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An Equipment Behavioral Study in 
Fluidic Production Processes using 
Data for an Optimized Predictive 
Maintenance: Application to Pneumatic 
Valves in Biopharmaceutical Industry 
 
Predictive maintenance of production equipment is gaining increasing 
interest in the biopharmaceutical industry in the context of Industry 4.0, 
where reliability is essential to ensure product quality, equipment 
availability, and compliance with strict standards. Pneumatic membrane 
valves, critical for regulating fluid and gas flows in production systems, 
are of particular importance. The membrane, a primary wear component, 
is subject to mechanical stresses that can lead to deformations or ruptures. 
These can disrupt production and compromise product quality. Prognostic 
Health Management (PHM) is a promising approach to monitoring 
equipment condition. By leveraging representative data, it offers the 
possibility of modelling the evolution of equipment condition and 
anticipating potential failures. This predictive strategy, based on lifecycle 
phases and trends, facilitates targeted maintenance interventions before 
major failures occur. This article investigates PHM integration for 
pneumatic valve membrane maintenance in the biopharmaceutical sector. 
It proposes a method to identify experimental data, define lifecycle criteria, 
analyse these criteria, compare them with planned maintenance practices, 
and evaluate signal drifts to characterise the membrane state for future 
predictive maintenance development.  
  
Keywords: Predictive Maintenance, Mechanical Engineering, Fluidic 
Systems, Machine Learning, Modelisation, Biopharmaceutical Industry 

 
 

1. INTRODUCTION AND INDUSTRIAL CONTEXT 
 

With the aim of ensuring the reliability of equipment 
and anticipating its failures, this article provides a 
reflection on the need to go beyond traditional planned 
maintenance methods. It presents a new framework 
based on an industrial problem submitted by a 
biopharmaceutical manufacturer partner. In section 2, 
we introduce the subject through a review of the state of 
the art regarding maintenance practices targeting 
industrial equipment, particularly pneumatic valve 
membranes. In section 3, we describe the system under 
study, using data from the experimental platform, which 
allows the modeling of the behaviour of the valve 
membranes. Afterwards, in section 4, we present the 
results obtained and propose indicators for the lifespan 
and degradation of the equipment, based on the 
collected data. Next, in section 5, we conduct a physical 
comparison between a new membrane and the degraded 
membrane in our study. Finally, in section 6, we 
conclude this paper and suggest some perspectives for 
this work. 

With the emergence of Industry 4.0 technologies, 

pneumatic membrane valves can no longer be 
considered as enhanced valves, but as equipment that 
behaves like IoT (Internet of Things). This in turn offers 
the ability to assess functional conditions using a range 
of collected data. 
The contributions of this study are as follows: 
1. The characterisation of the life cycles and the 

detection of defects in the behaviour of an 
equipment item (applied to pneumatic valve 
membranes) during its lapping, maturity, and 
ageing phases. 

2. The proposal and analysis of criteria for predicting 
the operational state of this equipment through the 
measurement of signals captured during the system 
performance. This proposal aims to introduce a 
predictive maintenance method. 

3. The application of failure criteria in the 
biopharmaceutical environment, with particular 
reference to the quality constraints inherent to this 
industry. 

There are significant challenges facing the biop–
harmaceutical industry when it comes to optimising 
equipment maintenance, especially with regard to the 
transition from planned to predictive strategies. Current 
planned maintenance plans, widely adopted in the 
sector, are based on predefined schedules for the 
replacement of critical components. These include wear 
parts, based on the manufacturer's recommendations. 
However, this approach often leads to premature 
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replacements, where still-functional components are 
discarded, resulting in a waste of consumables. Fur–
thermore, planned maintenance fails to address residual 
defects, requiring remedial interventions that disrupt 
production and compromise product quality. This also 
increases costs due to unplanned downtime and quality 
problems. 

Biopharmaceutical production is characterised by 
stringent requirements, as it operates in sterile and 
aseptic environments to guarantee product safety and 
compliance with regulatory standards. Fluidic 
production processes involve the precise regulation of 
liquid and gas flows. This is often carried out under 
difficult conditions, such as steam cleaning or exposure 
to acidic/alkaline agents. These processes demand 
equipment that is both inert to the product and resilient 
to cleaning protocols, so as to prevent contamination 
and maintain production integrity. 

The advent of Industry 4.0 and the IoT offers 
promising avenues for optimisation. These technologies 
enable real-time monitoring and data-driven decision-
making,  thereby facilitating the transition to predictive 
maintenance. However, this transition requires an 
effective collection and processing of operational data 
to monitor the equipment condition and predict failures 
accurately. Without these data, the industry struggles to 
implement "just-in-time" maintenance strategies that 
align interventions with actual equipment conditions, 
resulting in reduced waste and improved reliability. 

In this context, the equipment selected for this study 
is the pneumatic membrane valve, a critical component 
in fluidic production systems. This valve, widely used in 
biopharmaceutical settings, provides flow regulation 
while maintaining sterility. Its membrane, however, is 
prone to wear, deformation or rupture, which poses risks 
to production continuity and product quality. 

 
1.1  State of the art 
 
IoT-driven predictive maintenance 

 
IoT-driven predictive maintenance has emerged as an 
area of interest in the biopharmaceutical industry [1-3], 
although its adoption remains limited compared to other 
sectors such as the automotive industry [4-5], the energy 

industry [6-8], or more broadly, the manufacturing 
industry [9-12]. By enabling the collection of real-time 
or near-real-time data, the Internet of Things offers un–
precedented opportunities to effectively monitor equip–
ment and anticipate failures. In several cases, techno–
logies based on machine learning algorithms have de–
monstrated their effectiveness in providing rapid and 
accurate failure diagnosis [13-14]. However, in the 
biopharmaceutical context, stringent regulatory require–
ments, particularly in terms of quality standards, com–
plicate the integration of these tools into real-world 
processes. These constraints necessitate specific solu–
tions to ensure compliance with maintenance processes 
while fully leveraging the potential of IoT-derived data 
[15-16]. Despite these challenges, IoT applications in 
this sector reveal significant potential for innovation, 
particularly in terms of optimising processes and 
reducing costs associated with unexpected interruptions. 

Prognostics and Health Management (Figure 1) pro–
vides a structured methodological framework to antici–
pate failures, extend equipment lifespan, and optimise 
maintenance. There are numerous examples in the sci–
entific literature that describe the development of pre–
dictive maintenance plans in the manufacturing indus–try, 
based on the general principles of this method [17-18]. 

