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Wind energy has emerged as an effective alternative to fossil fuels. At a 
commercial level, wind energy is harnessed through wind farms, which 
consist of several wind turbines arranged in a specific layout. Identifying 
the optimal layout of a wind farm is vital for maximum energy absorption 
from wind. Due to the sheer complexity of the problem, evolutionary and 
swarm intelligence algorithms have been employed for wind farm layout 
optimization. The performance of the optimal layout design is governed by 
several physical parameters, such as the wind speed, wind direction, and 
grid size. Most existing studies have focused on the effects of wind speed 
and wind direction on layout optimization. However, limited attention has 
been given to studying the impact of grid size. This study analyzes the 
effect of various unconventional grid sizes of higher dimension, ranging 
from 16×16, 17×17, up to 20×20, while using the genetic algorithm as the 
test bench. For a more comprehensive comparison, results of 10×10 to 
15×15 were adopted from an earlier study. In contrast to previous studies, 
which focused on the assessment of the quality of results, a novel aspect of 
the present study also considers execution time as a performance measure. 
Another novel aspect is to analyze the performance of the generic 
algorithm for different grid sizes. Furthermore, unlike past studies, which 
mostly used hypothetical data, the present study employs real data from a 
potential site in Saudi Arabia. Results indicate that the maximum average 
conversion efficiency of 0.992 was obtained with a grid size of 19×19, 
while a grid size of 10×10 produced the minimum average conversion 
efficiency of 0.813. These results signify that an increase in the grid size 
positively affects conversion efficiency, which is used as a measure of the 
quality of the solution. However, the change in grid size has a negligible 
impact on the run time of the genetic algorithm. The findings of the study 
potentially pave the way for wind farm developers to select the best grid 
size for a given site while considering several practical issues, such as 
maintenance and operational costs, demographic and topographic 
structures, among other factors. 
  
Keywords: Wind farm optimization, Wind energy, Genetic algorithms, 
Optimization, Grid size 

 
 
1. INTRODUCTION  
 
The last couple of decades have seen a tremendous gro–
wth in the utilization of renewable energy. This growth 
is motivated by the adverse effects of the traditional, 
fossil fuels on the environment, as well as their quick 
depletion. Not only this, logistic and geopolitical issues 
in terms of availability of fossil fuels have also been a 
catalyst in shifting the focus of researchers towards 
renewable energy [1]. 

Among various renewable energy sources, wind en–

ergy has emerged as one of the most attractive areas of 
research and development [1-3]. The reason for the 
significant attention on wind energy utilization is due to 
its low development and operational costs, as well as its 
abundance globally. The access to wind energy is hardly 
affected by logistical issues or demographic boundaries, 
thus cutting the dependency on oil and gas-producing 
countries. Furthermore, environmental pollution in 
terms of greenhouse gases is also a minor concern with 
wind energy [4]. Although there are currently some 
issues in terms of the waste material produced by the 
decommissioned turbine blades, considerable attention 
is also given to coming up with environmentally fri–
endly solutions to deal with this issue. 

In order to utilize wind energy, wind farms need to 
be developed, where wind turbines are placed within the 
defined geographical boundaries of the farm. An 
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efficient wind turbine system is governed by harmon–
ization of several processes as highlighted by Rašuo et. 
al. [3]. These processes include design, materials and 
technology, manufacturing, verification testing, and 
regulations & standards [3]. Additionally, the impor–
tance of design, manufacturing, and verification testing 
for a turbine’s performance is emphasized by Rašuo et. 
al. in several studies [5,6,7]. 

Currently, horizontal-axis wind turbines (HAWTs) 
are the most employed turbine types. Harnessing the 
maximum energy from wind primarily depends on how 
"well" the turbines are placed within the farm. Until this 
placement is done optimally, the wind absorption is not 
maximum. As such, this placement problem, generally 
known as the wind farm layout design (WFLD) prob–
lem, has been classified as NP-hard in the relevant 
literature. Accordingly, simple algorithms, such as li–
near search heuristics, cannot be employed. Therefore, 
researchers resort to algorithms inspired by various 
phenomena in nature. These algorithms are further 
classified into various sub-domains such as evolutionary 
computation (EC) and swarm intelligence (SI) algo–
rithms [8]. These algorithms have proven to be effective 
in solving the WLFD problem. However, in contrast to 
simple algorithms, one major drawback of the EC and 
SI algorithms is their high computational time. 

