Homogeneous transformation 4 × 4  matrix 

related frame 3 to frame 2 
3
4T  Homogeneous transformation 4 × 4  matrix 

related frame 4 to frame 3 

d1, d2 
Distance between fixed points A – B and C
– D 

d3, d4 
Distance between fixed points A – D and B
– C 

L1, L2, L3 Lengths of the corresponding links 
Ts Settling time 
OS Overshoot 
ESS Steady – state error 
KnP Proportional gain of the driving motor nth 
KnI Integral gain of the driving motor nth 
KnD Derivative gain of the driving motor nth 

Acronyms and abbreviations 

PID Proportional-Integral-Derivative 
AI Artificial Intelligence  
HRI Human Robot Interaction 

AMPSO Adaptive Mutation Particle Swarm 
Optimization 

RF Radio Frequency 
CNN Convolutional Neural Network 
SVN Support Vector Machine 
DoF Degree-of-Freedom 
sEMG Surface Electromyography 
YOLO You Only Look Once 
FPS Frame Per Second 
CPU Central Processing Unit 

 
 

ПРИСТУП ЗАСНОВАН НА ДУБОКОМ УЧЕЊУ 
ЗА ПРЕПОЗНАВАЊЕ ГЕСТОВА СА 

СТАТИЧКИМ ПРЕДСТАВЉАЊЕМ РУКЕ 
 

С.Х. Нгујен, Д.М. Фан, Х.К.Т. Нго 
 
У ери вештачке интелигенције (ВИ), наша наука и 
технологија су достигле многе прекретнице, 
посебно у области интеракције човека и робота 
(ИЧР). Спајањем са техникама обраде слика, у овом 
истраживању је предложена стратегија заснована на 
ВИ за побољшање међусобног препознавања ИЧР 
путем ручних знакова. Првенствено, уведени су 
роботски хардвер, теоријско прорачунавање дизајна 
хватаљке и технике засноване на виду како би се 
успоставило радно окружење. Затим је демон–
стриран предложени оквир, укључујући дизајн 
контролера и интерактивну платформу. Прикупљено 
је и обучено неколико ручних знакова људског 
оператера. Наш приступ је експериментисан у два 
случаја ради валидације ефикасности и исправности 
предложене методе са различитим условима 
осветљења. Из ових резултата се јасно види да је ова 
шема применљива у различитим областима као што 
су сарадња свесна људи, когнитивни робот или 
систем за превођење знаковног језика. 

 