As illustrated in Figure 1, the paradigm is based on a 
set of key steps: data acquisition, data refinement, ano–
maly detection, diagnostics, and estimation of the 
remaining lifespan of target equipment. These app–
roaches can be based on physical models, data-driven 
methods,  or a combination of both. The implementation 
of PHM  in the context of fluidic equipment demon–
strates efficacy in the prevention of failures, the 
reduction of operating costs, and the minimisation of 
unplanned downtime. In critical environments such as 
the biopharmaceutical industry, where operational 
continuity is essential, the integration of PHM facilitates 
the alignment of operational needs with stringent 
regulatory requirements. This methodology is also 
highly flexible, which allows its application to a variety 
of equipment and scenarios, particularly those involving 
complex fluidic processes. A widespread adoption of 
this framework could transform industrial practices by 
combining performance, reliability, and compliance. 

 
Figure 1. Illustration of the stages of PHM according to [19]. 
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Pneumatic membrane valves present specific 
challenges related to membrane degradation. Their 
failures, undetectable by traditional methods, can lead to 
unplanned downtime and compromise product quality. 
Thanks to advances in IoT, these valves can now be 
equipped with intelligent positioning systems capable of 
collecting data representative of their operational state. 
Being independent of the control system, these data 
provide insight into phenomena such as progressive 
membrane degradation, thereby allowing the prediction 
and planning of maintenance interventions. The next 
section focuses on the studies carried out on this valve. 

1.2. Valve failure detection 
Due to its critical role in flow management, the 

valve is a central part of the equipment in any 
manufacturing process involving fluids. It can be 
configured in various forms [20]. Industrial valves 
typically consist of a valve body and an actuator that 
allows their opening and closing. They may be manual 
or automatic (controlled by a PLC (Programmable 
Logic Controller)), and the actuator can be equipped 
with a spring and/or a piston. The control can be electric 
or pneumatic. A variant used in fluidic processes 
incorporates a membrane between the actuator and the 
valve seat, making detection of failures difficult due to 
their invisibility. In the era of Industry 4.0 principles, 
where maintenance practices are undergoing a transition 
toward so-called predictive methods, a question arises 
as to the applicability of these practices to membrane-
equipped valves. Accordingly, the following section 
will present a review, in chronological order, of several 
noteworthy studies that could support the predictive 
maintenance of industrial valves. 

Thus, the first study by [21] describes the use of a 
Recurrent Neural Network (RNN) for fault detection in 
pneumatic control valves without membranes. The 
experiment involved analysing the displacement of the 
valve positioner and comparing the 4-20mA signal 
collected from a fault-free valve with induced fault 
signals. The authors observed variations in the electrical 
signals that could be correlated with drift states, 
consistent with visual classifications established by 
experts. To this end, a neural network was employed to 
process the signals and classify them based on features 
and known failure types. The second study [22] 
proposed a model-based prognostic approach to 
characterise failures in pneumatic valves without 
membranes within a liquid hydrogen transfer system. 
The research consisted of modelling physical 
parameters and time-series data, including air injected 
into the pneumatic actuator, valve positions, and 
opening and closing times. Both the physical parameters 
of a healthy valve and those of a degraded valve were 
presented. The experiment was based on real and 
simulated data to determine the Remaining Useful Life 
(RUL). 

Two studies addressing the detection and diagnosis 
of pneumatic actuator failures were also identified. For 
instance, the authors of [23] proposed an Adaptive 
Neuro-Fuzzy Inference System (ANFIS) model for the 
detection and diagnosis of failures in a pneumatic 
actuator valve without a membrane in the cement 
industry. In this study, they focused on the pneumatic 

actuator. Nineteen actuator-related failures were charac–
terised. Their model was based on generated training 
data, 75% of which was used for training and 25% for 
testing.  The data considered five characteristics: poten–
tiometer movement, pump input and output power, inlet 
pressure, outlet water temperature, and differential pre–
ssure transmitter output, creating a labelled output 
indicating the presence (and type, if any) of an error or 
its absence. Concerning the study conducted by [24], an 
edge detection approach was used to identify failures in 
the pneumatic actuator of a valve without a membrane. 
To this end, photos of the system were collected, a 
region of interest was identified in each photo, and the 
borders of this region were extracted. Then, the 
positional changes of the elements in the region of 
interest were calculated. If an abnormal spatial position 
change was detected, a fault was recorded. 

Furthermore, it was reported in [25] that various 
machine learning algorithms were compared to predict 
failures in Pressure Regulated Shutoff Valves (PRSOV). 
These pneumatic control valves are notably found in 
aircraft fuel supply circuits. The authors simulated 
failures such as leaks, spring malfunctions, and friction 
to generate training data. They then trained and 
compared six algorithms (SVM, kNN, NB, CART, 
MLR, MLP) to diagnose the faults. 

In 2021, two studies were published addressing 
similar problems. The study conducted by [26] proposed 
a failure diagnosis methodology for pneumatic valves 
without membranes. This approach was based on the 
use of Fault Detection and Diagnosis (FDD) techniques 
and decision trees.  For this experiment, they used a test 
platform called 'AUTHOMATHIKA', equipped with a 
pneumatic actuator, a control valve, and a positioner. 
The authors developed a methodology to leverage 
sensor data to characterise failures. Based on the 
obtained failure patterns, a decision tree classification 
was performed to diagnose faults. Another study by [27] 
detected 14 of the 19 faults associated with simulated 
pneumatic valves without membranes using the 
"DAMADICS" benchmark, with detection performed 
through the CVA-SMD (Canonical Variate Analysis on 
Square of the Mahalanobis Distance) method. Various 
failure categories were addressed, including those in the 
valves themselves, as well as in the servomotor and 
positioner. Furthermore, other more general failures 
were studied, one of which involved faults due to 
fatigue in the internal membranes of the servomotor. 
The authors tested the CVA-SMD method for fault 
detection and compared it with more common statistical 
methods such as PCA-T² (Principal Component 
Analysis) and SVA (Surrogate Variable Analysis). The 
results of this study showed that the CVA-SMD method 
exhibited the lowest False Alarm Rate and the highest 
False Discovery Rate among the statistical methods. 

Finally, a paper by [28] examined the application of 
a DGM (1,1) (Dynamic Grey Model type 1,1) system 
for predictive maintenance of pneumatic valves without 
membranes. The focus of this study was on the 
equipment employed in the oil industry. This approach 
was used to target redundancies in signals measured 
from pneumatic actuators to model failures, enabling 
their prediction in the future. 
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The scientific literature contains numerous studies 
conducted in this field and on this equipment, which 
primarily address failures related to the pneumatic 
actuators of valves. Consequently, no studies have been 
identified in the literature that specifically target  the 
degradation of membranes in pneumatic valves, which 
are commonly found in liquid process industries, 
particularly in the biopharmaceutical sector. 

