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In this study, machine learning models for identifying wear defects in 
journal bearings under various operating circumstances are compared. 
Healthy, low, and high wear states were simulated using an experimental 
test rig. Information Gain, Gain Ratio, Gini Index, and other feature 
selection techniques were used to analyze vibration signals from 
precision sensors. Relevance was used to rank features like Root Mean 
Square, Peak-to-Peak, and Peak. Using accuracy, precision, recall, F1-
score, specificity, and log loss, models from Gradient Boosting, 
AdaBoost, Random Forest, k-nearest Neighbours, Support Vector 
Machine, and Decision Tree were assessed. Gradient Boosting 
performed best overall and had the highest accuracy (99.5%). Random 
Forest and AdaBoost also showed high classification accuracy. More 
features were beneficial for simpler models like k-Nearest Neighbours 
and Decision Tree. Random Forest and Gradient Boosting successfully 
decreased misclassification between related fault classes. The findings 
highlight the importance of selecting the appropriate models and 
features. Advanced feature engineering and parameter optimization 
could lead to further enhancements. 
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1. INTRODUCTION  
 

In industrial and automotive rotating gear, journal bea–
rings minimize friction and support shafts. High loads, 
fluctuating speeds, and contamination cause wear, 
misalignment, and other faults in these bearings. Jour–
nal-bearing failure may disrupt operations, jeopardize 
safety, and cost money. 

Recent vibration analysis and machine learning 
advances have altered journal-bearing fault diagnostics. 
Simple statistical defect identification and catego–
rization and hand inspection have been superseded by 
complex algorithms and AI. Vibration signal kurtosis, 
skewness, and RMS predict bearing failures. Journal-
bearing failure diagnostics study uses advanced com–
putational algorithms, feature selection methods, and 
machine learning models to increase accuracy and 
reliability. 

Nikolakopoulos and Papadopoulos (2009) [1] pro–
posed a new wear model for misaligned journal bea–
rings to examine how wear and misalignment affect 
bearing performance. Oil layer thickness inversely 
impacts aligned bearing wear throughout the bearing 
length, according to the study. The two-dimensional 
model relates misalignment angles to film thickness 
better than Dufrene's wear model. Misalignment 
influences friction coefficients and minimum film 

thickness for different Sommerfeld values, the study 
revealed. The results show that journal-bearing designs 
must integrate wear and misalignment effects to imp–
rove dependability in severe working situations. For 
fault diagnosis in internal combustion (IC) engine main 
bearings, Moosavian et al. (2013) [2] compared K-
Nearest Neighbour (KNN) and Artificial Neural Net–
work (ANN) classification systems. The study applied 
vibration signals under normal, oil-starved, and high-
wear conditions. From vibration signals, power spectral 
density (PSD) analysis recovered thirty frequency-do–
main traits. Trained and tested on 180 samples both 
classifiers Ann had 90.5% PSD feature test accuracy; 
KNN had 85.7%.ANN classified better, but KNN was 
faster. The study showed that PSD feature extraction 
works and that classifier selection is crucial for journal-
bearing problem identification. These insights help build 
reliable IC engine condition monitoring systems. 
Machado and Cavalca (2016) [3] verified the rotor-
bearing system cylindrical hydrodynamic bearing wear 
model experimentally. Experimental directional frequ–
ency responses (DFR) and simulations using the aut–
hors' numerical model were compared to assess how 
wear impacts dynamic behavior. The rotor was mo–
deled using finite elements at various wear depths and 
angles. DFR sensitivity to wear factors increased dra–
matically with wear depth in backward precession 
components. The wear model accurately anticipated 
wear anisotropic effects across the validated frequency 
band. This study indicates that numerical modeling and 
experimental validation can detect hydrodynamic bea–
ring wear. Pule et al. (2022) [4] used PCA and SVM to 
diagnose ball-bearing problems at various speeds. Using 
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vibration data, the study assessed healthy bearings, ball 
damage, inner and outer race faults, and combined 
difficulties. PCA reduced dimensionality and compu–
tational complexity for the SVM classifier. Despite fault 
detection speed adjustments, the model classified 97.4% 
accurately. In difficult operational conditions, PCA-
SVM minimized manual feature engineering and effec–
tively categorized faults. According to the study, pre–
dictive maintenance systems for industrial applications 
with less data may apply this approach.  