Any computational engineering problem has two 
aspects: the quality of the engineering design produced 
by the employed algorithm and the computational effi–
ciency of the algorithm. Through the process of engi–
neering design, the problem is defined, and potential 
solutions are generated. These solutions are then eva–
luated, and the best solution(s) are identified. Thus, the 
engineering design governs how a problem is modelled 
and the quality of solutions produced through the use of 
this problem model. As such, the engineering design 
aspect of the WFLD problem is concerned with how the 
problem is modelled and the quality of layout that is 
produced by an EC/SI algorithm. The other aspect 
focuses on the computational effort of the employed 
EC/SI algorithm. A plethora of studies have primarily 
focused on the first aspect, focusing on the quality of 
solutions produced by the EC/SI algorithm. This is quite 
logical since the main objective of the layout designer is 
to maximize energy generation or optimize other design 
requirements. However, the computational aspect has 
not been given due attention by researchers. From the 
computational point of view, it is also important to 
analyze how much execution time an EC/SI algorithm 
consumes. This importance is due to several factors. 
The more time an algorithm takes in execution, the 
more it consumes electricity, which is undesirable. 
Furthermore, the phenomenon of hardware stress has a 
negative impact on the processor. The more an 
algorithm utilizes the processor, the more it affects the 
remaining life of the processor [9,10]. Furthermore, 
when a processor is occupied by a task at hand, it cannot 
accept another task [11]. Considering the aforemen–
tioned issues, it is of utmost importance that an EA or SI 
be utilized in a way in which the execution time is 
minimized. 

As mentioned earlier, the majority of existing EA 
and SI approaches focused on the quality improvement 

of the layout generated by the algorithms to optimize 
the optimization objective (such as power output, cost, 
etc.). The performance of these algorithms was 
evaluated under various testing scenarios, such as 
varying wind speeds and/or varying wind directions. To 
test the impact of these, traditionally, a grid-based 
layout configuration was used, which was typically 
arranged in a 10 × 10 configuration as shown in Figure 
1. However, the impact of different grid sizes of higher 
dimensions, such as 16 × 16 up to 20 × 20, has not 
received due attention. This is evident from Table 1, 
which provides a chronological listing of all major 
studies covering the use of EC and SI algorithms for the 
WFLD problem. It is evident from the table that almost 
all studies focused on the use of a 10 × 10 grid in their 
analysis. To the best of our knowledge, there are only 
three studies that utilized other grid sizes. Two of these 
appeared in 2022, while the third is from 2024. These 
are Massoudi et. al. [12], which employed the genetic 
algorithm and analyzed 36 different grid sizes of 
disproportionate size (e.g., 10 × 9, 8 × 5, etc.). Another 
study was carried out by Koc [13], which made use of 
an invasive weed optimization algorithm while utilizing 
grid sizes of 10 × 10, 11 × 11, 12 × 12,..., 20 × 20. 
However, both the above studies, in addition to most 
others listed in Table 1, did not focus on the 
computational efficiency of the underlying algorithm 
with respect to grid size, which is a major novelty of the 
present study. Other novel aspects of the study are the 
analysis of the performance of the generic algorithm for 
different grid sizes and the use of real data from a 
potential site in Saudi Arabia. A recent study by 
Mohandes et. al. [14] carried out a preliminary inves–
tigation on the unconventional grid sizes while con–
sidering computational efficiency of the underlying 
algorithm, but they focused on grid sizes of 10 × 10 up 
to 15 × 15. As such, the present study extends the work 
of Mohandes et. al. [14] and analyzes the impact of 
higher dimension grid sizes on conversion efficiency 
and algorithm execution time. 

Motivated by the above discussion, the major 
contributions of the present study are enumerated as 
follows: 
1. The impact of various grid sizes is evaluated using 

quality of solutions produced and the executeon time 
of the employed algorithm. These grid sizes range 
from 16 × 16, 17 × 17, up to 20 × 20. Results are 
compared with an earlier study by Mohandes et. al. 
[14], which carried out an analysis of grid sizes 
ranging from 10 × 10 to 15 × 15. 