Despite recent advances in predictive maintenance 
for industrial valves, current studies have significant 
limitations, particularly in addressing membrane-based 
systems. The majority of existing research concentrates 
on pneumatic actuators or valves without membranes, 
and often relies on simulated data or narrowly focused 
industrial scenarios. These approaches overlook the 
specific wear mechanisms and degradation patterns 
associated with valve membranes, especially in fluidic 
environments where membrane integrity is critical. This 
lack of consideration for membrane wear represents a 
significant gap in the scientific literature. In an attempt 
to fill this gap, our study introduces a novel metho–
dology designed to detect and model membrane degra–
dation using advanced data processing techniques, pro–
viding more reliable wear indicators that can be applied 
in real-world conditions. 

 
2. DESCRIPTION OF THE SYSTEM STUDIED 
 
2.1 Pneumatic membrane valve 
 
The pneumatic membrane valve is used in fluidic 
production processes. It is specifically employed in the 
biomedicine industry due to its compatibility with sterile 
and aseptic production environments. In addition to its 
role as a fluid blocker, the valve membrane is designed to 
be inert with respect to the product circulating in the 
production lines, thereby ensuring the non-contamination 
of the processed product. It must also withstand cleaning 
of the production lines using steam or other agents, 
whether acidic or alkaline. They are generally composed 
of rubber and/or plastic materials and can rupture, 
deform, and have a significant impact on the production 
process by reducing equipment availability and 
introducing a risk of product contamination.  

Biopharmaceutical production equipment fitted with 
pneumatic membrane valves is also difficult to access, 
as it is generally located in controlled atmosphere envi–
ronments specific to industries producing biomedicines. 
The most common maintenance plan currently used by 
our industrial partner, and more broadly in the 
biopharmaceutical industry, is the planned maintenance 
plan [29]. The membranes of pneumatic valves, which 
are the major wear parts of this equipment, are replaced 
based on a usage duration criterion derived from manu–
facturer recommendations, integrated into a planned 
maintenance plan. While this approach allows wear 
parts to be monitored over time, it does not guarantee 
the absence of equipment failures. In our use case, pre–
mature membrane wear due to non-compliant assembly 
and sudden failures are poorly addressed by planned 
maintenance. Furthermore, replaced membranes are 
often removed prematurely as they remain viable, 
raising the issue of consumable waste. 

As the membranes cannot be seen without prior 
disassembly of the entire equipment, it is important to 
have state indicators to enable "just-in-time" main–
tenance and to establish relevant timeframes for pre–
dicting maintenance interventions. 

The pneumatic membrane valve (Figure 2) consists 
of a valve body through which the fluid flows, a pne–
umatic actuator enabling the opening and closing of the 
valve, and a membrane that connects the valve seat to 
the actuator. The actuator, once supplied with comp–
ressed air, exerts a vertical force on the membrane, 
allowing fluid circulation through the valve seat. 

 
Figure 2. GEMÜ Biostar 650 pneumatic membrane valve 

Generally, the equipment can be made of various 
materials (plastic or metal), depending on the fluid that 
will flow through the valve and the product non-
contamination requirements specific to the production 
process. The valve body also serves as support for the 
actuator and the membrane. 

The pneumatic actuator is a component that enables 
the opening and closing of the valve. Compressed air is 
injected into the actuator’s chamber, thereby exerting 
pressure on an internal spring. This in turn allows 
vertical movement of the membrane and the passage of 
the fluid through the valve body. The valve closes when 
the supply of compressed air to the actuator chamber is 
interrupted, causing the internal spring to relax and the 
membrane to return to its initial position. This principle 
is illustrated in Figure 3. 

 
Figure 3. Principle of a membrane valve derived from [30] 

The membrane is attached to the actuator by screws 
and is subjected to the compressed air injected into the 
actuator, making a vertical movement to allow or 
prevent fluid flow. Our study focuses specifically on 
EPDM/PTFE (Ethylene Propylene Diene Monomer / 
Polytetrafluoroethylene) membranes (Figure 4), which 
are commonly found in the fluidic processes of our 
industrial partner. However, they can be made from 
different materials depending on the process constraints. 
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Figure 4 - Membrane de vanne pneumatique de la marque 
GEMÜ 

These valves can also be equipped with an electrical 
position indicator (Figure 5) screwed onto the actuator. 
The main function of this device is to inform the PLC 
managing the valves about its open or closed state by 
sending back information based on a potentiometric 
value representative of its position. 

 
Figure 5 - GEMÜ electrical position indicator 

2.2 Failure modes 
 

The primary failure mode identified for these mem–
branes is the deformation of the PTFE layer. 

PTFE is a synthetic fluorinated polymer known for 
its chemical resistance and low friction coefficient [31]. 
However, one of its main weaknesses is its low mec–
hanical strength [32]. Compared to other industrial 
plastics, it is more prone to deformation or flattening 
under high mechanical loads or prolonged stress, 
particularly at low temperatures. 

The valve membrane under study comprises a PTFE 
component, which is mobile and in direct contact with 
the products. It is subjected to mechanical stress each 
time the valve is actuated. Due to the properties of the 
plastic material, the opening-closing movement causes 

progressive deformation in the stress zones of the 
membrane. This deformation can create a retention area 
in the fluidic system that may be difficult to reach 
during production line cleaning processes, potentially 
paving the way for product contamination. Such 
deformation may also prevent the membrane from 
properly fulfilling its sealing role in the line. 

In extreme cases, the deformation can lead to sudden 
rupture  in this part of the membrane. This type of rup–
ture would result in a  significant product leakage thr–
ough the actuator drain ports. 

While the occurrence of membrane deformation is 
inevitable due to the material properties and operating 
conditions, it should be noted that the phenomenon can 
be exacerbated by non-conform mounting of the mem–
brane to the actuator (e.g., non-compliant tightening). 

 
3. TEST BENCH EXPERIMENTATION 
 
The experiment described here consists of reproducing 
the control of a pneumatic membrane valve as it would 
be used in the production process, with the imple–
mentation of a system enabling the monitoring of some 
data related to the stress exerted on the membrane. 

The equipment and operational expertise used to 
conduct this experiment were provided by our industrial 
partner. All the equipment employed is identical to that 
found on the production lines. 

 
3.1 Materials 

 
To collect data representative of membrane degradation 
under experimental conditions, we established a test 
bench (Figure 6). This was designed to simulate the 
conditions encountered in the fluidic production process 
of our industrial partner. This test was equipped with a 
pneumatic membrane valve, a pump, and an automated 
control and monitoring system. The size (ND) of the 
pneumatic membrane valve used for the experiment was 
selected based on a representativeness criterion, as it is 
the most commonly used size at our industrial partner's 
facilities. Finally, the valve under study was assembled 
and prepared by an expert from the company in 
question, ensuring compliant mounting. 