Dubaish and Jaber (2023) [5] developed a gearbox 
failure simulator for diagnosis. A controlled vibration 
signal analysis-based two-stage helical gearbox testing 
framework was devised. LabVIEW with NI DAQ 
detected gear tooth defects from vibration data. 
Experimental results demonstrated significant vibration 
signals between healthy and dysfunctional states at 
varied speeds and loads. Gearbox condition monitoring 
systems simulate and diagnose test equipment faults 
using advanced machine-learning algorithms, Baqer et 
al. (2023) [6]. Artificial neural networks and vibration 
signal processing identify belt-driven rotating system 
pollution. The study found that contamination decre–
ases belt performance and safety in demanding situ–
ations. Kurtosis, skewness, RMS, and mean time-
domain vibration were discussed for clean, moist, and 
powder-contaminated belts. Backpropagation ANN 
model pollutant status accuracy was 100% in different 
operating scenarios. This shows that machine learning 
and vibration analysis improve predictive maintenance 
and belt-driven system condition monitoring. 

Yilin et al. (2023) [7] SVM and hybrid feature 
selection diagnosed journal-bearing failures in realistic 
operational scenarios. The study used long-term 
vibration data from vertical and horizontal rotor sys–
tems with muddy water-induced wear and peeling. The 
hybrid feature selection approach optimized SVM mo–
del features utilizing Fisher score (FS) and Sequential 
Forward Selection. In experiments, SVM model accu–
racy was 97.14% for vertical and 100% for horizontal 
rotor systems. The mean RMS value was best for hori–
zontal rotor system problem detection, whereas vertical 
systems needed an RMS average coefficient of vari–
ation. Diagnostic accuracy and computational effi–
ciency improve when rotating equipment condition 
monitoring insights are selected.Goto et al. (2023) [8] 
created a mathematical model to evaluate journal 
bearing wear beyond machine learning model training 
data limits using experimental and simulation data. 
Journal bearing clearance was increased utilizing a 
horizontal rotating shaft system model to simulate 
wear.Time-domain properties including RMS, kurtosis, 
skewness, and DWT were extracted from experimental 
and simulated data. For wear diagnosis, Fisher Score 
and Wrapper emphasized features, and the CV of 
kurtosis in the x-displacement was most essential. 
Experimental wear categorization was accurate with 
simulation-trained SVM. This study found that si–
mulation-based data augmentation and feature selec–
tion improve rotating machinery wear diagnostics 
machine learning models. Jebur and Soud (2024) [9] 
outlined journal-bearing fault diagnosis and condition 
monitoring advancements. Machine learning and 

