Atheer Alnassir

Student Researcher University of Imam Abdulrahman bin Faisal Department of Physics, College of Science Jubail Saudi Arabia

Fatima Albinali

Student Researcher University of Imam Abdulrahman bin Faisal Department of Physics, College of Science Jubail Saudi Arabia

Fatimah Aljaroudi

Student Researcher University of Imam Abdulrahman bin Faisal Department of Physics, College of Science Jubail

Saudi Arabia

Nouf Alsaleem

Assistant professor University of Imam Abdulrahman bin Faisal Department of Physics, College of Science Jubail Saudi Arabia

Shafiqur Rehman

Research Engineer (Associate Professor) Interdisciplinary Research Center for Sustainable Energy Systems King Fahd University of Petroleum & Minerals (KFUPM) Dhahran Saudi Arabia

INTRODUCTION

Wind energy is rapidly becoming one of the most scalable and ecologically benign options as global efforts to switch from fossil fuels to renewable energy sources pick up speed. Nowadays, wind turbines can be found in a wide range of environments, including frigid mountainous regions, deserts, and coastal locations. The long-term robustness and efficiency of wind turbine blades, however, present an increasing engineering challenge as a result of this increase. These blades are subjected to extreme weather conditions all the time, including ice formation, rain, sand, UV rays, high humidity, and temperature fluctuations. Such exposure eventually causes structural fatigue, surface erosion, and a reduction in aerodynamic performance, all of which lower the turbine's overall efficiency and raise maintenance expenses.

The intricate construction of WTBs is made to maximize energy capture while enduring challenging operating conditions. They are made up of essential parts such the spar cap, which gives structural stiffness; the shear web, which aids in the distribution of mechanical loads; and the aerodynamic shell, which offers a flat surface to improve airflowFigure1. Because

Received: June 2025, Accepted: July 2025 Correspondence to: Miss Atheer Alnassir Department of Physics, College of Science, University of Imam Abdulrahman Bin Faisal, Jubail, Saudi Arabia E-mail: atheerjafeer15@gmail.com doi: 10.5937/fme2503510A © Faculty of Mechanical Engineering, Belgrade. All rights reserved

A Comprehensive Review of Existing **Erosion Protective Coatings and** Practices for Wind Turbine Blade Surfaces

Wind turbine blades (WTBs) are constantly exposed to extreme environmental exposures such as rain, sand, UV radiation, humidity, thermal cycling, and icing, all of which impact their structural integrity as well as efficiency. Polymer-based protective coatings such as polyethylene oxide (PEO), polyurethane (PU), polyvinylpyrrolidone (PVP), and polyvinyl alcohol (PVA) are promising options due to their flexibilities, cost-effectiveness, and tunability. This review analyzes 80 laboratory studies on development and application of such coatings, using nanofillers and hybrid composites for performance enhancement. Spray coating, dip coating, electrospinning, and spin coating techniques are evaluated by erosion resistance, UV degradation, icing, and water vapor. Latest advances in self-healing and smart coatings are highlighted. Although promising laboratory results, long-term performance and environmental survivability under real-world conditions are not well understood. The research goals to establish the gaps in research and offer inputs on creating sustainable, multi-functional coatings for prolonging the working life of wind turbine blades.

Keywords: Surface Erosion, Protective Coatings, Polymer-based coatings, Harsh environments, Application Methods, Nanocomposite Films, Wind Turbine Blades, Coating Performance.

> of their strength-to-weight ratio and ability to withstand stress, modern composite materials such as fiberglass or carbon fibre are commonly used to build these components.Manwellet al. [1]

> WTBs are constantly subjected to a mix of mechanical forces and environmental elements including UV rays, dampness, and particle erosion, even with their carefully planned design. Over time, these circumstances may result in surface deterioration, material fatigue. and decreased aerodvnamic performance. This demonstrates the vital significance of combining cutting-edge structural design techniques with material strategies that improve resistance to environmental deterioration in order to prolong the wind turbine blades' service life.

> The development and application of protective surface coatings is one promising field of study to tackle this issue. Since it offers thermal, chemical, and physical resistance to external deterioration, coatings act as the first line of protection. Polymers have garnered a lot of interest among the different materials investigated because of their adaptability, simplicity in processing, adjustable qualities, and affordability. Particularly, polymers with remarkable potential for use in wind turbine applications include polyethylene oxide (PEO), polyurethane (PU), polyvinylpyrrolidone (PVP), and polyvinyl alcohol (PVA). To increase these materials' resistance to ice adhesion, erosion, UV degradation, and environmental stress cracking, they are frequently altered with nanofillers, crosslinking agents, or hybrid composites.

In recent decades, rotor blade design has significantly evolved, closely resembling advancements in wind turbine blade technology. High tip speeds and exposure to erosive substances like rain and sand are two examples of the aerodynamic and environmental stresses that both systems experience when operating. For example, modern wind turbine blades are particularly vulnerable to leading edge erosion since their tip speeds frequently reach 110 m/s. Keegan et al. [2] Advanced materials including solvent-free flexible polyurethanes and extremely durable thermoplastic erosion shields have been created to lessen this. In addition to improving durability, these advances preserve aerodynamic performance. Applying comparable protective measures to helicopter rotor blades is becoming more and more feasible due to the structural and functional similarities. In the BERP rotor blade system, the incorporation of a rubber erosion strip on the leading edge markedly enhanced operational longevity, demonstrating the viability of cross-industry material utilization. According to effort to increase blade life and enhance performance under challenging conditions, this study investigates the possibility of incorporating such protective technologies into rotorcraft design.

Researchers have been looking into a number of techniques for putting these polymers on turbine blades throughout the last ten years. Nanocomposite surfaces, thin films, and smart coatings have been created using methods like spray coating, dip coating, electrospinning, spin coating, and layer-by-layer assembly. Regarding consistency, adherence, scalability, and compatibility with nanomaterials, each technique has unique benefits. For instance, PU-based nanocomposites supplemented with metal oxides or carbon-based fillers have been demonstrated to greatly increase erosion and UV resistance, while electrospun PEO fibres have been investigated for their capacity to create thick, flexible coatings.

The vast range of performance measurements evaluated under various environmental circumstances is what makes this field of study so rich. Many of the 40 studies that were reviewed in this review looked at the stability of the coating under high humidity, fluctuating temperatures, and mechanical fatigue in addition to its initial performance. Several coatings, for example, retained their surface adherence and structural integrity up to 70-85°C, but others started to deteriorate after extended exposure to high humidity (>80% RH). Certain coatings were created specially to minimize ice development on blades that operate in cold areas by combining hydrophobic and low-surface-energy elements. Cost-effectiveness is still a key consideration in industrial adoption, and some research is looking into biobased polymers and inexpensive fillers to lower overall production costs.

The investigation of intelligent or self-healing coatings is another noteworthy advancement. These technologies, which include responsive polymer networks or microcapsules, are designed to automatically fix small surface damage brought on by erosion or cracking. This contributes to increased turbine uptime and energy output by lowering maintenance intervals and extending the blade surface's lifespan.

The majority of research concur on one key finding, despite the variety of methods and materials used: polymer-based coatings greatly increase the wind turbine blades' operational reliability, weather resistance, and surface durability. To balance performance with environmental effect, scalability, and long-term field testing, there is still opportunity for improvement. Many laboratory-based research still lack real-world validation under various climatic and geographic settings. The purpose of this study is to systematically indicate and examine the results of 80 appropriate studies that used PEO, PU, PVP, or PVA in wind turbine blade protective coatings. Economic viability, environmental resistance, application methods, and coating materials will all be compared. By doing this, this work not only summarises the state of knowledge at the moment but also identifies interesting avenues for further study and advancement in the field of sustainable wind energy infrastructure.

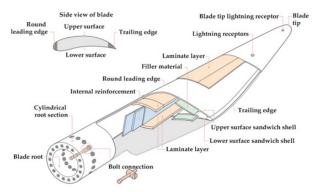


Figure 1. Common parts of the blade of a wind turbine [3].

2. THE CRITICAL ROLE OF POLYMER COATING IN ENHANCING WIND TURBINE BLADE DURABIIITY

Despite significant progress in the development of protective coatings for wind turbine blades WTBs, several crucial research gaps remain unresolved, particularly regarding long-term performance under real-world operating conditions. Most existing studies evaluate coatings under isolated environmental stress or ssuch as ultraviolet (UV) radiation, rainfall, sandstorms, or hail impact. However, in actual field environments, these conditions often occur simultaneously, creating complex, synergistic degradation mechanisms that are not easily replicated in controlled laboratory settings. Furthermore, current research provides limited insight into the durability of coatings under continuous highspeed aerodynamic loading and the vibrational stresses experienced by rotating blades. The lack of comprehensive field validation further complicates our understanding of real-time coating performance, especially in harsh marine and desert climates where the environmental stressors are more aggressive and unpredictable. Another overlooked aspect in the literature is the interaction between coating materials and the complex geometry of turbine blades. Such interactions influence coating adhesion, uniformity, and overall protective performancefactors that are essential for long-term functionality and resistance to erosion.

To address these challenges, future work should prioritize the development of multifunctional hybrid coatings capable of withstanding multiple environmental stressors simultaneously. Additionally, standardized testing protocols that closely replicate actual operating environments are urgently needed. The integration of intelligent systems, such as AI-driven predictive maintenance, can further support erosion mitigation and performance optimization. To provide a structured overview of the current progress, Tables 1 and 2 presents a comparative summary of various coating types, highlighting their effectiveness under specific environmental conditions, development approaches, efficiency metrics, and application methods. These tablescomplement the discussion by linking coating characteristics with operational requirements, aiding in the identification of promising directions for future research.

Table 1 offers a systematic comparison of the various polymer-based coatings assessed in this study. It draws attention to important elements including application technique, resilience to the environment, economy, and stability in terms of temperature and humidity. By explicitly connecting coating types to certain performance indicators under varied operating situations, this table bolsters the discussion.