 
Figure 6. Schema of the test bench 
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Figure 7. IO-Link architecture for test bench control + Python data collection system 

The test bench consists of a closed loop filled with 
purified water, comprising: 
• A pneumatic membrane valve (1) 
• A temperature sensor (2) 
• A pressure gauge (3) 
• A pressure reducer (4) to ensure stable pressure in 

the circuit upstream of the valve 
• A pump equipped with a leak detector for potential 

leaks in the supplied circuit (5) 
• A collection tank (6) 

 
3.2  Test bench control 
 
An IO-Link automation architecture (Figure 7) was 
implemented to control the bench and collect relevant 
data for transfer into a Data Lake-type database, created 
for this purpose. IO-Link is a point-to-point commu–
nication protocol used in industrial automation. This 
system consists, at least, of a programmable logic con–
troller (PLC) and a "master" module to which sensors 
and actuators, referred to as "slaves," are directly 
connected. Several scientific publications describe test 
platforms using IO-Link [33-34]. 

In our case study, one advantage of IO-Link is the 
ability to communicate with the "slave" equipment 
without involving the PLC and without affecting the 
flow of control frames addressed by the PLC to the 
equipment.   

The test bench architecture contains the following 
components : 
•  A PLC (1) 
•  A server hosting a database (2) 
•  An unmanaged switch (3) 
•  An IO-Link master (4) 
•  A pneumatic valve island for valve control via the 

actuator (5) 
•  A 30mm stroke electrical position indicator (6) 

The acquisition script, written in Python, was used 
to communicate with the electrical position indicator via 
the IO-Link master, without involving the PLC. Such 
data is referred to as "acyclic." They are not specifically 

required by the PLC to control the equipment, but are 
employed by the equipment for its own operation. For 
the purposes of our study, we have retrieved poten–
tiometric values that allow the valve to indicate whether 
it is open or closed, according to its switching diagram 
(Figure 8).  

 
Figure 8 - Switching diagram from the equipment manufac–
turer's instructions 

3.3 Methods 
The data used for our case study are derived from the 
electrical position indicator of the valve (Figure 5). 
They were continuously collected using a data collector 
Python script. 

• Conduct of the experiment 

An EPDM/PTFE membrane was installed in a 
compliant manner on the pneumatic actuator of the 
ND25 valve by a technical expert employed by our 
industrial partner. This precautionary measure was 
necessary to avoid the failures associated with non-
conform mounting, as described in the "Failure Mode" 
section. 

•  Test bench control conditions 

The liquid circulating in the loop was purified water. 
The physical parameters of the circuit are as follows: 
•  ≈ 2 bars of pressure in the manifold 
•  Liquid at ≈ 25°C 

These parameters are representative of physical 
conditions found in biopharmaceutical production lines. 
The experiment  was conducted on a continuous basis 
for twelve months. Opening/closing cycles, each lasting 
a total of one hour and twenty minutes, were performed 
and controlled by a programmable logic controller 
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(PLC). The valve opening lasted five minutes, followed 
by a closure period of one hour and fifteen minutes. 
This allowed 20 cycles per day, simulating accelerated 
process conditions. 

• Verification of membrane conditions 

Disassembling and reassembling the valve causes 
disturbances in the recorded potentiometric readings; 
therefore, we decided to schedule only one disassembly to 
verify the condition of the membrane. We prog–rammed 
this dismantling once 3,500 cycles had been reached. This 
horizon was chosen on the basis of our industrial partner's 
current maintenance practices. It is worth noting that in an 
industrial context, this horizon may vary depending on the 
equipment and its position on the production line. 

• Signal characterisation  

In the following section, we will discuss the raw 
signal as well as the methods employed to process it. 
We followed the steps shown in Figure 9. 

The raw signal collected in this study consists of 
potentiometric values returned by the position indicator 
upon valve closure. Specifically, it includes all values 
recorded once the position indicator exceeds a prede–
fined threshold, automatically established by the system, 
enabling it to signal to the PLC that the valve is closed.  

 
Figure 9 – steps followed to characterise the collection 
signal 

The signal comprises a set of "settling" profiles of 
the membrane against the valve seat once the closed 
state is reached, cycle after cycle of valve opening and 
closing. Figure 10 shows the signal for a set of 7 
open/close cycles, highlighting the emergence of a drift.  

The studied signal covered the entire lifecycle of a 
membrane, from its installation on the actuator to its 
replacement, after reaching a condition deemed con–
cerning the PTFE component in contact with the pro–
duct. The signal was submitted to post-processing to 
highlight the main phases of the membrane’s lifecycle, 

namely, lapping, maturity, and ageing, in accordance 
with the Weibull distribution. 

This law consists of a probability distribution used 
to model the reliability and lifespan of materials and 
systems. Introduced by Waloddi Weibull [35] in 1951, 
this distribution is particularly useful for analysing the 
probability of survival and failure of systems. It is 
defined by three parameters: location (γ), scale (η), and 
shape (β). The shape parameter determines the 
distribution of failure rates. If β < 1, the failure rate is 
relatively high, but decreasing, which corresponds to the 
elimination of early defects and the lapping period. If β 
= 1, the maturity phase is characterised by a low and 
constant failure rate, with components having proven 
their resilience to early defects. If β > 1, the ageing 
phase is marked by an increasing failure rate over time, 
as components experience wear. This flexibility allows 
the Weibull distribution to model the lifespan of various 
components, such as electronic components [36-37], 
mechanical systems [38], or pneumatic valves [39].  

During the lapping phase, membranes are generally 
robust and experience few failures. The maturity phase is 
characterised by stable performance and maximum 
reliability. In contrast, during the ageing phase, failures 
become more frequent due to material degradation. How–
ever, in addition to the normal changes associated with 
lifecycle phases, sensors can detect signals indicating 
abnormal disturbances. These disturbances may result 
from external factors such as pressure variations, 
temperature fluctuations, impurities in the fluid passing 
through the valve, or mechanical malfunctions.  

By characterising the signals from sensors installed on 
the valves, it is possible to accurately determine a memb–
rane's life-cycle phase and predict its future behaviour. The 
analysis of potentiometric data, which measures variations 
in resistance or voltage in response to operating conditions, 
enables the identification of distinct signatures associated 
with each phase of the lifecycle: lapping, maturity, and 
ageing. During the lapping phase, potentiometric values 
typically show significant variations. As the membrane 
reaches the maturity phase, these values remain relatively 
constant but may begin to show signs of fatigue through 
slight fluctuations. Finally, during the ageing phase, poten–
tiometric values display more pronounced variations, indi–
cating an increased risk of failure onset. By monitoring 
these potentiometric variations, it is possible to define 
precise transition thresholds between life cycle phases. For 
instance, a specific potentiometric level may indicate the 
membrane’s transition from lapping to maturity or from 
maturity to ageing. This approach could be integrated into 
a predictive maintenance strategy, thereby minimising 
downtime and costs associated with unexpected failures. 