vibration analysis showed that ensemble models like 
CNNEPDNN improved diagnosis accuracy and 
convergence speed by 15–20% over single models. 
Convolutional autoencoders predicted wear with 91% 
accuracy.  Unstandardized evaluation criteria and insu–
fficient diagnostic procedure generalization across 
operational environments were major issues the study 
revealed. Creating real-world diagnostic models requ–
ires teamwork, the scientists said.Bhat et al. (2024) 
[10] investigated machine learning hydrodynamic co–
nical journal-bearing defect detection. SVM, KNN, and 
RF classifiers were examined for HCJB interior surface 
scratches and wear flaws. A particular test setup 
recorded vibration signals under varying speed and 
load conditions. The mean, root mean square, kurtosis, 
skewness, and standard deviation were obtained. RF 
has the highest accuracy at 93.93%, followed by SVM 
and KNN at 87.88%. The study found that signal pro–
cessing and AI-enhanced rotating machinery problem 
diagnosis. The findings enable comprehensive indus–
trial condition monitoring systems. Dubaish and Jaber 
(2024) [11] A comparison between SVM and ANN for 
gearbox problem diagnosis. Wavelet Packet Transform 
(WPT) and time-domain statistical analysis identified 
vibration signal characteristics. The Gain Ratio method 
selected suitable features for SVM and ANN classi–
fication. ANN outperformed SVM in noisy environ–
ments with 98% classification accuracy versus 96% for 
SVM. These data suggest that ANN performs better in 
complex fault conditions. The study also proposed 
ANN-based gearbox failure detection and machine 
dependability methods for industry and underlined the 
importance of feature extraction and selection in diag–
nostic accuracy. Ogaili et al. (2024) [12] used vibration 
analysis and machine learning to compare wind turbine 
gearbox automated condition monitoring. A study used 
SVM, KNN, and Naive Bayes to diagnose gearbox 
bearing and gear failures. Kurtosis, skewness, and root 
mean square (RMS) were extracted from 750-kW 
turbine testbed vibration data under varied failure con–
ditions to improve problem detection. Naive Bayes 
outscored SVM and KNN with 95.7% accuracy.  Using 
complex feature-fault correlations, Naive Bayes clas–
sifies flaws. This study revealed that machine learning 
improves wind turbine condition monitoring system 
reliability and efficiency.Ogaili et al. (2024) [13] 
analyzed ball-bearing defect detection and categori–
zation using vibration data and statistics. The resear–
chers collected mean, median, standard deviation, 
skewness, kurtosis, and dominant frequency from wa–
velet-transformed vibration signals. A Random Forest 
model trained and assessed with these features classi–
fied defects 90.42% accurately. Seven problems were 
employed to test the model's ball-bearing defect diag–
nosis accuracy. The authors stressed feature selection 
and correlation analysis, which showed mean, median, 
skewness, and kurtosis crucial to model correctness. 
Even in noisy environments, the Random Forest model 
diagnosed defects well.  Jaber and Shakir (2024) [14] 
evaluated ANNs for spinning shaft crack detection and 
localization. The study emphasized industrial crack 
diagnostics for safety, reliability, and cost optimi–
zation. Vibration signal analysis prioritized filtered 
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signal features using the Reliefalgorithm to optimize 
ANN model input. In trials, the ANN model 
recognized crack depths and locations with 94.4% 
accuracy across rotating speeds. Authors say signal 
pre-processing and feature selection increase fault 
detection system reliability and precision. This 
research prepares spinning machinery for preventive 
maintenance. Jaber (2024) [15] tested bearing problem 
diagnostics using temporal vibration signals, machine 
learning models, and feature selection. Time-domain 
statistical feature extraction methods including RMS, 
kurtosis, and skewness improved fault detection, 
especially for early-stage damage. Prioritizing essential 
qualities with Information Gain (IG) and FCBF. We 
examined three machine learning classifiers: KNN, 
Support Vector Machines (SVM), and Naïve Bayes. 
The best model was KNN-FCBF with 99.1% AUC, 
97% AC, and 96% F1-score. Combining temporal 
characteristics with improved machine learning for 
bearing defect diagnosis produced a computationally 
efficient and accurate commercial technique. 

Although several recent studies have demonstrated 
the use of machine learning for fault diagnosis in 
rotating machinery, many have relied on limited model 
comparisons or have not fully explored the influence of 
feature selection on classification performance. 
Additionally, some works have focused on fault 
detection without considering multiple levels of wear. 
This study distinguishes itself by evaluating several AI 
models under controlled experimental settings and by 
analyzing how varying the number of input features 
affects model accuracy across different wear 
conditions. 

Recent work published in FME Transactions on 
artificial intelligence application in rotating equipment 
diagnostics and vibration-based defect identification 
has addressed for example, whereas Jawad and Jaber 
[16] used CUSUM control charts combined with 
statistical vibration indicators for early fault diagnosis, 
Jamadar et al. [17] suggested a deep learning-based 
approach for diagnosing rolling element bearing 
failures using vibration features.  Al-Khafaji and Jaber 
[18] compared artificial intelligence classifiers for fault 
categorization in rotating machines.  Moreover, Abd 
Soud and Baqer [19] investigated, using FFT and 
statistical approaches, the vibration behavior of several 
bearing types.  These contributions together support the 
significance of intelligent vibration analysis 
approaches, which fit the scope and approach of the 
present work. This study builds on previous research 
on bearing diagnostics and condition monitoring, 
focusing on evaluating a wider spectrum of 
classification models across various wear levels and 
input factors to enhance model interpretability and 
diagnosis reliability. [20,21] 

The remaining study is organized as follows: 
Section 2 summarizes the experimental technique, 
including the test rig design, components, and data 
collection for journal-bearing scenarios at different 
wear levels. Machine learning model implementation, 
training, and evaluation are covered in Section 3. 
Section 4 examines machine learning models, feature 
selection, and confusion matrices. Section 5 

summarizes the study's findings, highlights Gradient 
Boosting and other models' diagnostic efficacy, and 
suggests future research. 