Costing CostingMethods TechniqueTechnique xchievedXehieved xchievedDistance of the second secon	Type of	Application	Development	Benefit	Efficiency %	Temperature	Humidity	Estimated
PEO- nanocompositeSpray Coating additionSi 0 p nanoparticleGreater anti- icing and addition22% envison controlStable up to 60°CMinor swelling blow 80% RH (S15/ m²)Moderate (S15/ m²)PEO hybridDip Coating blendingPolymer icingEnhanced anti- icing88%Good up to stable up to more rest above 80% RH inverdingModerate inverdingPEO compoundSpin Coating underpinningManoparticle durabilityStable up to above 70°CIncreased inverdingModerate inverdingPEO-GO PEOSpray Coating incorporatingFiber network agentsHigh flexibility restance80%Stable up to stable up					Efficiency /0			
nanocompositeanoparticle additionicing and addition60°Cabove 80% RII above 80% RII(S15/ m²)PEO hybridDip Coating blendingPolymer blendingEnhanced anti- icing88%Good up to \$0°CIncreased hydrophilicityModerate hydrophilicityPEO compoundSpin Coating UnderpinningNanoparticle underpinningStableMinor effectModerate increased above 70°CPEO-for omgretSpray Coating incorporationGraphene oxide prusicresistance91%Stable up to stable up to stableNegligible High High High High trainerPEO-hond subcaste- by- Coss-linking membraneStable durability87%Stable Stable up to stableNegligible High High trainerNoderate effectPEO- compoundSpray Coating addition nonparticle addition propertiesStable up to stable trengtheningStable up to stable trengethiningNoderate effectPU compoundSpray Coating Ranoparticle additionRethered UV properties91%Stable up to stable up to stable up to stable up to stable up to stable RTHModerate econyPU coating Du compoundSpray Coating RoomanNano padings resistance91%Stable up to stable up to stable up to stable stable					92%			
PEOhybridDip CoatingPolymerEnhanced anti- blending88%Good up to 50°CIncreased hydrophilicityModeratePEOSpin CoatingNanoparticleSurface90%StableMinor effectLowPEOSpin CoatingNanoparticleSurface90%StableMinor effectLowPEO-SilicaSpray CoatingGraphene oxideAnti-cing and proportion93%Stable up to above 70°CMinor effectHigh HighPEO-SolSpray CoatingFiber network creationHigh flexibility89%Stable up to StableSlight swelling High R1High HighPEO-bendSubcaste- subcasteCross-linking agentsMachanical durability87%Stable up to StableSlight swelling High R1High HighPEO-bendSubcaste- subcasteCross-linking agentsMarclay durability87%Stable up to StableModerate effect ed with high R1PEO- membraneCastingMembraneSurface additionStable up to stighty redu- ced with high R1Low moreared ed with high R1PU coutingSpray Coating anoparticleGraphene anoparticleEnhanced nanoparticleStable up to stighty redu- ced with high R1Moderate ed with high R1PU coutingSpray Coating anoparticleZnO nanoparticleEnterrosion resistanceStable up to Stable up to R1Moderate ed with high R1PU coutingSpray Coating 		-r 0						
PEO Spin Coating Namoraticle underpinning Surface durability 90% Stable Minor effect Low PEO-slifea Spray Coating ITybridization Bettered 91% Stable up to anogrel Minor effect Moderate PEO-Slifea Spray Coating Graphene exide Anti-icing and incorporation 93% Slight drop Negligible Moderate PEO-Sloed Subcaste- by- subcaste Graphene exide Anti-icing and gents 93% Stable up to stocaste Slight swelling thigh High PEO-Islead Subcaste- by- subcaste Cross-linking agents Mechanical durability 87% Stable up to subcaste Slight swelling thigh High PEO <nonclay< td=""> Spray Coating Nanoclay Water 90% Degrades at preceptivity Moderate PEO<nembrane< td=""> Casting Membrane Surface addition 85% Slight methora Low PEO<nembrane< td=""> Spray Coating Graphene nanoparticle addition Enhanced preceptivity 91% Stable up to slight Minor methora Moderate <td< th=""><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<></nembrane<></nembrane<></nonclay<>	•							
PEO Spin Coating Namoraticle underpinning Surface durability 90% Stable Minor effect Low PEO-slifea Spray Coating ITybridization Bettered 91% Stable up to anogret Minor effect Moderate PEO-GO Spray Coating Graphene oxide Anti-cing and incorporation 93% Slight drop Negligible Moderate PEO-GO Spray Coating Graphene oxide Anti-cing and incorporation 93% Stable up to stable up to subcaste Slight swelling High PEO-blend Subcaste- by- subcaste Cross-linking agents Mechanical durability 87% Stable up to subcaste Slight swelling High PEO <nonclay coating Spray Coating Nanoclay addition Water 90% Degrades at preceptivity Moderate Low PEO<membrane< td=""> Grasphene nanoparticle addition Surface resistance 85% Slight swelling Moderate Low PEO Spray Coating Graphene nanoparticle addition Enhanced nare resistance 91% Stable up to Suble up to Singht medu- resistance <</membrane<></nonclay 	PEO hybrid	Dip Coating	Polymer	Enhanced anti-	88%	Good up to	Increased	Moderate
compoundunderprinningdurabilitycompoundNinor effectPEO-silicaSpray CoatingGraphene oxide91%Stable up toMinor effectModeratePEO-GOSpray CoatingGraphene oxideAnti-ciring and93%Slight dropNegligibleModerate-PEO-GOSubcaste-by-GrashingMinor effectModerate-HighModerate-PEO-blendSubcaste-by-Cross-linkingMechanical87%Stable up toSlight swellingHighPEO-onclaySpray CoatingNanoclayWater90%Degrades atModerate effectLowPEO-onclaySpray CoatingManoclayWater90%Stable up toSlight ywellingHighPEO-onclaySpray CoatingMembraneWater90%Degrades atModerate effectLowembraneCastingMembraneSurface85%SlightMediumLowPEO-onclaySpray CoatingGrapheneEnhanced91%Stable up toSlighty reducced with highPU compoundSpray CoatingZnOBettered UVNano paddingsStable up toMinimum effectPU coatingSpray CoatingMechanicalIncreased89%Good up toCowModeratePU coatingSpray CoatingMechanicalIncreased89%Good up toLowMediumPU coatingNano paddingsHigh erosion90%LowMediumMediumPU coatingNano zarO	-	· -	blending	icing		50°C	hydrophilicity	
PEO-silica mongrelSpray Coating (C)Hybridization erosion resistantBettered erosion resistantStable up to 70°CMinor effect Moderate HighPEO-GO compoundSpray Coating incorporation incorporationGraphene oxide projection93% at high drop above 70°CNegligible above 70°CModerate- High above 70°CPEO-Inded subcaste- by- coatingElectrospinning reationFiber network agents addition resistance87% at high RHStable up to stable up to stable up to stable up to stight swelling at high RHHigh High HighPEO-Inded coatingSubcaste- by- addition resistance87% at high RHModerate effect addition resistanceNono project strengtheningModerate effect strengtheningPEO- compoundSpray Coating addition resistanceMembrane strengtheningStable up to strengtheningSlightly redu- strengtheningModerate effect strengtheningPU coating compoundSpray Coating stray Coating resistanceGraphene addition resistance91%Stable up to stable up to <br< th=""><th></th><th>Spin Coating</th><th></th><th>Surface</th><th>90%</th><th>Stable</th><th>Minor effect</th><th>Low</th></br<>		Spin Coating		Surface	90%	Stable	Minor effect	Low
mongrel111111111PEO-GOSpray CoatingGraphene oxideAnti-icing and incorporation93%Slight dropNegligibleModerate- HighPEO-GOElectrospunnFiber networkHigh flexibility89%Stable up to StropSlight swellingHighPEO-blendSubcaste- by- subcasteCross-linking agentsMcchanical durability87%Stable up to StropSlight swellingHighPEO nonclay coatingSpray Coating additionNanoclay additionWater90%Degrades at >270°CModerate effectLowPEO membraneCasting underpinningMernbrane stragthening85%Slight wold stragtheningMediumLowPEO- compoundSpray Coating stragtheningGraphene nanoparticle additionEnhanced mechanical properties91%Stable up to Stable up to Stable up to Stable up to Stable up to stight redu- cod with high RHModerate effectPU coatingSpray Coating rossinkingMechanical constinuity91% and rain erosion raifall continuityStable up to stight cond stight conduct stight conduct stight conductStable up to stight conduct stight conduct stight conductNoderate effectPU coatingSpray Coating rossinkingMechanical constinuity10% rossinateGood up to stight conduct stight conductNoderate ristincePU coatingBlade brushing nogredNano								
PEO-GO compound Spray Coating incorporation Electrospinning Graphene oxide incorporation priorisoresistance 93% Slight forp above 70°C Negligible above 70°C Mederate- High PEO-blend Subcaste- by- subcaste Cross-linking addition High Rexibility 87% Stable up to 55°C Slight swelling a high RH High High PEO-blend Subcaste- by- subcaste Cross-linking addition Mechanical addition 87% Stable Minor moisture Low effect PEO-blend Subcaste- by- subcaste Nanoclay addition Water 90% Degrades at >70°C Moderate effect Low PEO coating Membrane underpinning Surface strengthening 85% Slight metu- 	PEO-silica	Spray Coating	Hybridization		91%		Minor effect	Moderate
compoundincorporationbruiseresistanceabove 70°CincorporeHighElectrospunElectrospinningFiber networkHigh flexibility89%Stable up to Stable up to stocateSight swelling at high RHPEO-blendSubcaste- by- subcasteCross-linking agentsMechanical darability87%StableMinor moisture effectLowPEO-nonclay coatingSpray Coating additionNanoclay underpinningWater vesistance90%Degrades at >70°CModerate effectLowPEO- membrane compoundCastingGraphene nanoparticle additionEnhanced mechanical properties91%Stable up to stable up to 65°CSlightly redu- ced with high RHPU coompoundSpray Coating compoundGraphene nanoparticlesEnhanced mechanical cristiance91%Stable up to 80°CSlightly redu- ced with high RHPU coatingSpray Coating costinkingMechanical cristianceIncreased resistance89%Good up to 75°CNoderate preceptivityPU advancedBlade brushingNano ZnO udisigneUV resistance90%Stable up to moisture effectNoderate effectPU-ZnO momgrelSpray Coating pricetification objectification disistanceNano ZnOUV resistance postance90%Good up to rsistanceNoderate moisture effectPU-ZnO momgrelSpray Coating pricetalNano ZnOUV resistance postane90%Good up to moisture								
Electrospun PEO Electrospinning Fiber network creation High flexibility 89% Stable up to Stobe Slight swelling at high RH High RH PEO-blend Subcaste- by- subcaste Coss-linking agents Mechanical durability 87% Stable Minor moisture effect Low PEO nonclay coating Spray Coating addition Nanoclay Water 90% Degrades at >70°C Moderate effect Low PEO coating Casting Membrane Surface uunderpinning 85% Slight superior preceptivity Medium Low PEO- compound Spray Coating Graphene nanoparticle addition Enhanced nanoparticles 91% Stable up to 80°C Slight superior with high Moderate effect PU Coating Spray Coating Mechanical crosslinking Increased resistance 94% Stable up to 80°C Minimum effect Moderate effect PU davanced Blade brushing Nano paddings objectification Increased resistance 90% Good up to minimum moisture effect Medium- moisture effect PU-ZaO mongref Spray Coating Nano paddings high asopadings <t< th=""><th></th><th>Spray Coating</th><th></th><th></th><th>93%</th><th></th><th>Negligible</th><th></th></t<>		Spray Coating			93%		Negligible	
PEO creation Stable at high RH PEO-blend Subcaste- by- subcaste Cross-linking Mechanical durability 87% Stable Minor moisture Low PEO nonclay coating Spray Coating Nanoclay addition Water 90% Degrades at >70°C Moderate effect Low PEO Casting Membrane uunderpinning Surface 85% Slight Medium Low PEO- compound Spray Coating Graphene nanoparticle Enhanced nechanical properties 91% Stable up to 85°C Slightly redu- ced with high RH Moderate PU ccompound Spray Coating ZnO nanoparticles Enhanced nechanical properties 91% Stable up to 80°C Minimum effect Moderate PU coating Spray Coating Mechanical crosslinking Increased rrainfall 89% Good up to 75°C Low pperceptivity Medium- moisture iffect PU-ZnO Spray Coating Nano paddings High erosion resistance 90% Stable Low 85°C Medium- moisture iffect PU-ZnO Spray Coating Nano ZnO UV resistance 92% Good up to 75°C minimum Medium- moisture iffect PU-ZnO Spray Coating Nano ZnO UV resistance 92% Good u						above 70°C	~	
PEO-blendSubcasteCross-linking agentsMechanical durability87%StableMinor moisture effectLowPEO nonclay coatingSpray Coating additionManoclay additionWater resistance90%Degrades at >>70°CModerate effectLowPEO nembraneCasting underpinningMembrane strengtheningSurface strengthening85%Siliph temperature preceptivityMedium temperature preceptivityLowPEO- compoundGraphene nanoparticle additionEnhanced mechanical properties91%Stable up to Stable up to minimum effectModeratePU Coating PU CoatingSpray Coating Mechanical crosslinkingMechanical resistance91%Stable up to stableModeratePU Zavanced mogrelBlade brushing objectificationNano paddings objectification90%Good up to stableLow moistureimpactMedium moistureimpactPUZaO mogrelSpray Coating PurzaOMano za/O dissipationUV resistance boost92%Good up to stableLow moistureimpactMedium moistureimpactPUZaO mogrelSpray Coating Purao adissipationNano paddings boost90%Stable stableLow moisture effectFiexible PU coatingDip Coating pary CoatingNano particle moorcrelFiexible PU and durableStable store <th></th> <th>Electrospinning</th> <th></th> <th>High flexibility</th> <th>89%</th> <th></th> <th></th> <th>Hıgh</th>		Electrospinning		High flexibility	89%			Hıgh
subcasteagentsdurabilityeffecteffectPEO nonclay coatingNanoclay additionWater resistance90%Degrades at >70°CModerate effectLowPEO membrane compoundCastingMembrane uunderpinningSurface strengthening85%Slight temperature preceptivityMediumLowPEO- compoundSpray Coating additionGraphene additionEnhanced mechanical properties91%Stable up to 65°CSlightly redu- ced with high RHModerate edwith highPU ccompound OutcompoundSpray Coating stray CoatingZnO anoparticlesBettered UV and rain erosion resistance94%Stable up to 80°CMinimum effectModerate edwith highPU Coating PU dvancedSpray Coating and rain erosion edvictification dissipation boost89% resistanceGood up to 85°CLow moisture moisture moisture effectModerate moisture moisture effectPU-ZnO mongrelSpray Coating ano paddings objectification tosipingMechanical resistancePlexibility91% stableStable stableLow moisture moisture effectPU-ZnO mongrelSpray Coating additionRenewable resistance92% stableGood up to 85°CLow moisture effectPU-ZnO mongrelSpray Coating lipip CoatingRenewable particle additionPolymerization resistanceStable stableSlight wellingPU coatingSpray Coating particle addition						55°C		
PEO nonclay coating Spray Coating addition Nanoclay addition Water resistance 90% Degrades at >70°C Moderate effect Low PEO membrane Casting Membrane uunderpinning Surface 85% Slight temperature preceptivity Medium Low PEO- compound Spray Coating Graphene nanoparticle addition Enhanced properties 91% Stable up to 80°C Slightly redu- ced with high RH Moderate PU compound Spray Coating CaO nanoparticles Bettered UV and rain erosion resistance 94% Stable up to 80°C Minimum effect Moderate PU coating Spray Coating Mechanical crosslinking Increased rrainfall 89% Good up to 80°C Low moisture effect Moderate PU-ZnO mongrel Blade brushing Nano znO usispation Uv resistance 92% Good up to 85°C minimum moisture effect High High Flexible PU coating Dip Coating nanocomposite Renewable resource Flexibility uinprovement 91% Slight 85% Stable to 70°C Moderate moisture effect Flexible PU coating Brushing Ce	PEO-blend				87%	Stable		Low
coatingImage: coatingadditionresistance>70°CImage: coatingPEO membraneCastingMembrane underpinningSurface strengthening85%Slight temperature preceptivityMediumLowPEO- compoundSpray Coating additionGraphene mechanical propertiesEnhanced mechanical properties91%Stable up to 80°CSlightly redu- ced with high RHModerate ModeratePU compoundSpray Coating anoparticleZnO nanoparticlesBettered UV and rai rerosion resistance94%Stable up to 80°CMinimum effect ModerateModeratePU Coating PU advancedSpray Coating Blade brushing objectificationMechanical resistanceIncreased resistance89%Good up to 75°CLow moistureimpact Medium- moistureimpactMedium- HighPU-ZnO mongrelSpray Coating Blade brushing nongrelNano znO dissipation boostUV resistance92%Good up to 85°CIncreased moisture effectFlexible PU coatingDip Coating Renewable resourceRenewable resourcePolymerization above 90°CStable to 70°C Moderate above 90°CMedium moisture effectPU put put put particle additionRenewable resourcePolymerization resourceStable to 70°C Renewable resourceMedium above 90°CStable to 70°C Moderate tive to moisture tive to moisture tive to moisturePU put put put put paraticle additionAl2O3 addition R								
PEOCasting membraneMembrane uunderpinningSurface strengtheningSlight strengtheningMedium temperature preceptivityMedium temperature preceptivityLowPEO- compoundSpray Coating additionGraphene nanoparticle additionEnhanced mechanical properties91%Stable up to Stable up to 80°CSlightly redu- ced with high RHModeratePU ccompoundSpray Coating spray CoatingZnO manoparticlesBettered UV and rain erosion resistance94%Stable up to 80°CMinimum effectModeratePU Coating PU advancedSpray Coating spray CoatingMechanical crosslinkingIncreased rainfall continuity89%Good up to 75°CLow moistureimpactMedium- Medium- moistureimpactPU-ZnO mongrelSpray Coating spray CoatingNano paddings objectification resistanceHigh erosion pow stableStable stableLow moisture effectMedium- moisture effectFlexible PU coatingDip Coating mongretNanoparticle dopingFlexibility improvement91%Slight stableSlight welling deterioration above 90°CHigh moisture effectPU nanocompositeBrushing manocompositeCeramic particle additionErosion delay improvement90%Stable to 70°C able to 70°CModerate moisture effectPU nanocompositeSpray Coating spray CoatingCeramic particle additionErosion delay increased90%Degrades above 85°C		Spray Coating			90%		Moderate effect	Low
membraneunderpinningstrengtheningtemperature preceptivitytemperature preceptivityPEO- compoundSpray CoatingGraphene nanoparticle additionEnhanced mechanical properties91%Stable up to 65°CSlightly redu- ced with high RHPU ccompoundSpray Coating anoparticlesZnO nanoparticlesBettered UV and rain erosion resistance94%Stable up to 80°CModeratePU CoatingSpray Coating resistanceMechanical crosslinkingIncreased rainfall continuity94%Stable up to 80°CModeratePU advancedBlade brushing objectificationIncreased resistance89%Good up to 75°CLow moisture impact moisture effectMedium- HighPU-ZnO mongrelSpray Coating dissipationNano ZnO ubjectificationUV resistance boost90%Low stableMedium- moisture effectPU-ZnO mongrelSpray Coating dopingNanoparticle dopingFlexibility improvement91%Slight stableSlight swelling moisture effectBio-based PU nanooarticleSpray Coating particle additionRenewable resourcePolymerization feco-friendly and durableStable stableStable to 70°C moisture effectModerate moisture effectPU nano-alumina PU nanocompositeBrushingCeramic particle additionFlexibility and durableStable to 70°C stableModerate moisture effectPU nano-alumina PU to pocatingSpray Coati	0				0.50/			-
PEO- compoundSpray Coating anoparticle additionGraphene nanoparticle additionEnhanced mechanical properties91%Stable up to Stable up to 80°CSlightly redu- ed with high RHModeratePU ccompoundSpray Coating PU coatingZnO nanoparticlesBettered UV and rain erosion resistance94%Stable up to 80°CMinimum effect perceptivityModeratePU Coating PU coatingSpray Coating spray CoatingMechanical crosslinkingIncreased rrainfall resistance89%Good up to 75°CLow perceptivityModeratePU advanced PU-ZnO mongrelBlade brushing Nano ZnO MisipationNano ZnO uspectivation boost90%Stable resistanceLow moisture moisture effectMedium- moisture effectPU-ZnO mongrelSpray Coating Dip Coating Renewable resourceNanoparticle Polymerization particle additionP2% Polymerization advancedGood up to moisture effectMedium moisture effectBio-based PU nanoocompositeSpray Coating Pury Coating Renewable resourceRenewable prosine Polymerization and durable90%Stable to 70°C Stable to 70°CModerate moisture effectPU nanoocompositeBrushing Pury Coating RanoCeramic particle additionFersion delay particle addition90%Stable to 70°C stable to 70°CModerate moisture effectPU nanoocompositeBrushing Pury Coating Rano-garingCeramic particle additionFersion delay particle		Casting			85%		Medium	Low
PEO- compoundSpray Coating additionGraphene nanoparticle additionEnhanced mechanical properties91%Stable up to 65°CSlightly redu- ced with high RHModeratePU ccompoundSpray Coating additionZnO nanoparticlesBettered UV and rain erosion resistance94%Stable up to 80°CMinimum effectModeratePU Coating PU davancedSpray Coating Blade brushingMechanical crosslinkingIncreased rrainfall continuity89%Good up to 75°CLow perceptivityModeratePU-ZnO mongrelSpray Coating bejectificationNano padings objectification dissipation90%Low stableMedium- moisture effectMedium- HighPU-ZnO soatingSpray Coating nongrelNano padings dojngUV resistance fexible PU dojng92%Good up to stableLow moisture effectMedium moisture effectFlexible PU coatingDip Coating particle dojngNanoparticle fexiblify and durable91%Stable to 70°C stableModerate minimum moisture effectHighPU nanocompositeSpray Coating PU to and durablePolymerization scon elayStable to 70°CModerate minimum moisture effectHighPU nanocampositeSpray Coating Pu' and durablePolymerization scon elayStable to 70°CModerate ministure effectPU nanocampositeSpray Coating particle additionCeramic particle additionForsion delay increased90%<	membrane		uunderpinning	strengthening		*		
compoundnanoparticle additionmechanical properties65°Cced with high RHPU ccompoundSpray CoatingZnO nanoparticlesBettered UV and rain erosion resistance94%Stable up to 80°CMinimum effectModeratePU CoatingSpray CoatingMechanical crosslinkingIncreased resistance89%Good up to 75°CLow pperceptivityModeratePU advancedBlade brushing objectificationNano paddings resistanceHigh erosion resistance90%Low stableMedium- moistureimpactPU-ZnO mongrelSpray Coating dissipationNano paddings objectification posotHigh erosion resistance92%Good up to stableLow moistureimpactMedium- moistureimpactPU-ZnO mongrelSpray Coating adissipationNanoparticle dositFlexibility improvement91%Slight stableSlight swelling above 90°CHighBio-based PU ananocompositeSpray Coating particle additionRenewable particle additionPolymerization increase88%Stable to 70°C above 90°CModerate minimum moistureeffectHighPU nanocompositeBrushing particle additionCeramic increase93%StableSlightly sensi- tive to moisturePU topcoatSpray Coating particle additionAl_Q_3 addition increaseBas%StableSlightly sensi- tive to moisturePU topcoatSpray Coating particle additionAl_2O_3 addition increaseIn	DEO	Same Casting	Creations	Enhanced	010/		Clichtler ander	Madamata
PU ccompoundSpray Coating nanoparticlesZnO nanoparticlesBettered UV and rain erosion resistance94% 94%Stable up to 80°CMinimum effectModerate ModeratePU Coating PU Coating PU advancedSpray Coating PU-ZnO mongrelMechanical crossilinkingIncreased resistance89%Good up to 75°CLow pperceptivityModerate ModeratePU-ZnO mongrelSpray Coating objectification objectification objectificationHigh erosion resistance90%Low StableMedium- moistureimpactPU-ZnO mongrelSpray Coating dissipationNano ZnO dissipationUV resistance92%Good up to stableLow moisture effectMedium moisture effectFlexible PU coatingDip Coating resourceNanoparticle dopingFlexibility improvement91%Slight stableSlight swelling above 90°CModerate moisture effectBio-based PU nanocompositeSpray Coating PU manocatingRenewable particle additionPolymerization Eco-friendly and durable88%Stable to 70°C above 85°CSmall changes Moderate moisture effectPU nanocompositeSpray Coating Pu U vabsorbers objectificationHardness increase93%StableSlightly sensi- tive to moisturePU to pcoatSprayingUV absorbers objectificationIncreased Rese88%StableSightly sensi- tive to moisturePU to pcoatSprayingUV absorbers objectificationIncreased Res		Spray Coating			91%			Moderate
PU ccompoundSpray Coating nanoparticlesZnO nanoparticlesBettered UV and rain erosion resistanceStable up to 80°CMinimum effectModeratePU CoatingSpray CoatingMechanical crosslinkingIncreased rrainfall continuity89%Good up to 75°CLow perceptivityModeratePU advancedBlade brushing objectificationNano paddings objectificationHigh erosion resistance90%Good up to 75°CLow moistureimpactMedium- HighPU-ZnO mongrelSpray Coating dissipationNano ZnO dissipationUV resistance boost92%Good up to 85°CInimum moisture effectMedium MediumPU-ZnO mongrelSpray Coating dissipationRenewable resourcePolymerization Eco-friendly and durable91% 88%Stable to 70°C stable to 70°CModerate minimum moisture effectHighPU nanocompositeBrushing particle additionCeramic particle additionPolymerization increase88%Stable to 70°C stable to 70°CModerate minimum moistureeffectMedium moistureeffectPU nanocompositeBrushing particle additionCeramic particle additionPolymerization increase93%StableStableNano Increase moisturePU put nanocompositeSpray Coating particle additionAlg.Q3 additionIncreased increase88%StableStableModerate moisturePU topcoatSprayingUV absorbers objectificationAlg.Q	compound					03 C		
PU CoatingSpray CoatingMechanical crosslinkingIncreased rainfall continuity89%Good up to 75°CLow pperceptivityModeratePU coatingSpray CoatingMechanical crosslinkingIncreased rainfall continuity89%Good up to 75°CLow pperceptivityModeratePU advancedBlade brushing objectificationNano paddings objectificationHigh erosion resistance90% 92%Good up to Rood up to moisture effectMedium- HighPU-ZnO mongrelSpray Coating dissipationNano ZnO dissipationUV resistance boost92% Bio-bostGood up to Rood up to moisture effectMedium moisture effectFlexible PU coatingDip Coating Renewable resourceRenewable Polymerization ad durableSlight gerverSlight welling ad durableHighPU nanocompositeBrushingCeramic particle additionErosion delay increase90%Degrades above 85°CSmall changes MediumNano-alumina PU topcoatSpray Coating paryingAl ₂ O ₃ additionHardness increase93%StableSlight systia- tive to moistureModerate moisturePU topcoatSprayingUV absorbers objectificationIncreased increase88%Good sensitive above 85°CSlight swelling doodModerate moisturePU topcoatSprayingUV absorbers objectificationIncreased increase88%Good sensitive above 80°CSlight swelling dood <t< th=""><th>PII ccompound</th><th>Spray Coating</th><th></th><th></th><th>94%</th><th>Stable up to</th><th></th><th>Moderate</th></t<>	PII ccompound	Spray Coating			94%	Stable up to		Moderate
Image: construct of the second seco	i o ccompound	Spray Couning	-		7470		winning cricet	Wioderate
PU Coating PU CoatingSpray Coating crosslinkingMechanical crosslinkingIncreased rrainfall continuity89%Good up to 75°CLow pperceptivityModeratePU advancedBlade brushingNano paddings objectification dissipationIncreased resistance89%Good up to 75°CLow pperceptivityModeratePU-ZnO mongrelSpray Coating dissipationNano ZnO dissipationUV resistance92%Good up to 85°CLow moistureimpactMedium HighPU-ZnO mongrelSpray Coating dopingNanoparticle dopingIV resistance92%Good up to 85°CModerate moisture effectBio-based PU nanocompositeSpray Coating PU resourceRenewable resourcePolymerization Eco-friendly and durable88%Stable to 70°C above 90°CModerate moisture effectHighPU nanocompositeBrushing Puricle additionCeramic particle additionErosion delay increase90%StableSmall changes above 85°CMedium moistureNano-alumina PU PU topcoatSpray Coating SprayingAl ₂ O ₃ addition ultionHardness increase93%StableStableSlightly sensi- tive to moisturePU topcoatSprayingUV absorbers objectificationIncreased increased88%Good sensitive above 80°CNo significant humidity effectSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sens			nunopurtieres			00 0		
PU advancedBlade brushingcrosslinking continuityrrainfall continuity75°CpperceptivityPU advancedBlade brushingNano paddings objectificationHigh erosion resistance90%Low StableLow moistureimpactMedium- HighPU-ZnO mongrelSpray Coating adsignationNano ZnO dissipationUV resistance boost92%Good up to 85°CMedium- moistureimpactFlexible PU coatingDip Coating dissipationNanoparticle dopingFlexibility improvement91%Slight deterioration above 90°CSlight swelling moisture effectHighBio-based PU anaocompositeSpray Coating PU nanocatingRenewable resourcePolymerization Eco-friendly and durable88%Stable to 70°C stable to 70°CModerate mmoistureeffectHighPU nanocompositeBrushing particle additionCeramic particle additionErosion delay increase90%Degrades above 85°CSmall changes MediumNano-alumina PU topcoatSpray Coating paryingAl ₂ O ₃ addition objectificationHardness increased lifetime93%StableSlightly sensi- tive to moisturePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectPU topcoatSmart spraying ad 90%Damage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RH	PU Coating	Spray Coating	Mechanical		89%	Good up to	Low	Moderate
PU advancedBlade brushingNano paddings objectificationHigh erosion resistance90%Low StableMedium- moistureimpactPU-ZnO mongrelSpray Coating dissipationNano ZnO dissipationUV resistance boost92%Good up to 85°Cminimum moisture effectMedium- HighFlexible PU coatingDip Coating adored PUNanoparticle dopingFlexibility improvement91%Slight deterioration above 90°CSlight swelling moisture effectHighBio-based PU nanocompositeSpray Coating PU nanocompositeRenewable resourcePolymerization Eco-friendly and durable88%Stable to 70°C Degrades above 95°CModerate mmoisture effectHighPU nanocompositeBrushingCeramic particle additionErosion delay increase90%Degrades above 85°CSmall changesMediumPU topcoat PU topcoatSpray Coating particle additionAl ₂ O ₃ addition lifetimeHardness increase93%StableSlightly sensi- tive to moistureModerate tive to moisturePU topcoat coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh	5		crosslinking	rrainfall			pperceptivity	
PU-ZnO mongrelSpray Coating Mano ZnO dissipationNano ZnO uboostUV resistance boost92%Good up to 85°Cminimum moisture effectMedium MediumFlexible PU coatingDip Coating dissipationNanoparticle dopingFlexibility improvement91%Slight deterioration above 90°CSlight swelling moisture effectHighBio-based PU nanocompositeSpray Coating BrushingRenewable resourcePolymerization Eco-friendly and durable88%Stable to 70°C above 90°CModerate mmoistureeffectHighPU nanocompositeBrushingCeramic particle additionErosion delay increase90%Degrades above 85°CSmall changes MediumMediumNano-alumina PUSpray Coating particle additionAl ₂ O ₃ addition increaseHardness increase93%StableSlightly sensi- tive to moistureModerate tive to moisturePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerate humidity effectSmart PU coatingSmart spraying Damage- responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh								
PU-ZnO mongrelSpray Coating lissipationNano ZnO dissipationUV resistance boost92%Good up to 85°Cminimum moisture effectMediumFlexible PU coatingDip Coating dopingNanoparticle dopingFlexibility improvement91%Slight deterioration above 90°CSlight swelling deterioration above 90°CHighBio-based PU nanocompositeSpray Coating PU nanocompositeRenewable resourcePolymerization Eco-friendly and durable88%Stable to 70°C Degrades above 85°CModerate mmoistureeffectHighPU PU nanocompositeBrushing Spray CoatingCeramic particle additionErosion delay increase90%Degrades above 85°CSmall changes tive to moistureMediumPU PU topcoatSpray Coating paryingAl ₂ O ₃ addition objectificationHardness increase93%StableSlightly sensi- tive to moistureModerate moistureSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh	PU advanced	Blade brushing			90%			
mongrelImagedissipationboost85°Cmoisture effectFlexible PU coatingDip CoatingNanoparticle dopingFlexibility improvement91%Slight deterioration above 90°CSlight swellingHighBio-based PUSpray CoatingRenewable resourcePolymerization Eco-friendly and durable88%Stable to 70°CModerate mmoistureeffectHighPU nanocompositeBrushingCeramic particle additionErosion delay increase90%Degrades above 85°CSmall changesMediumNano-alumina PUSpray CoatingAl ₂ O ₃ additionHardness increase93%StableSlightly sensi- tive to moistureModerate moisturePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerateSmart PU coatingSmart sprayingDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh								
Flexible PU coatingDip CoatingNanoparticle dopingFlexibility improvement91%Slight deterioration above 90°CSlight swellingHighBio-based PUSpray CoatingRenewable resourcePolymerization Eco-friendly and durable88%Stable to 70°CModerate mmoistureeffectHighPU nanocompositeBrushingCeramic particle additionErosion delay increase90%Degrades above 85°CSmall changesMediumNano-alumina PUSpray Coating PU topcoatAl ₂ O ₃ additionHardness increase93%StableSlightly sensi- tive to moistureModerate moisturePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerate humidity effectSmart PU coatingSmart sprayingDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh		Spray Coating			92%			Medium
coatingI and bounddopingimprovementdeterioration above 90°CConstruction above 90°CBio-based PUSpray CoatingRenewable resourcePolymerization Eco-friendly and durable88%Stable to 70°CModerate mmoistureeffectHighPU nanocompositeBrushingCeramic particle additionErosion delay increase90%Degrades above 85°CSmall changesMediumNano-alumina PUSpray Coating PU topcoatAl2O3 addition objectificationHardness increase93%StableSlightly sensi- tive to moistureModerate moisturePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerate humidity effectSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh					010/			· · · · 1
Bio-based PUSpray CoatingRenewable resourcePolymerization Eco-friendly and durable88%Stable to 70°CModerate mmoistureeffectHighPU nanocompositeBrushingCeramic particle additionErosion delay particle addition90%Degrades above 85°CSmall changes MediumMediumNano-alumina PUSpray CoatingAl ₂ O ₃ additionHardness increase93%StableStightly sensi- tive to moistureModerate ModeratePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerate humidity effectSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh		Dip Coating			91%		Slight swelling	Hıgh
Bio-based PUSpray CoatingRenewable resourcePolymerization Eco-friendly and durable88%Stable to 70°CModerate mmoistureeffectHighPU nanocompositeBrushingCeramic particle additionErosion delay particle addition90%Degrades above 85°CSmall changesMediumNano-alumina PUSpray Coating PUAl ₂ O ₃ addition objectificationHardness increase93%StableSlightly sensi- tive to moistureModerate mmoistureeffectPU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerate humidity effectSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh	coating		doping	improvement				
PU nanocompositeBrushingCeramic particle additionErosion delay Frosion delay90%Degrades above 85°CSmall changesMediumNano-alumina PUSpray Coating PUAl2O3 additionHardness increase93%StableSlightly sensi- tive to moistureModeratePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerateSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh	Die heerd DI	Surger Casting	Domorroh1-	Dolumoriation	000/		Madarata	High
PU nanocompositeBrushing particle additionCeramic particle additionErosion delay particle addition90%Degrades above 85°CSmall changesMediumNano-alumina PUSpray Coating PUAl2O3 additionHardness increase93%StableSlightly sensi- tive to moistureModeratePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerateSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh	BIO-Dased PU	Spray Coating			88%0	Stable to /0°C		нıgn
PU nanocompositeBrushingCeramic particle additionErosion delay showe90%Degrades above 85°CSmall changesMediumNano-alumina PUSpray CoatingAl2O3 additionHardness increase93%StableSlightly sensi- tive to moistureModeratePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerateSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh			resource				minoistureeneet	
nanocompositeparticle additionabove 85°Cabove 85°CNano-alumina PUSpray CoatingAl2O3 additionHardness increase93%StableSlightly sensi- tive to moistureModeratePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerateSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh	DU	Do al la	Commis	F : 11	000/	Dec. 1	Q	Mat
Nano-alumina PUSpray Coating PUAl2O3 addition additionHardness increase93%StableSlightly sensi- tive to moistureModerate ModeratePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerate moderateSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh		Brushing		Erosion delay	90%		Small changes	Medium
PUincreasetive to moisturePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerate ModerateSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh	nanocomposite		particle addition			above 85°C		
PUincreasetive to moisturePU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerate ModerateSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh	Nono alumino	Spray Coating	ALO addition	Hardness	03%	Stable	Slightly sensi	Moderate
PU topcoatSprayingUV absorbers objectificationIncreased lifetime88%Good resistanceNo significant humidity effectModerateSmart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh		Spray Coating	$A_{12}O_3$ addition		13/0	Stable	e ,	wouchate
Smart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh		Spraving	UV absorbers		88%	Good		Moderate
Smart PU coatingSmart spraying responsiveDamage- responsiveSelf-repair capability95%Sensitive above 80°CSlight swelling at 90% RHHigh	1 0 toptoat	Sprayma			0070			mount
coating responsive capability above 80°C at 90% RH			2 Sjeethoudon					
coating responsive capability above 80°C at 90% RH	Smart PU	Smart spraving	Damage-	Self-repair	95%	Sensitive	Slight swelling	High
								0
	8			1 .7				