 
Figure 10. Potentiometric signal obtained by the position indicator for 7 cycles with drift 
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Figure 11. Raw signal reconstructed with minimum values 

LOAD DATASET_PATH INTO df 
 
ADD COLUMN cycle = ROUND(df["Valve cycles user"]) 
DROP COLUMNS ["Timestamp", "Valve cycles user"] FROM df 
GROUP BY "cycle" INTO df_cycles: 
    CALCULATE ["mean", "min", "std", "median"] 
 
COMPUTE df_cycles["centered_closed_pos"] = 
    df_cycles["Pos. Ferme Last"]["min"] - initial_closed_pos 
 
SET WINDOW_SIZE = 5 
 
COMPUTE df_cycles["moving_average"] = 
    MOVING_AVERAGE(df_cycles["centered_closed_pos"], WINDOW_SIZE) 

 
Figure 12. Algorithm 1, pseudo-code used for signal reconstruction and the establishment of moving averages

•  Signal post-processing 

As shown in Figure 10, the studied profiles extracted 
from the raw signal are characterised by a succession of 
more or less prolonged plateaus. We observed that 
changes in the profile were mainly due to the 
appearance of additional plateaus and/or the modulation 
of existing plateaus in the raw signal. 

•  Cleaning of the original raw signal 

We initially cleaned and reconstructed the original 
signal using Algorithm 1 (Figure 12). The purpose of 
this procedure is to display only a moving average of 
the minimum position values in the profiles, per cycle, 
centered relative to the reference value obtained when a 
new membrane is mounted on the actuator (Figure 11). 
Indeed, the raw signal is not directly usable due to its 
inherent noise and fluctuations resulting from opera–
tional variations. These fluctuations obscure the under–
lying degradation trends of the membrane, making its 
interpretation difficult and unreliable. Therefore, in ac–
cordance with PHM principles, it is essential to perform 
a signal cleaning.  

The variables "Timestamp", "Valve cycles user", and 
"Pos. Ferme Last" are the indices collected directly from 
the GEMÜ electronic position indicators. For more clari–
ty, we have decided not to modify their names in the code. 

In our case, the moving averages are obtained using 
the formula (1): 

1

1

1_ _ _
i W

i j
j

moving average centered closed pos
W

+ −

=
= ∑  (1) 

In our case, the moving averages with the following 
parameters : 

→ x: current index in the time series 
→W: smoothing window (size of the moving 

average) 
→ : the summation index that iterates over the W 

points starting from  . 
→ : the signal values to be smoothed. 
As shown in Figure 11, this initial reconstruction 

reveals a visualisation of a first signal phase up to 219 
cycles. This phase is characterised by a high signal 
value that steadily decreases, which can thus be likened 
to a lapping period.  

The second phase, which extends from 220 to 4,212 
cycles, is characterised by a constant signal, which may 
represent the maturity phase of the membrane.  

Finally, the third phase begins at 4,213 cycles, mar–
ked by a signal decrease compared to the previous pha–
se. It is in this third phase that the onset of rupture can 
be anticipated, making it the ageing phase.  

To illustrate, the figure shows the preventive main–
tenance horizon applied by our industrial partner, esti–
mated at 3,500 cycles. 

We initially cleaned and reconstructed the original 
signal using Algorithm 1 (Figure 12). The purpose of 
this procedure is to display only a moving average of 
the minimum position values in the profiles, per cycle, 
centered relative to the reference value obtained when a 
new membrane is mounted on the actuator (Figure 11).  

After processing the original signal with Algorithm 
1 to isolate the moving average of the minimum posi–
tion values per cycle, our focus turned to the inter–
mediate plateaus within the signal profiles. The Iden–
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tification of irregularities in the plateaus could reveal 
early degradation trends that may not be observable in 
the raw signal. 

•  Processing of the original raw signal 

There are several examples in the scientific literature 
that address signal processing for industrial equipment. 
For instance, there are cases involving rotating mach–
inery [40] and electrical equipment [41-42], where sig–
nals are analysed using Fourier transforms and Wavelet 
Analysis. [43], furthermore, they propose a post-pro–
cessing method for audio signals using a Support Vector 
Machine (SVM) and a filtering window to extract 
patterns of interest. Actually, there are various generic 
approaches that must be adapted depending on the 
signal to be processed. Given that we are dealing with a 

specific, regular, and time-series signal, we chose to 
process our signal using a polynomial fitting algorithm 
(using Python's PolyFit library). This was performed to 
capture events related to the modulation of intermediate 
plateaus in the profiles to be analysed (Figure 10). 

We developed an algorithm that first retrieves for 
each profile: 
•  The number of plateaus detected per profile. 
•  Their temporal amplitude, with 1 point on the y-

axis corresponding to ½ second. 
All these characteristics are then compiled into 

histograms, from which we extract, using Algorithm 2 
(Figure 14), the values of a linear regression and a 
second-degree polynomial regression (Figure 13) based 
on the least squares method. 

 
Figure 13. Extraction of characteristic values from cycles via PolyFit 

LOAD DATASET_PATH INTO df 
SELECT ['Timestamp', 'Pos. Ferme Last', 'Valve cycles user'] FROM df 
GROUP BY "Valve cycles user" INTO df_groups 
 
FOR cycle, group IN df_groups: 
    INIT cycle_data = { 'Cycle': cycle, 'Nombre de paliers': 0 } 
    palier_changes = (group['Pos. Ferme Last'] != group['Pos. Ferme 
Last'].shift(1)).cumsum() 
    FOR palier, palier_indices IN group.groupby(palier_changes).groups: 
        cycle_data["Longueur_palier_" + palier] = MAX(palier_indices) -
MIN(palier_indices) 
        cycle_data['Nombre de paliers'] += 1 
    APPEND cycle_data TO result_list 
df = CREATE DataFrame FROM result_list 
 
FOR cycle IN RANGE(MIN(df['Cycle']), MAX(df['Cycle'])): 
    IF ALL p_columns EXIST IN df.columns: 
        values = GET_VALUES(df, cycle, p_columns) 
        indices = FIND_NON_NAN(values) 
        IF LENGTH(indices) >= 2: 
            linear_coef = POLYFIT(indices, values, DEGREE=1) 
            poly_coef = POLYFIT(indices, values, DEGREE=2) 
            APPEND cycle, linear_coef, poly_coef TO cycles_list 

 
Figure 14. Algorithm 2, the pseudo-code used for extracting characteristic values of cycles 
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The following 4 values allow the characterisation 
and revelation of marked differential values depending 
on the signal evolutions in the different profiles studied. 
They are obtained by using the formulas (2), (3), (4), (5): 

Linear regression: 

y ax b= +   (2) 

With the following parameters: 
→ y : Values of the temporal amplitudes of the steps 
→ x : Index of the last detected level 
→ a : regression coefficient 
→ b : ordinate at the origin 
Linear Regression + Least Squares: 

( ) ( )( )21, n
i iiS a b y ax b== − +∑  (3) 