2. A genetic algorithm is employed for the study. The 
reason for selecting GA is that it is the highest 
utilized algorithm for WFLD [8]. This is also evident 
from the coverage of the literature, as shown in 
Table 1. As per our knowledge, there is only one 
study that utilized GA for grid sizes greater than 10 × 
10. 

3. As opposed to many past studies, which utilized 
hypothetical data, the present study utilizes real data 
from a potential wind farm site in Turaif, a city 
located in northern Saudi Arabia. 

The rest of the paper is organized as follows. Section 
2 provides an overview of the WFLD problem, along 
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with the wake and cost models, as well as the 
optimization model. This is followed by a brief primer 
on the genetic algorithm in Section 3. Results and 
discussion are presented in Section 4. The paper ends 
with a conclusion and future directions in Section 5. 

 
Figure 1.  A wind with a grid size of 10 × 10. 

 

2. OVERVIEW AND PROBLEM MODEL 
 
The present study analyzes different grid sizes while 
employing a genetic algorithm as the test bench. 
Therefore, the focus of the study is neither on deve–
loping a new problem model nor on the modification of 
the genetic algorithm. Therefore, the WFLD problem 
and associated concepts are briefly described in this 
section for a comprehensive view of the problem. First, 
the necessary basic information on the WFLD problem 
is provided. Then, a brief discussion on the wake 
models and the optimization function used in the study 
is provided. The section also gives a short overview of 
the genetic algorithm. 

 
2.1 Wind Farm Layout Design Problem 
 
In the WFLD problem, the aim is to place wind turbines 
within a wind farm in an optimal configuration. A wind 
farm is a geographical area within a defined perimeter 
having a wind corridor. In a wind farm, the turbines 
absorb the wind energy and convert it into electrical 
power. 

As used in many studies, a conventional wind 
farm model assumes a discrete search space, where the 
layout is designed considering a square shape. This 
square is generally structured as an x × x grid. An 
example of a 10 × 10 grid is shown in Figure 1, which 
consists of 100 equally sized cells in a 10 × 10 grid 
configuration. These 100 cells result in 2100 possible 
solutions [34]. Similarly, 2121 possible solutions exist for 
11 × 11, and so on. Placement of turbines is done at the 
center of a cell. Furthermore, the distance between two 
turbines in any direction is maintained at 3D to 5D 
(where D is the turbine diameter). 

2.2 Wake Model 
 

Several wake effect models have been proposed and 
employed over the years. In this research, a wake effect 
model used in a recent study by Ju and Liu [39] is 
adopted. The model assumes N turbines, which are to be 
placed in the wind farm. A unidirectional incoming wind 
with a speed of v0 is assumed. The turbines in the front 
row (cells 1 to 10 in Figure 1 are directly exposed to 
incoming wind and therefore are not influenced by any 
wake effect. As a result, wind speed remains unaffected 
at these turbines. Turbines affected by the wake 
encounter a wind speed of vi (i = 1, 2,. . . ,  N) and vi 
< v0. The value of vi depends on whether a concerned 
turbine encounters a single wake or multiple wakes. If a 
turbine i is affected by the wake of another single 
turbine j, then the resulting wake at turbine i is 
mathematically calculated as follows:  
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where vi,j denotes wind speed at wind turbine i under 
the wake effect of turbine j, and Rj is the rotor radius of 
wind turbine j. Furthermore, rj is the wake radius and is 
represented as follows. 

,j j i jr R dα= +   (2) 

In Eq. (2), α represents the entrainment factor while 
di,j is the downward distance. 

If a turbine i is affected by multiple wakes, the wake 
is calculated using the following equation. 
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∑  (3) 

where Φi is a set that includes all indices of turbines that 
are upwind of turbine i. A detailed discussion on the 
single and multiple wake models can be found in the 
study by Ju and Liu [39]. 
 
2.3 Optimization Model 
 
Since the purpose of the study is not to evaluate the 
optimization model or its effectiveness, only necessary 
details are provided here. Interested readers are referred to 
Ju and Liu [39] for further details. 