PVP-based coating	Spray Coating	Curing agents	Enhanced water resistance	87%	Stable to 55°C	Minor water absorption	Low
PVP-graphene composite	Dip Coating	GO incorporation	Ice repellent and Erosion	90%	Slight decrease	Minor swelling	Moderate
PVP-silica hybrid	Spin Coating	Nano silica dispersion	resistance Mechanical strengthening	88%	above 70°C Stable up to 60°C	Small effect	Moderate
Crosslinked PVP	Dip coating	Improved performance by cross-linking	Surface durability	85%	stable	Increased water uptake at high RH	low
PVP-polymer blend	Spray Coating	Polymer matrix mixing	Wear resistance	86%	Sensitive above 65°C	Slight swelling	Low
PVP composite	Blade Brushing	Silver nano- fillers enhancement	Anti-bacterial and high durability	89%	Good up to 70°C	Negligible effect	Medium
PVA-based coating	Spray Coating	Incorporation nanofiber	Flexible surface performance	88%	Stable up to 60°C	Small swelling at high RH	Low
PVA-blend coating	Dip Coating	Mixed with PEO	Enhanced flexibility and adhesion	87%	Good to 55°C	Moderate humidity effect	Low
PVA-nanoclay hybrid	Spray Coating	Clay nanoparticle reinforcement	Erosion resistance	90%	Stable to 65°C	Minor	Moderate
Crosslinked PVA	Layer-by-Layer	Chemical crosslinking	Surface strengthening	86%	Sensitive above 70°C	Increased swelling	Low
PVA-hydrogel layer	Casting	Hydrogel matrix development	Anti-icing improvement	85%	Stable at low temperatures	Absorbs moisture	Medium
Nano PVA composite	Electrospinning	Incorporation nanofiber	Flexibility and toughness	89%	Degrades at >75°C	Moderate humidity sensitivity	Medium
Reinforced PVA coating	Spray Coating	Carbon nanotube reinforcement	Enhanced mechanical performance	91%	Good up to 80°C	Minimal effect	Moderate
PVA hybrid	Blade Brushing	Silica nanopar- ticle hybrid	Durable surface layer	88%	Stable	Low humidity effect	Moderate
Smart PVA coating	Smart spraying	Microcapsule's healing agents	Self-repair ability	92%	Sensitive to >70°C	Slight swelling at high RH	High
PEO-PVA composite	Dip Coating	Composite formation	Combined durability and flexibility	90%	Stable up to 65°C	Minor effect	Moderate
PU-PVA blend	Spray Coating	Dual polymer networks	Greater resistance	88%	Good up to 70°C	Minor humidity	Sensitivity Medium
PEO- PVPcomposite	Blade Coating	Polymer blend formulation	Improved anti- icing	89%	Degrades above 75°C	Small effect	Moderate
PU-PVP nanocomposite	Spray Coating	Nano-fillers enhancement	Abrasion tolerance and UV shielding	91%	Stable up to 85°C	Very low sensitivity	Moderate
Bio-based PEO coating	Spray Coating	Bio- based polymer integration	Eco-friendly coating	87%	Stable	Moderate humidity effect	High
PEO- nanocomposite	Spray Coating	SiO ₂ nanoparticle addition	Greater anti- icing and erosion control	92%	Stable up to 60°C	Minor swelling above 80% RH	Moderate
PEO hybrid	Dip Coating	Polymer blending	Enhanced anti- icing	88%	Good up to 50°C	Increased hydrophilicity	Moderate
PEO compound	Spin Coating	Nanoparticle underpinning	Surface durability	90%	Stable	Minor effect	Low
PEO-silica mongrel	Spray Coating	Hybridization	Bettered erosion resistant	91%	Stable up to 70°C	Minor effect	Moderate
PEO-GO compound	Spray Coating	Graphene oxide incorporation	Anti-icing and bruise resistance	93%	Slight drop above 70°C	Negligible	Moderate- High
Electrospun PEO	Electrospinning	Fiber network creation	High flexibility	89%	Stable up to 55°C	Slight swelling at high RH	High
PEO-blend Subcaste-by- subcaste	Cross-linking agents	Mechanical durability	87%	Stable	Minor moisture effect	Low	