 
2. EXPERIMENTAL WORK 
 
An integrated test platform was utilized to study 
journal-bearing vibrations and detect faults caused by 
wear under varying levels, categorized as low and high 
wear. The main components of the test rig are 
summarized in Table 1, which provides a detailed 
description of each element used in the experimental 
setup. Additionally, the design and structure of the test 
platform are illustrated in Figure 1, showcasing the 
actual test rig and its components. To ensure reliable 
and accurate fault analysis, vibrations were measured 
using precision sensors. These measurements provided 
essential data for evaluating the performance and 
condition of the journal bearings under different levels 
of wear. Detailed specifications and configurations of 
the sensors used in this study will be discussed in 
subsequent sections. 

The test rig was carefully designed to replicate 
operational conditions effectively, enabling a compre–
hensive analysis of wear-induced faults in journal 
bearings. 
Table 1. Main Components of the Test Rig 

Component Description 
Shaft Made of C-45 steel, 20 mm diameter, 500 

mm length. 
Motor A 1 HP GAMAK three-phase induction 

motor 2860 RPM. Variable Frequency Drives 
controlled speed. 

Journal 
Bearings 

Made of copper with a 20-mm inner 
diameter, 0.05-mm clearance, and 28-mm 
length. Bearings had oil supply holes to 

decrease vibrations. 
Rotating 
Disk 

Weighing 8 kg with a 5-gram balance weight 
to mimic wear during operation. 

 
Figure 1. Test Rig Used in the Study 

The table and picture give a complete overview of 
the test rig, explaining the experimental approach and 
system components. 

 
2.1 Tools and Instruments Employed 
 
This study used high-precision sensors to log vibration 
data on SD cards in real time for Excel analysis. The 
BVB-8207SD vibration meter measured acceleration, 
velocity, and displacement. The vibration measurement 
apparatus is depicted in Figure 2 and described in 
Table 2. 
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Figure 2. Vibration Measurement Device 

Table 2. Specifications of the BVB-8207SD Vibration Meter 

Feature Description 
Measurement 
Types 

Acceleration, Vibration Velocity, 
Displacement 

Frequency Range 10 Hz - 1 kHz 
Display Units Metric and Imperial 
Data Logging Real-time (1 to 3600 seconds), Manual 
Data Storage SD Card (1 GB to 16 GB) 
Data Transfer Direct to Excel via SD card 
 
2.2 Journal Bearing Characteristics and 

Specifications 
 
In the investigation, bushing copper alloy UNS C37000 
journal bearings were used.  These bearings support the 
system's shaft and ensure stability in varied operating 
conditions.  These bearings featured a 20-mm shaft di–
ameter, 0.05-mm clearance, and 28-mm length.  They 
had 7476.255 MPa Young's modulus, a 5 mm oil hole 
for lubrication, and a 30 mm outside diameter. These 
criteria optimized study performance and reliability. 
 
2.3 Assessment of Bearing Condition 
 
Journal bearings were assessed at three operational 
integrity levels. Table 3 summarizes these levels, and 
illustrations illustrate each circumstance. 
Table 3.  Bearing Condition Levels and Descriptions 

Condition 
Level 

Description Visual 
Representation

Healthy The bearing is in a 
normal operational 
state, free from wear 
or damage. 

Low Wear Noticeable wear is 
present, but the 
bearing remains 
operational with 
minor performance 
degradation. 

High Wear Significant wear is 
evident, posing a risk 
of bearing failure if 
corrective actions are 
not implemented. 

 
Three major levels of journal-bearing condition 

were assessed, each indicating a different operational 
state. In decent condition, the bearing works. Low wear 
indicates severe wear, yet the bearing is still usable 
with moderate performance loss. Heavy wear reduces 
bearing performance and threatens failure without 
repair.  This classification method helps maintainers 
make judgments and control system performance by 
measuring fault severity and bearing condition. 