With the following parameters: 
→ S(a,b): cost funciton 
→ n: number of observations 
→ xi, yi: data point values (input/output) 
→ a, b: coefficients to be optimised to minimise the 

error 
Quadratic (polynomial) regression: 

2y ax bx c= + +   (4) 

With the following parameters: 
→ y: Values of the temporal amplitudes of the steps 
→ x: Index of the last detected level 
→ a: coefficient of x2 
→ b: coefficient of x 
→ c: constant (ordinate of the origin) 
Quadratic (polynomial) regression + Least squares: 

( ) ( )( )22
1, , n

i iiS a b c y ax bx c== − + +∑  (5) 

With the following parameters: 
→ S(a,b,c): cost funciton 
→ n: number of observations 
→ xi, yi: data point values (input/output) 
→ a, b, c: coefficients of the polynomial to be 

adjusted 
Our research focuses on the second-degree poly–

nomial values because they highlight the modulation of 
the intermediate plateaus that appear in the profiles. 
After extraction and normalisation, the following post-
processed signal emerged (Figure 15).  

As previously indicated, the figure shows the mem–
brane replacement horizon currently in effect at our 

industrial partner, corresponding to the date of planned 
preventive maintenance. Contrary to the observations 
presented in Figure 11, a significantly less stable signal is 
evident, revealing isolated drift events that correspond to 
time periods during which maintenance activities causing 
signal losses were performed. These maintenance acti-
svities include server updates, equipment replacements, 
and disassembly for membrane inspection.   

• Transformation and extraction of life phase 
patterns 

To enhance our investigation of the raw signal, we 
applied a transformation technique to verify the presence 
of characteristic lifecycle patterns within the data. This 
transformation was essential to complement our study, as 
it allowed us to systematically search for and uncover as 
many explicit patterns as possible that might reflect the 
membrane's behaviour over time. The scientific literature 
has documented many methods that focus on repro–
cessing signals to highlight abnormal sequences, so we 
selected an approach consistent with these established 
practices. The aim of this approach was to detect potential 
anomalies or trends that may not be immediately apparent 
in the original signal. This step ensured a thorough ana–
lysis, providing a deeper understanding of the 
membrane's performance and condition. 

[44] The study proposed a classification of errors in 
an electrical signal using PCA (Principal Component 
Analysis). This linear method transforms original varia–
bles into new orthogonal variables (principal compo–
nents) that maximise variance. This technique is used for 
data compression and noise reduction. 

Another method, which is nonlinear , employs t-
SNE to capture interdependencies within an EEG 
(Electroen–cephalography) signal, as described by [45]. 
The principle of SNE (Distributed Stochastic Neighbor 
Em–bedding) involves the reduction of signal data 
points' dimensionality to visualise complex data in 2D 
or 3D while preserving the local structure of the points 
as much as possible. 

A third transformation method that is frequently 
encountered in literature, involves the employment of 
deep learning methods and AutoEncoders. [46] This 
technique is applied to study acoustic variations in the 
biodiversity of temperate and tropical environments. Its 
objective is to amplify periodic signals and reduce 
biases. This method relies on neural networks to encode 
data into a lower-dimensional latent space. 

 
Figure 15. Normalised and post-processed signal 
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In our application case, and given the nature of the 
data, we decided to use a t-SNE method on the set of 
descriptive statistics values extracted by Algorithm 1. 
Our objective was to verify the presence of patterns not 
visible in the signals obtained thus far. 

t-SNE consists of a dimensionality reduction method 
proposed by [47] for the purpose of visualising 
multidimensional data in 2D or 3D. Consequently, the 
axes of a t-SNE plot do not have physical or measurable 
significance. The resulting coordinates do not corres–
pond to specific units, but rather reflect the local 
structure of the data [48]. t-SNE preserves neigh–
borhood relationships, in other words, points similar in 
the original space will remain close in the reduced 
space, though the distances between points have no 
absolute value. The presence of observed groupings or 
clusters indicates similar relationships; however, exact 
distances between points are not preserved. The primary 
objective of t-SNE is to reveal data structures rather 
than to maintain precise distances or scales. 

This method involves the application of a nonlinear 
transformation to the input data to project it into a 
lower-dimensional space. Then, a calculation of the 

probability of similarity in the original space is perfor–
med on the input data. This is followed by projecting 
the values into a low-dimensional space, defining a 
similarity distribution in that space, and finally mini–
mising the cost function using the Kullback-Leibler 
divergence via gradient descent.  

The method described here, along with the related 
equations, is derived from an article by [47]. The results 
of the signals decomposed by t-SNE, which are consi–
dered the most relevant, are illustrated by Figure 16. 
This figure combines four distinct signals, which are 
labeled as follows:  

a) Mean values, representing the average behaviour 
of the signals per cycle; 

b) Minimal values, indicating the lower bounds of 
signal variation per cycle; 

c) Standard deviation, reflecting the variability of 
the signals within each cycle; 

d) Median values, providing a robust measure of 
central tendency per cycle. 

These statistical measures offer a comprehensive 
view of the signal characteristics across the analysed 
cycles.   

 
Figure 16. t-SNE decomposition of signal statistics per cycle, based on the method by Maaten & Hinton (2008) 
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The results of this decomposition can subsequently 
constitute a working basis for signal processing inten–
ded to detect the different phases of the equipment's life. 

 
4. EXPERIMENTAL RESULTS ANALYSIS 
 
The following analysis focuses on the data presented in 
Figures 11 and 15. Our decision the reason for choosing 
these results is that :  
•  In the first case (Figure 11), the values are derived 

directly from the original raw signal. 
•  In the second case (Figure 15), the values result 

from post-processing aimed at highlighting the 
internal modulations of plateaus for each cycle. 

Figure 16 provides a complementary role, serving to 
consolidate the initial findings presented in Figures 11 
and 15. They offer a broader perspective on the signal’s 
statistical behaviour, which can be leveraged in future 
research. As the focus of our study was a phenomenon 
of progressive drift, we established a comparison 
between a stable signal and a more variable, noisy 
signal. This enabled the verification of whether both 
signals follow consistent trends. It is important to note 
that the first relates to the drift of the raw signal cycle 
by cycle, while the second focuses on the number, 
distribution, and amplitude of the plateaus composing 
each cycle’s signal. 

As explained in the "Signal Characterisation" sec–
tion, we organised the signal analysis around the 
physical characteristics related to material degradation, 
namely lapping, maturity, and old age. 

 
4.1 Lapping 

 
In our study, the lapping of the equipment begins at the 
first cycle and extends to an interval ranging from cycle 
219 to cycle 277. We base this assertion on the 
characteristics of the two signals: 
•  Raw signal : The reconstructed raw signal shows a 

continuous decline from cycle 1 to cycle 219. The 
potentiometry will have lost 9 points compared to 
the first cycle before stabilising. 