It is assumed that the number of wind turbines in the 
wind farm is fixed, and the farm encounters a unid–
irectional wind with a known direction. The aim is to 
harness wind energy with maximum efficiency. There–
fore, the objective function is defined to maximize the 
conversion efficiency, represented as follows: 

Conversion Efficiency = Pcurrent / Ptotal (4)  

where Pcurrent is the total power generated by turbines 
under the wake effect in the current layout, and Ptotal is 
the ideal total power generated by all turbines without 
the impact of any wake. 
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Table 1. Summary of previous studies.  

Reference  Year  Algorithm Grid Size 
Mosetti et. al. [15] 1994 Genetic Algorithm 10 × 10 

Grady et. al. [16] 2005 Genetic Algorithm 10 × 10 

Huang [17] 2007 Genetic Algorithm 10 × 10 

Sisbot et. al. [18] 2009 Genetic Algorithm 10 × 10 

Huang [19] 2009 Genetic Algorithm 10 × 10 

Wan et. al. [20] 2009 Genetic Algorithm 10 × 10 

Wang et. al. [21] 2009 Genetic Algorithm 10 × 10 

Wang et. al. [22] 2009 Genetic Algorithm 10 × 10 

Herbert-Acero et. al. [23] 2009 Genetic Algorithm 10 × 10 

Emami and Noghreh [24] 2010 Genetic Algorithm 10 × 10 

Kusiak and Song [25] 2010 Genetic Algorithm 10 × 10 

Bilbao and Alba [26] 2010 Genetic Algorithm 10 × 10 

Gonzalez et. al. [27] 2010 Genetic Algorithm 10 × 10 

Rašuo et. al. [28,29] 2010 Differential Evolution 10 × 10 

Saavedra et. al. [30] 2011 Genetic Algorithm 10 × 10 

Kwong et. al. [31] 2012 Genetic Algorithm 10 × 10 
Eroglu and Seckiner [32] 2013 Ant Colony Optimization 10 × 10 
Yang et. al. [33] 2015 Genetic Algorithm 10 × 10 
Rehman et. al. [34] 2016 Cuckoo Search 10 × 10 

Afanasyeva et. al. [35] 2018 Genetic Algorithm, Cuckoo Search 10 × 10 

Kirchner-bossi et. al. [36] 2018 Genetic Algorithm 10 × 10 

Khanali et. al. [5] 2018 Genetic Algorithm 10 × 10 

Charhouni et. al. [37] 2019 Genetic Algorithm 10 × 10 

Wang [38] 2019 Genetic Algorithm 10 × 10 

Ju and Liu [39] 2019 Genetic Algorithm 10 × 10 

Ju et. al. [40] 2019 Genetic Algorithm 10 × 10 

Gao et. al. [41] 2020 Genetic Algorithm 10 × 10 

Wu et. al. [42] 2020 Particle Swarm Optimization 10 × 10 

Wen et. al. [43] 2020 Genetic Algorithm 10 × 10 

Liu et. al. [44] 2020 Genetic Algorithm 10 × 10 

Rehman et. al. [4] 2020 Particle Swarm Optimization 10 × 10 

Aggarwal et. al. [45] 2021 Various EC/SI algorithms 10 × 10 

Al Sheriqi et. al. [46] 2021 Genetic Algorithm 10 × 10 

Kirchner-bossi et. al. [47] 2021 Genetic Algorithm 10 × 10 

Asfour et. al. [48] 2022 Genetic Algorithm 10 × 10 

Guoqing et. al. [49] 2022 Genetic Algorithm 10 × 10 

Masoudi et. al. [12] 2022 Genetic Algorithm Various disproportional grid sizes smaller 
than 10 × 10 