 
2.4 Data collection and feature extraction 
 
Piezoelectric sensors accurately extracted statistical 
information, allowing extensive vibration data analysis 
to identify faults and monitor bearing mechanical 
condition. The main statistical features were Root 
Mean Square (RMS), Peak, and Peak-to-Peak values. 
These properties were necessary for pattern recog–
nition, bearing defect detection, and system perfor–
mance evaluation. The vibration data-derived values of 
these features are shown in Table 4, [14,15]. 
Table 4. Feature Formulas 

Feature Name Formula 
Root Mean Square (RMS) 

2

1

1 N

i
i

RMS x
N =

= ∑  

Peak-to-Peak ( ) ( )max mini ixpp X X= −  
Peak ( )max ixp X=  
 
2.5 Machine Learning Models 
 
Many machine learning algorithms classify and 
regress, each with benefits.  Decision trees separate 
data hierarchically and interpretably.  Data is classified 
using closest neighbor majority in non-parametric 
KNN. Random Forest reduces overfitting and improves 
accuracy with several decision trees.  Gradient Boos–
ting reduces errors for weak learners, while AdaBoost 
weights misclassified samples to enhance predictions.  
Finally, SVMs determine the optimum hyperplane to 
separate classes with the largest margin in high-di–
mensional spaces. Machine learning relies on these 
algorithms for picture identification, medical diagnosis, 
and financial predictions [16,17]. 
 
3. RESULTS AND DISCUSSION 
 
Figure 3 shows system amplitude values (in mm) under 
three operating conditions: Healthy (blue line), Low 
wear (orange line), and High wear (gray line). Health is 
good at 0.01 mm amplitude.  Under low wear, amp–
litude values above 0.02 mm indicate wear. High wear 
causes sharp and unpredictable variations over 0.02 
mm, indicating performance instability. These elem–
ents are essential for system diagnosis and repair. Fig. 
4 depicts the organized machine learning model eva–
luation process.  Import the dataset (File) and select 
important columns to focus on the most informative 
aspects. Rank and Distributions were utilized to un–
derstand the dataset and prioritize features by target 
variable relevance. 
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Figure 3. Time Domain Vibration Signals for Different 
Bearing Statesat 1800 RPM 

The "Test and Score" widget trained and assessed 
Gradient Boosting, AdaBoost, Random Forest, Tree, 
SVM, and KNN machine learning models. This stage as–
sessed accuracy, precision, recall, and F1-score. To ana–
lyze and compare model performance, confusion mat–
rices, ROC analysis, and scatter plots were constructed. 

The performance of machine learning models, as 
shown in Table 5, was assessed using CA, F1 Score, 
Precision, Recall, MCC, Specificity, and Log Loss. 
The input features used for these evaluations include P-
P: Peak-to-Peak, P: Peak, and RMS: Root Mean 
Square, which were ranked based on feature 
importance using metrics such as Information Gain, 
Gain Ratio, Gini Index, ANOVA, Chi-squared (χ²), 
Relief F, and FCBF. The ranking analysis revealed that 
P-P: Peak-to-Peak holds the highest importance across 
most metrics, followed by RMS: Root Mean Square 
and P: Peak. Gradient Boosting performed best overall, 
with the highest Classification Accuracy (99.5%) and 

the highest scores in F1 (0.995), Precision (0.995), 
Recall (0.995), MCC (0.993), and Specificity (0.998) 
as shown in Table 5. Its Log Loss of 0.011 shows that 
it can make confident and accurate probabilistic 
predictions, making it the most dependable model for 
the dataset.  AdaBoost and Random Forest could 
replace Gradient Boosting with excellent Classification 
Accuracy (99.4% and 99.3%, respectively) and strong 
performance across other measures. 
Table 5. Evaluation Metrics for Machine Learning Models 

Model CA F1 Prec. Recall MCC Spec. Log 
Loss 

Tree 0.987 0.987 0.987 0.987 0.981 0.994 0.196
KNN 0.992 0.992 0.992 0.992 0.988 0.996 0.071