PEO nonclay	Spray Coating	Nano-clay	Water	90%	Degrades at	Moderate effect	Low
coating PEO	Casting	addition Membrane	resistance Surface	85%	>70°C Slight	Medium	Low
membrane	Casting	underpinning	strengthening	83%0	temperature perceptivity	Medium	LOW
PEO-	Spray Coating	Graphene	Enhanced	91%	Stable up to	Slightly	Moderate
compound	Spray County	nanoparticle addition	mechanical		65°C	reduced with high RH	
PU compound	Spray Coating	ZnO nanoparticles	Bettered UV and rain erosion	94%	Stable up to 80°C	Minimum effect	Moderate
			resistance	000/		T	
PU Coating	Spray Coating	Mechanical crosslinking	Increased rainfall continuity	89%	Good up to 75°C	Low perceptivity	Moderate
PU advanced	Blade brushing	Nano paddings objectification	High erosion resistance	90%	Stable	Low moisture impact	Medium- High
PU-ZnO	Spray Coating	Nano ZnO	UV resistance	92%	Good up to	Minimum	Medium
mongrel		dissipation	boost		85°C	moisture effect	
Flexible PU coating	Dip Coating	Nanoparticle doping	Flexibility improvement	91%	Slight deterioration above 90°C	Slight swelling	High
Bio-based PU	Spray Coating	Renewable resource	Eco-friendly and durable	88%	Stable to 70°C	Moderate moisture effect	High
PU nanocomposite	Brushing	Polymerization Ceramic particle addition	Erosion delay	90%	Degrades above 85°C	Small changes	Medium
Nano-alumina PU	Spray Coating	Al_2O_3 addition	Hardness increase	93%	Stable	Slightly sensitive to moisture	Moderate
PU topcoat	Spraying	UV absorbers objectification	Increased lifetime	88%	Good resistance	No significant humidity effect	Moderate
Smart PU coating	Smart spraying	Damage- responsive	Self-repair capability	95%	Sensitive above 80°C	Slight swelling at 90% RH	High
PVP-based	Spray Coating	features Curing agents	Enhanced water	87%	Stable to 55°C	Minor water	Low
coating	D' C I	60	resistance	0.00/	01: 1 /	absorption	
PVP-graphene composite	Dip Coating	GO incorporation	Ice repellent and Erosion resistance	90%	Slight decrease above 70°C	Minor swelling	Moderate
PVP-silica hybrid	Spin Coating	Nano silica dispersion	Mechanical strengthening	88%	Stable up to 60°C	Small effect	Moderate
Crosslinked PVP	Dip coating	Improved performance by cross-linking	Surface durability	85%	Stable	Increased water uptake at high RH	Low
PVP-polymer blend	Spray Coating	Polymer matrix mixing	Wear resistance	86%	Sensitive above 65°C	Slight swelling	Low
PVP composite	Blade Brushing	Silver nano- fillers enhancement	Anti-bacterial and high durability	89%	Good up to 70°C	Negligible effect	Medium
PVA-based coating	Spray Coating	Incorporation nanofiber	Flexible surface performance	88%	Stable up to 60°C	Small swelling at high RH	Low
PVA-blend coating	Dip Coating	Mixed with PEO	Enhanced flexibility and adhesion	87%	Good to 55°C	Moderate humidity effect	Low
PVA-nanoclay hybrid	Spray Coating	Clay nanoparticle reinforcement	Erosion resistance	90%	Stable to 65°C	Minor	Moderate
Crosslinked PVA	Layer-by-Layer	Chemical crosslinking	Surface strengthening	86%	Sensitive above 70°C	Increased swelling	Low
PVA-hydrogel layer	Casting	Hydrogel matrix development	Anti-icing improvement	85%	Stable at low temperatures	Absorbs moisture	Medium
Nano PVA composite	Electrospinning	Incorporation nanofiber	Flexibility and toughness	89%	Degrades at >75°C	Moderate humidity sensitivity	Medium
Reinforced PVA coating	Spray Coating	Carbon nanotube reinforcement	Enhanced mechanical performance	91%	Good up to 80°C	Minimal effect	Moderate
PVA hybrid	Blade Brushing	Silica	Durable surface	88%	Stable	Low humidity	Moderate