•  Post-processed signal : The post-processed signal 
exhibits a certain amplitude in normalised values of 
0.44 points, before stabilising at approximately 0.71 
points from cycle 277 onward. 

 
4.2 Maturity 
 
The maturity of the studied equipment manifests as a 
signal that is more stable than that of the lapping phase, 
continuing until an interval ranging from cycle 219 to 
cycle 4,268. Characteristics of maturity include :  
•  Raw signal : Strict stability of the reconstructed raw 

signal from cycle 219 to cycle 4,212. The poten–
tiometry displayed in this range is also -9 points 
relative to the value at cycle 1. 

•  Post-processed signal : Stable and slightly down–
ward curves in the post-processed signal. By cycle 
4,268, the normalised coefficient value drops to 
approximately 0.59, representing a loss of about 
0.12 since the start of the maturity phase. 

 

4.3 Old age 
 
The old age phase, in contrast, begins relatively 
abruptly. This stage is manifested through a differential 
modulation between the two signals: 
•  Raw signal : Beyond 4,219 cycles, it appears as a 

continuous decline in the reconstructed raw signal 
until cycle 4,743. At this point, 3 additional points 
will have been lost, with the potentiometry stabi–
lising at -12 points relative to cycle 1. This stability 
persists until cycle 5,103, after which the poten–
tiometry drifts slowly with a slightly negative trend 
until the end of the test at 6,715 cycles. 

•  Post-processed signal : Beyond 4,268 cycles, the 
normalised post-processed signal reverses its curve 
compared to the raw signal. Until cycle 5,139, the 
post-processed signal rises from approximately 0.55 
to about 0.90. Beyond this point, the signal 
stabilises and begins a slightly positive drift. This 
final drift phase is also punctuated by acute events 
(single-cycle peaks) that bring the normalised 
signal to 1. 

Generally speaking, the discrepancies observed bet–
ween the raw signal and the post-processed signal can 
be explained by the fact that the former represents only 
the minimum positions, whereas the latter involves a 
finer analysis of the complete signal. Beyond this 
discrepancy, we can establish that variations in the post-
processed signal are correlated with those in the raw 
signal. 

 
4.4 Materialised Failure 

 
As already mentioned  in the "Failure Mode" section, 
valve membranes are susceptible to two types of failure: 
•  Progressive deformation leading to a breach in the 

sealing system and the creation of retention zones. 
•  Rupture of the PTFE layer. 

Our case study showed that an internal leak in the 
system occurred  at cycle 5,172. It was detected by the 
booster and physically confirmed by a slight beading in 
the tank. This implies that, with a system pressure of 2 
bars, the membrane has deformed sufficiently that it can 
no longer provide internal sealing. 

Since the leak did not present any danger to the 
installation or the experiment itself, we decided to 
continue the test to determine the maximum signal drift, 
which stabilised at 1 on a normalised scale. This 
maximum drift was observed in the post-processed 
signal, maintaining a value of 1 from cycle 6,667 to 
cycle 6,715, marking the end of the experiment. 

Figure 17 shows this leakage within a stable zone of 
the old age phase, directly preceding a new phase of 
drift with a negative trend.   

Figure 18 reveals that the leakage is this time located 
in a zone of instability in the ageing  phase. To link the 
observed signal drifts with the physical characteristics 
of the membrane, we conducted an elasticity test on the 
equipment. This test consists of comparing between the 
elasticity of the used membrane with that of a new 
membrane. 
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Figure 17. Raw reconstructed signal annotated with the fault indicated 

 
Figure 18. Normalised post-processed and annotated signal with indicated failure state 

Figure 18 reveals that the leakage is this time located in 
a zone of instability in the ageing  phase. To link the 
observed signal drifts with the physical characteristics of 
the membrane, we conducted an elasticity test on the equ–
ipment. This test consists of comparing between the elas–
ticity of the used membrane with that of a new membrane. 

 
5. DISCUSSION OF PHYSICAL CHARACTERI–

SATION OF MEMBRANE DEGRADATION 
 

To estimate this elasticity drift, a university test plat–
form (Figure 19) was used to compress the membranes 
and measure the force (N) required to achieve a specific 
stroke. 

Each membrane underwent 200 compression cycles. 
The test parameters are as follows : 

• 2 samples: 
◦ A new reference membrane 
◦ The degraded membrane from our study, of the 

same reference 
•  Type of stress: Compression 
•  Displacement: 2 mm 
•  Compression speed: 50 mm/min 
The results are presented in Figure 20. The trace of 

the new membrane is shown in blue; the trace of the 
worn membrane is shown in orange. 

This reveals that the new membrane requires more 
force than the worn membrane to achieve the target 

displacements. The curves of the new membrane (in 
blue) exhibit higher force values, expressed in N, for the 
same displacement level. 

 

 
Figure 19. Testing Platform, University Press 

 

• Interpretation: The new membrane displays signi–
ficant rigidity, indicating that it effectively resists 
compression. 
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• The curves of the worn membrane ( in orange) 
show that the force required for the same 
displacement is lower than for the new membrane. 

• Interpretation : The degradation of the membrane 
has led to a loss of rigidity and a change in its mec–
hanical properties (material fatigue, loosening of 
internal components). A lower force requirement  
sug–gests deterioration of the worn membrane, 
potentially increasing the risks of leaks or failures. 

 
Figure 20. Results of comparative compression tests of the 
new membrane versus the used membrane 

From the beginning of the test, the new membrane 
required a much higher force (approximately 6.47 N) to 
be compressed, whereas the worn membrane required 
only about 0.81 N. This demonstrates a significant vari–
ation (less rigidity and more elasticity) after use.  

Concerning the new membrane, the graph indicates 
that for subsequent runs and from the onset of comp–
ression, the force decreases slightly but remains within a 
high range (around 6.43 N). This suggests a certain 
consistency in its resistance to compression. However, 
in the case of the worn membrane, the required force is 
low and remains stable at around 0.80 N, indicating that 
it has lost much of its ability to resist compression. This 
implies that the worn membrane is significantly more 
elastic than the new membrane. 

This experiment highlights a tangible physical chan–
ge in the characteristics of the studied material. How–
ever, it does not address certain questions related to the 
stress exerted on the equipment. To further explore the 
results obtained,  it would be a valuable addition to this 
article to conduct simulations to assess the theoretical 
fatigue of the equipment under conditions like those 
described in the "Test bench experimentation" section. 

 
6. CONCLUSION 
 
This article has presented a framework for evaluating 
the evolving state of industrial equipment, with the aim 
of transitioning from planned to predictive maintenance.  
 