Random 
Forest 0.993 0.993 0.993 0.993 0.989 0.996 0.017

Boosting 0.995 0.995 0.995 0.995 0.993 0.998 0.011
AdaBoost 0.994 0.994 0.994 0.994 0.990 0.997 0.032

SVM 0.438 0.432 0.527 0.438 0.166 0.719 1.059
 
As shown in Table 6, the KNN model has 99.2% 

Classification Accuracy, but its Log Loss of 0.071 
suggests lesser prediction confidence.  Figure 5 shows 
the Support Vector Machine (SVM) scored poorest, 
with 43.8% Classification Accuracy and low scores 
across all parameters. Insufficient hyperparameter twe–
aking or dataset misalignment may explain this result's 
low-class separation efficiency. 

According to Table 5 and Figure 5, Gradient 
Boosting beats all assessment measures and is the best 
model for this dataset.  When computational efficiency 
matters, AdaBoost and Random Forest work.   Hyper–
parameter adjustment, feature engineering, and kernel 
type investigation may increase SVM performance. 

 
Figure 4. Machine Learning Workflow 
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Figure 5. Comparison of Classification Accuracy Across 
Different Models. 

 Confusion Matrix Analysis 
 
The confusion matrices reveal the tested models' cate–
gorization performance for Healthy, High wear, and 
Low wear. Table 6 shows how model accuracy and 
misclassification rates differ. 
Table 6. True Positive Rates (TPR) and Key Errors for 
Each Model 

Model Healthy 
(TPR) 

High 
wear 

(TPR) 

Low 
wear 

(TPR) 

Key Observations 

Gradient 
Boosting 

100.0% 99.7% 98.9% Minimal errors 
between High 
wear and Low 
wear. 

Random 
Forest 

100.0% 98.9% 99.2% Strong 
performance, 
slightly weaker 
than Gradient 
Boosting. 

Tree 100.0% 98.4% 97.8% Higher errors in 
distinguishing 
Low wear and 
High wear. 

KNN 100.0% 98.9% 98.6% Consistent 
performance with 
low 
misclassification 
rates. 

AdaBoost 99.7% 99.7% 98.6% Comparable to 
Gradient 
Boosting, with 
slight errors. 

SVM 49.2% 26.9% 55.2% Significant 
misclassifications 
in all categories. 

 
In Table 6, Gradient Boosting accurately identified 

"Healthy", "High wear" and "Low wear" with 99.7% 
and 98.9% accuracy. Overlapping "High wear" and 
"Low wear" is handled properly. Random Forest pre–
dicted "Healthy" cases with 100% accuracy and slig–
htly lower accuracy for other categories than Gradient 
Boosting. Random Forest uses ensemble-based majo–
rity voting, while Gradient Boosting iteratively opti–
mizes predictions. PoorSVM classification. 49.2% of 
"Healthy" cases were misclassified as "Low wear."    
As in other categories, the model failed to distinguish 
between groups, resulting in 26.9% accuracy for "High 

wear" and 55.2% for "Low wear." Lack of kernel mo–
difications or dataset complexity prohibited the SVM 
model from classifying. Confusion matrices show Gra–
dient Boosting and Random Forest perform well on 
this dataset. Both models performed well with few 
misclassifications, although SVM was inaccurate. Fi–
gures 6 and 7 demonstrate model training and testing 
time variation. Tree model training and testing took 0.1 
seconds, and Gradient Boosting 10 seconds.AdaBoost 
had the longest testing time (0.5 seconds), however 
SVM and Random Forest balanced training and testing, 
showing that application requirements and perfor–
mance should determine model selection. 