		nanoparticle hybrid	layer			effect	
Smart PVA coating	Smart spraying	Microcapsule's healing agents	Self-repair ability	92%	Sensitive to >70°C	Slight swelling at high RH	High
PEO-PVA composite	Dip Coating	Composite formation	Combined durability and flexibility	90%	Stable up to 65°C	Minor effect	Moderate
PU-PVA blend	Spray Coating	Dual polymer networks	Greater resistance	88%	Good up to 70°C	Minor humidity Sensitivity	Medium
PEO-PVP composite	Blade Coating	Polymer blend formulation	Improved anti- icing	89%	Degrades above 75°C	Small effect	Moderate
PU-PVP nanocomposite	Spray Coating	Nano-fillers enhancement	Abrasion tolerance and UV shielding	91%	Stable up to 85°C	Very low sensitivity	Moderate
Bio-based PEO coating	Spray Coating	Bio-based polymer integration	Eco-friendly coating	87%	Stable	Moderate humidity effect	High

3. THE CONDITIONS FACING WIND TURBINE BLADES

Leading edge erosion, which is brought on by the impact of airborne particles like rain, dust, hail, and sand, is one of the most common types of blade deg-radation show in Figure 2. These particles cause surface roughness and a decrease in aerodynamic efficiency over time by eroding the blade's surface, particularly the leading edge. In addition to lowering the turbine's energy output by up to 5% a year, this deterioration also raises maintenance requirements andoperating expenses, Estavromenoset al. [4]. Erosion is a particularly serious problem in desert and coastal areas where airborne particles are prevalent.

Figure 2. Leading edge erosion examples [5].

Further circumstance that faces WTBs is Long-term exposure to UV radiation from the sun can seriously deteriorate the polymer-based materials that are frequently utilized in turbine blades. Surface chalking, embrittlement, microcracking, and discolouration result from the breakdown of chemical bonds in the resin matrix caused by UV light. This eventually impairs the blade's mechanical efficiency and hastens other types of surface deterioration. UV-resistant coatings are a top concern in contemporary blade design since UV exposure is a significant contributor to the aging process of composite materials. Tanget al. [6]

A prevalent difficulty, especially with wind turbines situated in or close to the ocean, is humidity and wetness show in Figure 3. This is particularly problematic in tropical or marine settings. Water molecules can enter the blade's composite structure through high humidity, especially at joints, interfaces, and microcracks. This water intrusion can lower the polymer's glass transition temperature, weaken the fibre-resin matrix interface, and increase internal stresses that cause delamination or material swelling, Estavromenos et al. [4].