Koc [13] 2022 Invasive Weed Optimization 10 × 10 up to 20 × 20 

Khan [50] 2022 Simulated Evolution 10 × 10 

Mohandes et. al. [51] 2023 Genetic Algorithms 10 × 10 

 
3. GENETIC ALGORITHMS 
  
The Genetic algorithm (GA) is a non-deterministic 
iterative algorithm that is inspired by the theory of 
evolution. Originally proposed by Fraser [52] in 1957, 

the algorithm received notable attention through the 
work of Holland [53]. GAs operate on a set of solutions, 
known as a population. A solution in GA is denoted as a 
chromosome and consists of a string of individual 
elements called genes. In every iteration, a new set of 
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chromosomes is generated. These specific chromosomes 
are called offspring. 
     The search in GA is governed by two processes 
known as exploration and exploitation [54]. Exploration 
allows the algorithm to search through the solution space 
in the hope of discovering new potential regions in which 
optimal solution(s) could be found. The purpose of 
exploitation is to focus on an intensified search in a 
smaller region of the solution space. The balance bet–
ween exploration and exploitation allows GA to carry 
out the search efficiently, leading to an optimal or near-
optimal solution. A high exploration rate makes the search 
inefficient since the algorithm can miss good solutions. 
This results in a higher execution time to reach conver–
gence. In contrast, a high exploitation rate can result in 
the loss of population diversity and may lead to pre–
mature convergence, thus resulting in low-quality 
solutions [55 - 57]. 
     In GA, the crossover and mutation functions imp–
lement exploitation and exploration, respectively. The 
level of exploitation through crossover is controlled by a 
parameter called the ‘crossover rate’. Similarly, 
exploration is controlled through another variable known 
as the ‘mutation rate’. The values of these two parameters 
are user-defined. For GA to produce an optimal solution, 
sufficient time (and, equivalently, a large number of 
iterations) is required to reach convergence. If this is not 
ensured, then exploration and exploitation are not fully 
utilized, and the algorithm fails to produce an optimal 
solution. 
 
4. RESULTS AND DISCUSSION 
 
In this section, empirical results are presented and 
discussed to evaluate the performance of the various 
grid sizes, which include 16 × 16, 17 × 17, 18 × 18, 19 × 
19, and 20 × 20. For the sake of comprehensiveness, 
results of 10 × 10 to 15 × 15 were adopted from a recent 
study by Mohandes et. al. [14]. For simulations, real data 
collected from a potential site of Turaif was used. The 
site is located in the northern part of Saudi Arabia at an 
elevation of 827 meters above sea level. Following an 
earlier study [58], a wind speed of 6.94 m/s at a height of 
130 meters was used in the experimentation for Turaif. 

After parameter tuning, the values of different 
parameters of the genetic algorithm were set as follows: 
population size = 30, crossover rate = 0.6, and 
mutation rate = 0.1. A fixed number of 20 turbines was 
used. GE 1.5sle turbine is employed as an example 
since it is frequently used in real wind farms [39]. Note 
that GA is a non-deterministic algorithm, suggesting 
that the result of a single run cannot lead to the best 
efficiency and therefore, a single run is not sufficient to 
reach a decision. As such, in accordance with the 
established approach suggested in the literature [8], 30 
independent runs were carried out for all experiments, 
and results were reported as the average of the best 
efficiency in 30 runs as well as standard deviations of 
these 30 runs, with the corresponding execution times. 

All experiments were done using the same initial 
population for GA. To give ample time for convergence, 
simulations were run for 2000 iterations. However, the 

results are reported considering the iteration in which 
the best result is first encountered. For example, if the 
best result is found in iteration number 900, then the 
algorithm would still run 2000 iterations, but the time at 
which 900 iterations were completed is reported. 

In addition to the above, uniform simulation conditions 
(with regard to background processes and software plat–
form) and hardware setup were used. Simulations were 
carried out using the open-source Python package deve–
loped by Ju and Liu [39], and necessary modifications 
were made to the code. 
 
4.1 Effect of Grid Size on Conversion Efficiency 
 
Tables 2 and 3 present the results of the conversion 
efficiency for the different grid sizes. The results are 
presented with respect to the best, worst, and average 
conversion efficiency (of 30 runs), as well as the 
standard deviation of the 30 runs. As can be seen from 
the two tables, the grid size of 19 × 19 produced the 
highest average conversion efficiency of 0.992 while 
maintaining a very low standard deviation of 0.001. In 
contrast, the worst results were generated by the grid 
size of 10×10 where an average conversion efficiency of 
0.813 was obtained, with a standard deviation of 0.006, 
which was the highest among the results of all grid sizes. 
Table 2.  Results of conversion efficiency for grids of 10 × 
10 to 15 × 15 (adopted from Mohandes et. al. [14]). 