 
Figure 6. Training Time Comparison for Classification 
Models 

 
Figure 7.Testing Time Comparison for Classification 
Models 

 Impact of Feature Selection on Classification 
Accuracy 

 
Figure 8 shows the classification accuracy (AC) of 
Random Forest, Tree, KNN, Gradient Boosting, Ada–
Boost, and SVM under three scenarios: Series 1 
represents the accuracy with a single feature, Series 2 
with two features, and Series 3 with three features. The 
image indicates that feature count increases classi–
fication accuracy, emphasizing feature selection's role 
in model performance. With one feature, Gradient 
Boosting, AdaBoost, and Random Forest models exc–
eeded 95% accuracy. With more features, KNN and 
Tree models get better at categorization. The SVM 
model had the lowest accuracy across all scenarios, 
with less than 50% accuracy with one feature, although 
it improved with more features. This comparison 
shows that feature selection and model choice are 
crucial to classification performance, with advanced 
models like Gradient Boosting and AdaBoost yielding 
stable and dependable results across feature counts. 
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Figure 8. Classification Accuracy for Different Models with 
Varying Feature Counts 
 

4. CONCLUSIONS 
 
This study assessed machine learning categorization 
models by accuracy, precision, recall, and computing 
economy. Gradient Boosting performed best with 
99.5% classification accuracy and high F1-score, 
MCC, and Specificity. Log Loss is low, boosting pro–
babilistic prediction accuracy. AdaBoost and Random 
Forest had high accuracy and computing efficiency.  
Changing model feature counts influenced classifi–
cation accuracy under feature selection.  Gradient 
Boosting, AdaBoost, and Random Forest achieved 
above 95% accuracy with one feature, whereas KNN 
and Tree improved with more features.  SVM per–
formed poorly across all measures, making it un–
suitable for this dataset without optimization or feature 
engineering. Confusion matrices showed that Gradient 
Boosting and Random Forest reduce misclassifications, 
especially for overlapping classes like "High wear" and 
"Low wear." In contrast, SVM has high misc–
lassification rates, emphasizing model selection and 
hyperparameter adjustment. Due to its iterative opti–
mization method, Gradient Boosting took the longest to 
train, while Tree and KNN models were compu–
tationally efficient but less accurate. Gradient Boosting 
is the best model for the dataset because of its cons–
istent classification accuracy and reliability. AdaBoost 
and Random Forest are good computationally efficient 
options. The study emphasizes feature selection, model 
choice, and optimization methodologies for classi–
fication task performance. Future research could imp–
rove performance and applicability to difficult datasets 
by using advanced feature engineering, hyperparameter 
optimization, and alternative methods. This study has 
important implications for the predictive maintenance 
of rotating machinery, especially journal bearings.  
Vibration analysis combined with AI-based classifi–
cation approaches like KNN and Gradient Boosting 
can reduce unplanned downtime and improve fault 
diagnosis. This improves engineering intelligent con–
dition monitoring systems by providing more depen–
dable and automatic diagnostic tools. 
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ДИЈАГНОЗА ХАБАЊА КЛИЗНИХ ЛЕЖАЈЕВА 
КОРИШЋЕЊЕМ АНАЛИЗЕ ВИБРАЦИЈА И 

ВЕШТАЧКЕ ИНТЕЛИГЕНЦИЈЕ 
 

Н.А. Јебур, В.А. Соуд 
 
У овој студији, упоређују се модели машинског 
учења за идентификацију хабања клизних лежајева 
под различитим радним околностима. Симулирана 
су здрава, ниска и висока стања хабања помоћу 
експерименталне испитне платформе. Информа–
циони добитак, однос добитка, Џинијев индекс и 
друге технике избора карактеристика коришћене су 
за анализу вибрационих сигнала са прецизних 
сензора. Релевантност је коришћена за рангирање 
карактеристика као што су средња квадратна 
вредност, однос од врха до врха и врх. Користећи 
тачност, прецизност, присетљивост, F1-скор, спе–
цифичност и губитак логаритама, процењени су 
модели из Gradient Boosting-а, AdaBoost-а, Random 
Forest-а, k-најближих суседа, Support Vector Mac–
hine-а и Decision Tree-а. Gradient Boosting је пока–
зао најбоље резултате укупно и имао је највећу 
тачност (99,5%). Random Forest и AdaBoost су 
такође показали високу тачност класификације. 
Више карактеристика је било корисно за једнос–
тавније моделе попут k-најближих суседа и 
Decision Tree-а. Random Forest и Gradient Boosting 
су успешно смањили погрешну класификацију 
између повезаних класа кварова. Резултати истичу 
важност избора одговарајућих модела и карак–
теристика. Напредно инжењерство карактеристика 
и оптимизација параметара могли би довести до 
даљих побољшања. 

 
 
 