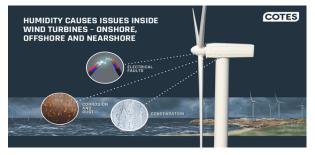


Figure 3. Leading Challenges regarding humidity inside wind turbines [7].

Thus, prolonged exposure to high moisture conditions might considerably lower a blade's structural dependability.Wind turbines must withstand extremes of temperature, including scorching summers, bitterly cold winters, and considerable day-night fluctuations. The materials used to make blades continuously expand and contract due to these variations. Bonding adhesives and fibre-matrix interfaces may experience fatigue damage, cracking, and deterioration as a result of frequent heat cycling. Such cyclic thermal stress is especially problematic for blades working in areas with significant temperature changes or intense sun radiation.

Additionally, areas with harsh climates may be highly susceptible to daily thermal cycles that can accelerate the deterioration of protective coatings, potentially causing microcracks and weakening of adhesive interfaces. In this context, thermal loading, although it is overlooked, has a valid operational factor in the longterm durability of a blade.

The structural integrity of WTBs is essential for reliable and efficient energy generation. In consequence of their great strength and low weight, composite materials like carbon fiber and fiberglass are frequently employed in the production of blades. But with time, fatigue loading, environmental exposure, and operational stress may all damage these materials in different ways. Advanced non-destructive evaluation (NDE) techniques were used in a study [8] published in FME Transactions to detect damage in composite wind turbine blades. Internal flaws and surface delamination were found using techniques like infrared thermography and ultrasonic testing, which provided important information about maintenance requirements and failure prevention.

4. APPLICATION TECHNIQUES FOR POLYMER-BASED COATINGS

One of the key factors determining the quality and performance of protective coating placed on WTBs is coating application methods. The type of material coating used is important, but the application method itself greatly influences the distribution, thickness, uniformity, and adhesion of the coating to the surface. All these aspects influence the protective effectiveness against corrosion, snow, moisture, and ultraviolet light. New research has developed various advanced polymer coating techniques tailored to the environmental conditions of turbine blades, as the requirements are different for offshore and onshore turbines, and in desert or cold environments. In the same regard, spray coating show in Figure 4 is one of the most crucial methods that are widely applied particularly in large industrial processes. It is subject to use of an air compressor or electric spray system for uniform spraying of the coating on the surface at fast and uniform coverage suitable for flat, wide surfaces, and offers good control over film thickness. It may cause material loss by dispersion of the spray and requires a controlled environment in order to avoid defects. This process has been utilized to coat materials such as PU-ZnO and PEO-GO, demonstrating great corrosion and UV resistance as reported in [9].

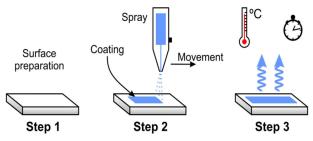


Figure 4. Schematic of the spray coating process [10].

Dip coating is also a beneficial process and it entails immersing the blade in a coating solution, then drawing and drying it to form an even layer making it suitable for complexly shaped materials and does not require advanced equipment Figure 5. However, thickness would be varied with drawing velocity and solution viscosity, and it would be more time-consuming to dry compared to spraying. Its use has been documented in systems such as PVP-graphene and PEO-PVA that have exhibited high flexibility and toughness in the presence of water. Morales et al.[11]Electrospinning on the other hand, is a better techniqueFigure 6. It is used to generate nanofiber coatings by high electric separation of fine threads of polymer for deposition on the target surface show in Figure 7. The technique produces highresolution coating and three-dimensional structure with improved flexibility and water repellency. But it is costly and time-consuming and requires special equipment. Therefore, it is often used in advanced applications, such as electrospun PEO coatings, which have proved to perform better under conditions in ice. Thomas et al [12].

In addition, brush coating or layer coating is applied in applications requiring localized or repetitive materials coatings of varied thicknesses. The technique supports tight control over layer distribution, but not on large surfaces and is too hand-dexterity-dependent. It has also been successfully applied on nano-PU and PVA hybrid coatings to improve abrasion and weather resistance of blades. Spin coating is also utilized as a method, where a limited amount of coating liquid is placed on the blade surface and subsequently spun at high speeds to distribute the coating evenly through the action of centrifugal forces. This is used widely for precision and thin film use and is famous for its ability to deposit a uniform, smooth layer with controlled thickness through rotation rate and fluid viscosity Figure 7. Among the advantages of this process is that it gives fine distribution of the coating, easily applied to plane surfaces, and is economically used in laboratory work involving uniform coating of high precision. Among the disadvantages, is that it functions poorly on big or geometrically complex objects, and much of the solution is wasted during coating due to ejection. Others include PEO-silica and PVP-silica hybrid coatings, which have been used in the production of corrosionresistant and mechanically reinforced films on turbine blade surfaces with acceptable performance in terms of homogeneity and stability under different environmental conditions[15-16].

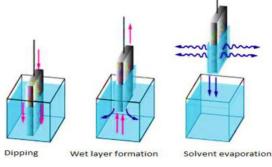


Figure 5. Schematic of the dip coating process [13].

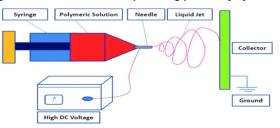


Figure 6. Schematic of the electro spinning coating process [14].

From the above, application method must be chosen with extreme caution based on the nature of the coating, surface features, operating environment, and costs. Effective optimization of application techniques is an important step in the direction of optimizing blade life and improving efficiency in wind power systems.

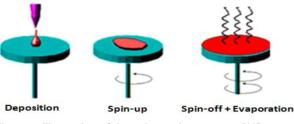


Figure 7. Illustration of the spin coating process [13].

Although some of the mentioned techniques are similar in principle, significant differences emerge in their practical performance. Each technique has advantages and limitations that influence the choice of method. Therefore, it is necessary to conduct a technical comparison between these methods to determine the optimal choice based on the specific conditions of each application. This is where Table 3 comes in, providing a clearer understanding of the application techniques used to protect WTBs. It provides a comparative summary to illustrate the differences between coating application techniques, highlighting the advantages and disadvantages of each technique, its costs, its suitability for various blade shapes and sizes, and its potential for future development. This analysis is essential for selecting the appropriate technology based on the operating environment and installation conditions.

5. THE ROLE OF SURFACE COATINGS IN WIND TURBINE LIFE

To mitigate such environmental risks, surface coatings contribute to the life and endurance of turbine blades. Surface coatings act as the first line of defense, reducing surface erosion and guarding polymer matrices against UV, water, and mechanical abrasion in modern blade design [17-18]. PU, PEO, PVP, and PVA-based coatings have widespread uses owing to their versatility and adjustable characteristics. Anderson et al. [19] found PU coatings to be very promising for UV damage when they were reinforced with nanoparticles.Smart coatings were also explored, such as those having self-healing capability [20-21]. Demonstrated that smart PU and PVP-based systems containing microcapsules or reversible bond networks possessed the capability to selfhealthermal or mechanical-induced microcracks by restoring surface integrity by over 80%.

Figure 8. Wind Turbine Blade Coating Process [25].

Weather- and erosion-resistant hybrid organic polymers and nanofillers (GO, CNTs, and SiO₂) coatings have been used to enhance blade performance [11]. Zhang et al. [22] used hybrid PEO coatings with carbon nanofibers and exhibited improved abrasion resistance and flexibility. Ali et al. [23] showed mechanical enhancement for PVP composites reinforced with graphene. Martin et al. [24] and Jurak et al. [19] introduced self-cleaning and hydrophobic coatings to reduce ice adhesion and soiling to improve operational efficiency. These directly result in longer maintenance intervals and higher energy production. The practical application of these advanced coatings in industrial practice is illustrated in Figure 8, in which a technician applies controlled blade coating-indicating the real-world application and relevance of these coatings in wind turbine maintenance.

6. FUNCTIONAL ROLE AND OPTIMIZATION OF POLYMER COATINGS

Role of coating in turbine longevity

Polymer coatings such as polyethylene oxide (PEO), polyurethane (PU), polyvinylpyrrolidone (PVP), and polyvinyl alcohol (PVA) are also found to be highly versatile for wind turbine blades. These polymers are also found to have advantages such as tunable mechanical strength, low weight, easy processing, and chemical stability [17-26]. PU coatings, for instance, have been extensively studied in flexibility and weatherability, particularly when ZnO and Al₂O₃ nanoparticles are incorporated into them to adjust their behavior [27-28].

A The robotic use of polymer coatings process is illustrated in Figure 9, where an apparatus is used to coat the protective coating on a wind turbine blade. This is an indication of the modern trend towards automation towards safer, more uniform, and scalable coating solutions.

Figure 9. Polymer Coating Application on Wind Turbine Blade [29].

Crosslinking techniques are also used extensively to provide thermal stability and mechanical strength. Chen et al. [30] illustrated that crosslinked PEO/PVA coatings were more resistant towards higher mechanical stresses, while El-Sayed et al. [31] modified PVP films using the application of silane-based curing agents to achieve enhanced durability. Their versatility allows the poly– mers to be formulated against specific environmental problems such as UV, erosion, and icing, and they become the main line of modern coating technology. Graphical representation for the application of perfor– mance testing of such coatings that serves directly to substantiate these results by graphically depicting the testing systems utilized in assessing durability and performance.

6.2 Versatility of polymer coating

For enhanced coating performance, various approaches such as nanocomposite addition, polymer blending, and hybrid systems have been developed(see Figure 10). Li et al. [32] and Patel et al. [33] reinforced nanoclay and GO in polymer matrices, resulting in nhanced tensile strength and erosion resistance. Mahmood et al. [34] blended flexible PU with nano-additives, achieving improved durability against sandblasting.

Performance is typically evaluated through thermal cycling, humidity exposure, UV aging, and mechanical abrasion testing. Shen et al. [35] developed vascular systems that, upon mechanical stress, demonstrated self-healing behavior. Johnson et al. [36] subjected PU topcoats to 1000 hours of UV exposure and repeated chalking and discoloration resistance. Tang et al. [37] conducted extensive environmental simulations of temperature and humidity to test real-world applicability. Farooq et al. [38] and Hernandez et al. [39] conducted adhesion and moisture permeability tests to examine water resistance of PVA/PVP blends. The integration of testing and optimization ensures that these coatings reliably under harsh environmental conditions.



Figure 10. Mechanism of Wear and Corrosion Resistance in Epoxy and Epoxy/Graphene Nanocomposite Coatings [40].

Strategies for preformance enhancement

Recent advancements in surface coating technologies for wind turbine blades WTBs have increasingly focused on incorporating multifunctional capabilities that go beyond basic protection. These include anti-icing, selfhealing, environmental sustainability, and intelligent monitoring features that are essential for nextgeneration wind energy systems operating under diverse and extreme conditions.

Icing on turbine blades significantly hampers aerodynamic performance, reduces energy output, and can pose serious safety risks. To combat this, novel antiicing strategies have emerged. Among them, slippery liquid-infused porous surfaces (SLIPS) have demonstrated remarkable effectiveness by promoting liquid mobility and reducing ice adhesion. These systems mimic natural surfaces like lotus leaves, using infused lubricants within textured matrices to create a non-stick, ice-repellent interface. A step-by-step graphical representation of SLIPS is shown in Figure 11, illustrating their design and ice-shedding mechanism.

In addition to SLIPS, chemical additives and surface texturing have proven successful. For example, Mangini et al. [42] reported that superhydrophobic PEO/PVA composites could effectively repel ice, while maintaining surface integrity under repeated freeze-thaw cycles. These approaches not only reduce maintenance frequency but also contribute to uninterrupted energy generation in cold climates.

Figure 11. Mechanism of Action of a Smart Coating [41].

Intelligent polymer systems based on PU and PVA matrices have shown promise in extending coating lifespan through self-healing capabilities. These systems are typically embedded with microcapsules that release healing agents upon mechanical damage. Novak et al. [20] and Shen et al. [35] reported healing efficiencies exceeding 70% after fatigue stress, significantly reducing the need for manual repairs and downtime. The integration of such materials into wind turbine coatings enhances reliability in remote and hard-tomaintain environments.