6.1 Main contribution  
 
We identified relevant operational data, i.e., signals that 
indicate the status of health equipment, and leveraged 
Internet of Things (IoT) technologies to capture this 

data in real time. Several signal post-processing steps 
were then applied, including filtering and feature 
extraction, to derive pertinent information regarding the 
condition of the equipment. We also presented the 
potential application of the PHM (Prognostics and 
Health Management) framework to a wear component 
commonly found in biopharmaceutical production 
processes, namely the pneumatic valve membrane. The 
implementation of this framework requires the 
availability of representative data equipment under 
study, which can then be used to establish thresholds 
and more advanced data processing to determine a 
predictive maintenance horizon.  

We propose in this article the following points : 
• A method for recovering representative data of the 

state of an industrial equipment : membrane 
through potentiometric values.  

• Equipment life criteria, based on an analysis of the 
signals obtained in this study. 

• A comparison of extracted signals and resulting equ–
ipment life criteria versus current planned main–
tenance practices in a biopharmaceutical industry. 

 
6.2 Main practical applications 
 
The work developed in this article has already led to a 
number of practical applications. It is possible to make 
use of all the profiles presented in the 'Signal post-
processing' and 'Transformation', and Extraction of life 
cycle models' sections. They can serve as a basis for the 
implementation of a data processing system using mac–
hine learning techniques, capable of classifying the 
different life phases of the equipment identified in this 
study. This system can also be used to estimate the 
residual life from the processed signals, thus providing a 
basis for a predictive maintenance system.  Further–
more, the results of this work can enable the design of a 
decision support system, capable of helping main–
tenance operators to optimise their interventions in 
industrial contexts subject to strict quality standards. 
 
6.3 Limitations 
 
It is important to note that, despite the valuable infor–
mation provided by the data collected, certain limi–
tations need to be recognised, principally with regard to 
the representativeness of the tests conducted. Indeed, 
the experimental conditions and the type of valve tested 
do not fully represent all configurations used in bio–
pharmaceutical production environments. The Varia–
bility of operating conditions, such as different types of 
fluid,  variations in temperatures and pressures, and the 
specific features of each production facility, can influ–
ence the behaviour of pneumatic valve membranes. 
Therefore, the results obtained from tests performed on 
a specific valve cannot be generalised to all valves 
present in various industrial processes, though they may 
be applicable to pneumatically controlled valves ope–
rating under similar conditions.  

Thus, the aim of future studies will be to propose a 
generic framework that can be applicable to different 
types of equipment in several fields of industry. 
Moreover, the study was conducted on the basis of a 
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single experiment. It would be necessary to replicate 
this study to achieve statistical representativeness and 
ensure that the signals and membrane lifespan indicators 
are reproducible. 
 
6.4 Perspectives 
 
Our future work will focus on a method that enables us 
to establish a prognosis of failure occurrence based on 
the behavioral model proposed in this article. We will 
create a data processing system with machine learning 
techniques to enable the classification of life phases and 
the accuracy of residual life predictions, while refining 
the decision support system for broader industrial 
applications.  We also aim to address the limitations 
identified in Section 6.3 by conducting extensive testing 
across diverse valve configurations and operating con–
ditions, including varied fluid types, temperatures, and 
pressures, to obtain greater representativeness. Further–
more, we will replicate the experiments to achieve sta–
tistical validity, enabling the development of a generic 
framework that can be adapted to different equipment 
and industry sectors. 
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NOMENCLATURE 

i current index in the time series 

j summation index that iterates over the W 
points starting from i 

W smoothing window (size of the moving 
average) 

a regression coefficient (1) of coefficient of x2 
(2) 

b ordinate at the origin 
c constant (ordinate at the origin) 
x Index of the least detected level 
y Values of the temporal amplitude of the steps 
n number of observations 
S(a,b) cost function (3) 
S(a,b,c) cost function (5) 
(a,b,c) coefficients of the polynomial to be adjusted 
xi, yi values of data points 
xi

2 Square of the value x at index i 

Acronyms and abbreviations 

PHM Prognostic Health Management 
IOT Internet Of Things 
PLC Programmable Logic Controller 
RNN Recurrent Neural Network 
RUL Remaining Useful Life 
ANFIS Adaptive Neuro-Fuzzy Inference System 
PRSOV Pressure Regulated Shutoff Valves 
SVM Support Vector Machine 
kNN k-Nearest Neighbor 
NB Naive Bayes 
CART Classification and Regression Trees 
MLR Multiple Linear Regression 
MLP Multi-Layer Perceptron 
CVA-
SMD 

Canonical Variate Analysis on  
Square of the Mahalanobis Distance 

PCA Principal Component Analysis 
SVA Surrogate Variable Analysis 
DGM Dynamic Grey Model 
EPDM Ethylene Propylene Diene Monomer 
PTFE Polytetrafluoroethylene 
ND Nominal Diameter 
IO-Link Input/Output Link 

t-SNE t-distributed Stochastic Neighbor 
Embedding 

EEG Electroencephalography 
 
 

СТУДИЈА ПОНАШАЊА ОПРЕМЕ У 
ФЛУИДНИМ ПРОИЗВОДНИМ ПРОЦЕСИМА 

КОРИШЋЕЊЕМ ПОДАТАКА ЗА 
ОПТИМИЗОВАНО ПРЕДИКТИВНО 

ОДРЖАВАЊЕ: ПРИМЕНА НА ПНЕУМАТСКЕ 
ВЕНТИЛЕ У БИОФАРМАЦЕУТСКОЈ 

ИНДУСТРИЈИ 
 

Ф. Вадел, А. Тихгазуи, Р. Хoусан, А. Кулибалз 
 
Предикативно одржавање производне опреме 

добија све веће интересовање у биофармацеутској 
индустрији у контексту Индустрије 4.0, где је 
поузданост неопходна за осигурање квалитета 
производа, доступности опреме и усклађености са 
строгим стандардима. Пнеуматски мембрански 
вентили, кључни за регулисање протока флуида и 
гаса у производним системима, од посебног су 
значаја. Мембрана, примарна компонента која се 
хаба, подложна је механичким напрезањима која 
могу довести до деформација или пуцања. То може 
пореметити производњу и угрозити квалитет 
производа.  

Прогностичко управљање здрављем (ПХМ) је 
обећавајући приступ праћењу стања опреме. 
Коришћењем репрезентативних података, нуди 
могућност моделирања еволуције стања опреме и 
предвиђања потенцијалних кварова. Ова 
предиктивна стратегија, заснована на фазама и 
трендовима животног циклуса, олакшава циљане 
интервенције одржавања пре него што дође до већих 
кварова.  

Овај чланак истражује интеграцију ПХМ-а за 
одржавање мембрана пнеуматских вентила у 
биофармацеутском сектору. Предлаже метод за 
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идентификацију експерименталних података, 
дефинисање критеријума животног циклуса, анализу 
ових критеријума, њихово поређење са планираним 

праксама одржавања и процену померања сигнала 
како би се окарактерисало стање мембране за 
будући развој предиктивног одржавања. 

 