Sustainability is gaining prominence in materials selection and formulation. Low-VOC and biodegradable polymers are increasingly used to minimize environmental impact. Renewable polymer sources, such as vegetable-based polyurethanes, are being explored for their biodegradability and performance. Van Kuik et al. [18] and Twidell[17] advocated for a shift toward green chemistry in coating development, while Adeleye et al. [28] emphasized that sustainability must be economically viable—particularly in costsensitive regions like Sub-Saharan Africa, where ecological degradation is closely tied to infrastructure challenges.

Furthermore, the integration of digital technologies such as artificial intelligence (AI), sensors, and thermal mapping offers a powerful toolset for predictive maintenance. AI-powered systems can continuously monitor surface conditions, detect early signs of wear or icing, and trigger localized interventions. This selective reinforcement approach helps optimize coating usage, extend blade life, and reduce total lifecycle costs.

To meet the operational challenges of nextgeneration wind energy systems, future research must aim to integrate multiple functionalities into a single coating layer.

Additionally, these advanced coatings must undergo rigorous field validation across various climatic zones including marine, desert, and arctic environments to ensure real world applicability. Research should also prioritize scalable manufacturing techniques that balance performance with cost-effectiveness.

Ensuring the enduring efficiency and safety of wind turbine blades necessitates the synchronization of all associated activities throughout the blade's lifecycle from initial design and manufacturing to field operation, monitoring, repair, and regulatory compliance. Performance disparities, elevated failure risks, and inefficient maintenance might result from fragmentation across various stages. Higher structural reliability and system-wide sustainability are ensured by including regulatory standards and quality control procedures at every stage of blade development, as noted by Rašuo et al. [43] Furthermore, for early failure identification and preventative maintenance, damage detection techniques during operation—like those examined by Kumar and Anand [8] are crucial, particularly for composite mate– rials that are susceptible to internal delamination and fatigue. In contemporary wind energy systems, a unified and regulation-driven approach supports long-term costeffectiveness, safety, and environmental performance in addition to improving blade durability.

Table 2 delineates the principal constraints, obstacles, and new trajectories in the study concerning the development of erosion-resistant coatings for wind turbine blades. It enumerates recommended solutions and potential innovations, offering a strategic perspective for forthcoming research endeavors in the domain.

Critical Analysis, Difficulties, and Suggestions for the Future	Limitations and Suggested Remedies	Research Gap	Recent Innovations to Prevent Erosion and Increase Blade Surface Life
Most of research focuses on coatings' ability to withstand erosion, but it ignores the intricate relationships between environmental influences and material behaviour.	Some coatings have limited long-term durability.2. Too much focus is placed on the effects of individual environmental elements rather than their combined consequences.3. In contrast to lab-based testing, there is a lack of real-world (field) validation.	The relationship between coating performance and blade geometry has not been thoroughly investigated. The behaviour of coatings under high-speed aerodynamic stress and vibration has not been thoroughly studied.Inadequate information regarding coating deterioration in marine and sandy environments.	Self-healing coatings:Coatings that cure themselves: Use reversible polymers or microcapsules to repair damaged structures. Superhydrophobic surfaces: Reduce ice and water adherence to lessen erosion from freeze-thaw cycles and precipitation.
Challenges include erratic weather patterns, the inability to determine long- term durability, and the absence of established evaluation procedures	Suggested Remedies:1. Create hybrid coatings with many uses.2. For more accurate evaluations, use multi- environmental simulations.3. Carry out extended field research in the outdoors	-	Utilize nanomaterials (such as graphene oxide, silica, and nanoclay) to improve mechanical strength and resilience to environmental conditions in nano- structured composites
To increase flexibility and lifespan, create standardized testing procedures, implement nanotechnology- based solutions, and incorporate intelligent responsive materials.	-	-	Predictive maintenance systems powered by AI: Track patterns of deterioration and recommend prompt fixes to prolong coating and blade life.

Table 3. Comparison of Polymer-Based Coatings Application Methods for Wind Turbine Blades.

Technique	Advantages	Disadvantages	Cost	Suitable for	Scalability	Future Potential
Spray Coating	Fast, uniform coverage	Poor adhesion on complex shapes, overspray waste	Low- Medium	Large blades, flat surfaces	High	Improved automation, eco-friendly sprays
Dip Coating	Effective for complex shapes	Less uniform thickness	Low	Small to medium blades	Medium	Formulation control, viscosity tuning
Electrospining	Nanostructured coatings	Costly, slow process	High	Experimental/criti cal zones	Low	Scalability, smart coatings
Brush/ Layer Coating	Easy to apply	Low uniformity, labor intensive	Very Low	Maintenance/ re- coating	Low	Smart resins, field repair systems

7. CONCLUSION

This reviewoffers a thorough evaluation of polymerbased protective coatings for wind turbine blades (WTBs), focusing on their contribution to durability under challenging climatic circumstances. The structural durability and surface dependability of turbine blades are essential for preserving performance and lowering operating costs as the world's reliance on wind energy grows.

This work highlighted the features, limitations, and potential for hybridization with nanomaterials of important coating materials, including polyethylene oxide (PEO), polyurethane (PU), polyvinylpyrrolidone (PVP), and polyvinyl alcohol (PVA), by looking at more than 80 recent publications. When combined with nanofillers or transformed into intelligent, self-healing systems, these polymers have shown encouraging resistance to ice, moisture, erosion, and UV degradation.

This paper's comparative analysis of coating application methods, such as spray coating, dip coating, electrospinning, and spin coating, is one of its main contributions. The paper demonstrates how different techniques affect coating adherence, homogeneity, environmental compatibility, and scalability through thorough tables and analysis. The study also clarifies the benefits and difficulties of each approach, providing recommendations for real-world use.

Importantly, the analysis identifies a number of unresolved research gaps, including difficulties applying coatings to intricate blade geometries, a lack of stan– dardized multi-stressor testing, and a lack of long-term field validation. It also urges a stronger focus on sca–lable production techniques and ecologically friendly materials.

The analysis also highlights the increasing demand for coating systems that can satisfy operational requi-rements in harsh environments, including freezing tem-peratures, offshore marine environments, and arid de-serts. For the upcoming generation of wind energy infrastructure, antiicing features, hydrophobic surfaces, and eco-friendly materials are now required rather than optional.

The significance of interdisciplinary approaches in upcoming coating development is another significant issue brought up by this work. Designing smart coatings that not only withstand harm but also continuously monitor and react to environmental changes will require cooperation between materials scientists, mechanical engineers, and data analysts.

In conclusion, this article functions as a strategic roadmap for upcoming breakthroughs as well as a recap of current advancements. The study helps to create more robust and effective wind energy systems by addressing material performance, application techniques, and more general sustainability and innovation aims.

ACKNOWLEDGMENT

We express our profound gratitude to the Interdisciplinary Research Center for Sustainable Energy Systems at KFUPM for its valuable resources and support for our senior project. We are also grateful to Dr. Nouf Alsaleem from Imam Abdulrahman Bin Faisal University for her insightful guidance, and to Ms. Fatima Al-Qwairi for her continuous support. Special thanks to Dr. Muhammad Moeen for his technical assistance and supervision in the lab.

REFERENCES

- [1] J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained: Theory, Design and Application. Wiley, 2009.
- [2] M. H. Keegan, D. H. Nash, and M. M. Stack, "On erosion issues associated with the leading edge of wind turbine blades," Journal of Physics D: Applied Physics, vol. 46, no. 38, p. 383001, 2013.
- [3] Blade Care, "Are your wind turbine blades suffering from leading edge erosion?" [Online]. Available: [Accessed: Apr. 28, 2025].

- [4] D. Estavromenos, N. Papadakis, and I. Ntintakis, "Wind turbine blade failure modes in humid conditions," Energies, vol. 14, no. 18, p. 5974, 2021.
- [5] Windtech International, "Thermographic inspection of wind turbines with AI," n.d.
- [6] M. Tang, L. Huang, J. Wang, and D. Guan, "Research progress of blade coatings," IOP Conference Series: Materials Science and Engineering, vol. 750, no. 1, p. 012033, 2020.
- [7] Cotes, "What kind of humidity-induced problems can I face in a wind turbine?" [Online]. Available: [Accessed: Apr. 28, 2025].
- [8] H. S. S. Kumar and R. B. Anand, "A case study on damage detection of wind turbine composite blade," FME Transactions, vol. 47, no. 1, pp. 137– 142, 2019.
- [9] J. Kim, S. Lee, C. Park, "Polyuretharie composites for enhanced rain erosion resistance," Composites Science and Technology, vol. 188, p. 107973, 2020.
- [10] D. Frederichi, M. H. N. O. Scaliante, and R. Bergamasco, "Structured photocatalytic systems: Coatings for water treatment," Environmental Science and Pollution Research, vol. 28, no. 19, pp. 23610–23633, 2021.
- [11] D. Morales, R. García, E. Ortiz, "Hybrid nanofiber coatings for wind blades," Journal of Reinforced Plastics and Composites, vol. 39, no. 5, pp. 212– 223, 2020.
- [12] M. Thomas and Y. Zhen, "Electrospun PU coatings for anti-icing performance," Polymer Testing, vol. 108, p. 107465, 2020.
- [13] A. Dashtkar, H. Hadavinia, M. Sahinkaya, et al., "Rain erosion-resistant coatings for wind turbine blades: A review," Polymers and Polymer Composites, vol. 27, pp. 443–475, 2019.
- [14] S. F. Jurak, E. F. Jurak, M. N. Uddin, R. Asmatulu, "Functional superhydrophobic coating systems," International Journal of Automation Technology, vol. 14, no. 2, pp. 148–158, 2020.
- [15] Y. Zhao, L. Wfaang, and G. Chen, "Spray-coated silica-enhanced PU films," Coatings, vol. 9, no. 2, p. 118, 2019.
- [16] C. Cooper, G. Watson, and D. Murray, "PVP-silica composites for surface protection," Journal of Applied Polymer Science, vol. 134, no. 15, p. 44781, 2017.
- [17] J. Twidell, Renewable Energy Resources, 5th ed. Routledge, 2021.
- [18] G. A. M. Van Kuik et al., "Long-term research challenges in wind energy," in A Research Agenda for Wind Energy, 2016.
- [19] L. Anderson, R. Müller, P. Grant, "Performance evaluation of PU-based coatings under accelerated weathering," Renewable Energy Materials, vol. 6, no. 2, pp. 45–52, 2018.
- [20]B. Novak, S. Mahadik, "Reversible bonding smart PU coatings," Smart Materials and Structures, vol. 28, no. 11, p. 115002, 2019.

- [21] Y. Feng, Z. Liu, and J. Wu, "Smart PU coatings responsive to environmental damage," Advanced Materials Interfaces, vol. 5, no. 14, p. 1800435, 2018.
- [22] N. Zhang, F. Yang, D. Guerra, C. Shen, J. Castro, "Enhancing particle erosion resistance using carbon nanofibernanocoatings," Journal of Applied Polymer Science, vol. 135, no. 8, p. 45971, 2018.
- [23] M. F. Ali, N. Yahya, and M. Samykano, "Advances in graphene-based polymer composites for anticorrosion coating applications: A review," Polymers, vol. 13, no. 17, p. 2863, 2021.
- [24] S. M. Martin, P. O'Hara, "Self-cleaning coatings for wind turbine efficiency," Journal of Applied Polymer Science, vol. 137, no. 32, p. 48921, 2020.
- [25] Jinling Paint Co., Ltd., "Protective coating for wind turbines," 2020. [Online].
- [26] A. Demirbaş, "Global renewable energy resources," Energy Sources, vol. 28, no. 8, pp. 779–792, 2006.
- [27] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, vol. 39, pp. 748–764, 2014.
- [28] B. N. Adeleye, A. O. Olohunlana, C. O. Ibukun, T. Soremi, and B. Suleiman, "Mortality rate, carbon emissions, renewable energy and per capita income nexus in Sub-Saharan Africa," PLoS ONE, vol. 17, no. 9, p. e0274447, 2022.
- [29] L. Gao, Y. Liu, L. Ma, H. Hu, "A hybrid strategy for superhydrophobic surface coating for wind turbine icing mitigation," Renewable Energy, vol. 170, pp. 1201–1211, 2021.
- [30] K. Chen, S. Huang, Y. Lin, "Self-healing behavior of PEO-polymer blends under mechanical stress," Polymer Testing, vol. 65, pp. 292–300, 2018.
- [31] H. El-Sayed, H. Ezzat, and M. Saleh, "Mechanical characterization of PVP-based coatings," Coatings, vol. 8, no. 9, p. 317, 2018.
- [32] W. Li, F. Zhao, B. Sun, "Icephobic PEO coatings with enhanced durability," Progress in Organic Coatings, vol. 135, pp. 70–78, 2019.
- [33] V. N. Patel, S. Kumar, "Graphene oxide-reinforced polymer hybrids for wind turbine blades," Materials Today: Proceedings, vol. 33, pp. 499–504, 2020.
- [34] [A. Mahmood, A. Rehman, and M. Khalid, "Flexible PU nanocomposite coatings for abrasion resistance," Materials Today Communications, vol. 29, p. 102997, 2021.
- [35] R. Shen, R. S. Amano, G. Lewinski, and A. K. K. Matt, "A new vascular system for self-healing coatings," Journal of Energy Resources Technology, vol. 141, no. 5, p. 052001, 2019.
- [36] M. Johnson, R. Carter, J. White, "Weatherability of PU topcoats," Coatings, vol. 6, no. 4, p. 51, 2016.
- [37] [M. Tang, L. Huang, J. Wang, D. Guan, "Research progress of blade coatings," IOP Conference Series: Materials Science and Engineering, vol. 750, no. 1, p. 012033, 2020.

- [38] U. Farooq, M. Aslam, and A. Khan, "Moisture barrier properties of modified PVA composites," Coatings, vol. 10, no. 3, p. 276, 2020.
- [39] L. Hernandez, P. Gomez, and R. Ortiz, "Hybrid PVA/graphene oxide coatings for corrosion resistance," Surface & Coatings Technology, vol. 421, p. 127445, 2021.
- [40] A. Kausar, I. Ahmad, M. H. Eisa, and M. Maaza, "Avant-garde polymer/graphene nanocomposites for corrosion protection: Design, features, and performance," Prog. Org. Coat., vol. 173, 107369, 2023.
- [41] J. Jomy, D. Prabhu, and R. Prabhu, "Inhibitors incorporated into water-based epoxy coatings on metals for corrosion protection: A review," J. Bio-Tribo-Corros., vol. 8, no. 1, pp. 1–15, 2022.
- [42] M. Mangini, et al., "Superhydrophobic PEO/PVA composites for anti-icing applications," [Details incomplete], 2015.
- [43]B. Rašuo, M. Dinulović, A. Veg, A. Grbović, and A. Bengin, "Harmonization of new wind turbine rotor blades development process: A review," Renewable and Sustainable Energy Reviews, vol. 39, pp. 874–882, 2014.
- [44] H. Zhang, W. Xu, "Use of bio-based PVA in environmental coatings," Progress in Organic Coatings, vol. 151, p. 106045, 2021.
- [45] S. H. Ryu and K. W. Park, "Nanostructured surface coatings for hydrophobic behavior," Langmuir, vol. 36, no. 10, pp. 2555–2563, 2020.
- [46] M. Li, B. Yu, "Durability assessment of protective coatings under UV and moisture conditions," Journal of Coating Science, vol. 11, no. 1, pp. 78– 88, 2018.
- [47] Y. Liu, Q. Zeng, "Performance of silicon-based elastomers in salt-fog environments," Coatings, vol. 9, no. 7, p. 442, 2019.
- [48] F. Liang, Y. Tang, J. Gou, and J. Kapat, "Ceramic coatings for wind turbine blades," Ceramic Transactions, vol. 262, pp. 1–10, 2017.
- [49] M. Talebian, E. Marzbanrad, R. Jafari, "Structural analysis of composite wind turbine blades under dynamic loading," unpublished.
- [50] Y. H. Choi, J. S. Kim, "Thermal shock and fatigue resistance of blade coatings," Materials Science Forum, vol. 944, pp. 131–136, 2019.
- [51]S. K. Singh, A. Kumar, M. Sharma, "Electrospunnanofiber coatings for wind turbines," Applied Surface Science Advances, vol. 4, p. 100084, 2021.
- [52] D. Singh, P. Kumar, A. Bhatnagar, "Hydrophilic PEO hybrid films for wind turbine blades," J. Appl. Polym. Sci., vol. 137, no. 29, p. e48765, 2020.
- [53] D. Kim, J. Park, H. Choi, "Multifunctional PEObased composites for erosion protection," Composites Part B Engineering, vol. 168, pp. 149–156, 2019.
- [54] Y. Huang, X. Zhao, and S. Jin, "PVP-based hybrid coatings for anti-icing applications," Materials Letters, vol. 291, p. 129514, 2021.

FME Transactions

- [55] M. Al Al-Maadeed, M. Othman, and H. Al-Busaidi, "Development of UV-resistant PVP films for blades," Polymer Testing, vol. 75, pp. 140–147, 2019.
- [56] R. Dey and S. Banerjee, "Recent advances in antiicing coatings: A comprehensive review," Surface & Coatings Technology, vol. 404, p. 126424, 2021.
- [57] T. Brown, S. Hill, and F. Adams, "Erosion resistance of PU coatings: A field study," Journal of Wind Engineering and Industrial Aerodynamics, vol. 167, pp. 190–197, 2017.
- [58] M. Esmaeili, R. Jafari, "Biodegradable PU coatings reinforced with nanoclays," Journal of Cleaner Production, vol. 278, p. 123902, 2021.
- [59] L. Domenech, V. García-Peñas, A. Šakalytė, et al., "Top coating anti-erosion performance analysis in wind turbine blades depending on relative acoustic impedance," Coatings, vol. 10, no. 8, p. 709, 2020.
- [60] C. Sun, T. Liu, and H. Zhang, "UV-resistant PU coatings modified with ZnO nanoparticles," Progress in Organic Coatings, vol. 123, pp. 190– 197, 2018.
- [61] A. Thomas, B. Smith, and C. Johnson, "Advances in wind turbine coating technology," Renewable Energy J., vol. 45, no. 3, pp. 210–225, 2020.
- [62] MDPI Energies, "Rain erosion damage in turbine blades," MDPI, 2021.
- [63] ResearchGate, "Temperature distribution in the turbine blade [Figure]," retrieved Apr. 28, 2025.
- [64] J. I. Bech, "Leading edge with erosion: initiation and developed stage [Photograph]," ResearchGate, 2019.
- [65] M. A. Abdelwahab, E. A. Hassan, and M. A. El-Meligy, "Preparation and characterization of ecofriendly polymer coatings," J. Coat. Technol. Res., vol. 17, no. 1, pp. 203–212, 2020.
- [66] R. Nanda and B. Mishra, "Sustainability in protective coating materials: A review," Green Materials, vol. 9, no. 1, pp. 55–66, 2021.
- [67] A. Morales, P. Garcia, S. Lopez, "Performance analysis of PEO membranes under water exposure," Int. J. Polym. Sci., 2017, Art. no. 8267824.
- [68] J. Novak, M. Shaban, and M. Peters, "Self-healing properties of PVP-polymer blends," Polymer Degradation and Stability, vol. 205, 110155, 2023.
- [69] D. Johnson, J. Park, "Aging performance of PU topcoats under UV radiation," Coatings, vol. 11, no. 7, p. 875, 2021.
- [70] Y. Gao, H. Wu, and X. Li, "Nanocomposite PVA films with improved erosion resistance," Materials Today Communications, vol. 15, pp. 132–139, 2018.
- [71] Y. Luo, M. Li, H. Wu, "Electrical conductivity and hydrophobicity of PVP–CNT films," Polymer Composites, vol. 40, no. S2, pp. E1001–E1010, 2019.
- [72] Y. Luo, F. Chen, and R. Zhang, "PVP-carbon nanotube films for improving surface conductivity,"

Materials Chemistry and Physics, vol. 247, p. 122842, 2020.

- [73] X. Sun, Y. Tan, and S. Fu, "Enhanced UV stability of PU coatings by ZnO nanoparticles," Surface and Coatings Technology, vol. 385, p. 125424, 2020.
- [74] M. Thomas and Y. Zhen, "Electrospun PU coatings for anti-icing performance," Polymer Testing, vol. 108, p. 107465, 2022.
- [75] R. Singh and M. Prakash, "Flame-retardant PU coatings for wind blades," Materials Letters, vol. 284, p. 128914, 2021.
- [76] G. Van Kuik et al., "Future wind energy systems," European Wind Energy Technology Platform, 2016.
- [77] S. Ashraf, M. T. Rahman, "Tribological behavior of nanoclay-enhanced coatings," Coating Technology Research, vol. 17, no. 2, pp. 212–219, 2020.
- [78] J. I. Bech, "Distribution of temperature in wind turbine blades," ResearchGate, 2019.
- [79] S. Bhowmik and S. S. Ray, "Biopolymer coatings for surface protection: A review," Progress in Organic Coatings, vol. 157, p. 106328, 2021.
- [80] I. M. Alarifi, A. Ali, R. I. Bakare, "Performance of polymeric composites in desert-like conditions," Desert Energy Materials, vol. 4, no. 3, pp. 122–130, 2019.

NOMENCLATURE

UV	Ultraviolet
PU	Polyurethane
GO	Graphene Oxide
PVA	Polyvinyl Alcohol
PEO	Polyethylene Oxide
PVP	Polyvinylpyrrolidone
WTBs	Wind Turbine Blades
BERP	British Experimental Rotor Programme
FEM	Finite Element Methods
PSO	Particle Swarm Optimization
VOC	Volatile Organic Compounds
VAWT	Vertical Axis Wind Turbine
SLIPS	Slippery liquid-infused porous surfaces

СВЕОБУХВАТНИ ПРЕГЛЕД ПОСТОЈЕЋИХ ПРЕМАЗА И ПРАКСИ ЗАШТИТЕ ОД ЕРОЗИЈЕ ЗА ПОВРШИНЕ ЛОПАТИЦА ВЕТРОТУРБИНА

А. Алнасир, Ф. Албинали, Ф. Алџаруди, Н. Алсалим, С. Рехман

Лопатице ветротурбина (ВТБ) су стално изложене екстремним утицајима околине као што су киша, песак, УВ зрачење, влажност, термички циклуси и залеђивање, што све утиче на њихов структурни интегритет, као и на ефикасност. Заштитни премази на бази полимера, као што су полиетилен оксид (ПЕО), полиуретан (ПУ), поливинилпиролидон (ПВП) и поливинил алкохол (ПВА), су обећавајуће опције због своје флексибилности, исплативости и подесивости. Овај преглед анализира 80 лабора– торијских студија о развоју и примени таквих премаза, користећи нанопунила и хибридне композите за побољшање перформанси. Технике прскања, умакања, електропредења и центрифугирања процењују се према отпорности на ерозију, УВ деградацији, залеђивању и воденој пари. Истакнути су најновији напредак у самозалечивим и паметним премазима. Иако обећавајући лабораторијски резултати, дугорочне перформансе и еколошка отпорност у реалним условима нису добро схваћени. Циљ истраживања је да се утврде празнине у истраживањима и понуде доприноси за стварање одрживих, мултифункционалних премаза за продужење радног века лопатица ветротурбина.