 10×10 11×11 12×12 13×13 14×14 15×15 
Max  
Conv 
Eff. 

0.832 0.866 0.895 0.917 0.918 0.953 

Min  
Conv 
Eff. 

0.801 0.846 0.882 0.909 0.908 0.948 

Avg  
Conv 
Eff. 

0.813 0.855 0.888 0.912 0.913 0.950 

St 
dev. 

0.006 0.004 0.003 0.002 0.002 0.001 

Table 3.  Results of conversion efficiency for grids of 16 × 
16 to 20 × 20. 

     16×16 17×17 18×18 19×19 20×20 
Max  
Conv 
Eff. 

0.965 0.977 0.985 0.994 0.991 

Min  
Conv 
Eff. 

0.962 0.968 0.983 0.991 0.964 

Avg  
Conv. 

Eff 

0.964 0.975 0.984 0.992 0.987 

St dev. 0.001 0.002 0.001 0.001 0.005 
          

Figure 2 provides further details about the different 
grid sizes. The figure illustrates the distribution of the 
best solution for 30 runs with regard to each grid size. 
These solutions are divided into five ranges of 
conversion efficiency. As observed from the figure, on 
the one hand, higher grid sizes (18×18, 19×19, and 20×20) 
had all solutions falling in the highest efficiency ranges of 
0.98 and above. On the other hand, the lowest grid size of 
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10 × 10 had all solutions in the lowest efficiency range 
(0.8 to 0.84). 

  
Figure 2.  Conversion efficiency count for different grid 
sizes (results of 10 × 10 to 15 × 15 are adopted from 
Mohandes et. al. [11]). 

 
Figure 3.  Conversion efficiency of 30 runs with different 
grid sizes (results of 10 × 10 to 15 × 15 are adopted from 
Mohandes et. al. [14]). 

4.2 Effect of Grid Size on Execution Time 
 

Concerning the impact of grid size on the execution 
time of GA, experiments were carried out considering 
the execution time per single run and execution time per 
iteration within a single run. With regard to execution 
time per single run, the results are summarized in Tables 
4 and 5. The tables indicate that the highest execution 
time (average of 30 runs) of 3759.8 seconds was 
obtained for a grid size of 17 × 17, and as the grid size 
is increased beyond this, the average execution time 
decreases. Furthermore, the lowest average execution 
time was obtained for a grid size of 11 × 11. Another 
observation is that the grid size of 18 × 18 showed the 
highest standard deviation, which means that for this 
grid size, the iterations (which correspond to the 
execution time) at which the best results (of 30 runs) 
were obtained fluctuated tremendously. This is also 
obvious from the maximum and minimum execution 
times of 6738.2 seconds to 189.4 seconds, respectively. 

Figure 4 gives a pictorial view of the trends on 
execution time, showing division of times into 7 
different ranges, from 0 - 999 seconds, to 6000 - 6999 
seconds. The illustration indicates that the execution 
times of all grid sizes are spread across all time ranges, 
more or less. As such, there is no clear trend whether 
the execution time increases or decreases with the 
variation in grid size. This observation is further 
confirmed by plots of execution times for 30 runs in 

Figure 5. In this figure, the run times for all grid sizes 
are sorted and plotted against each of the 30 runs. One 
common observation from the plots is that the run times 
are spread between very low to very high run times. 
Furthermore, all plots demonstrate a somewhat linear 
trend. However, a clear pattern is that the increase in 
grid size does not have a significant impact on the 
runtime, as the run times for all grid sizes vary more or 
less between 50 seconds and 6800 seconds.  
Table 4.  Results of execution times (in seconds) for grids 
of 10 × 10 to 15 × 15 (adopted from Mohandes et. al. [14]). 

 10×10 11×11 12×12 13×13 14×14 15×15
Max  
Time 

4027.3 5272.0 5201.6 6104.8 5323.9 4093.8

Min  
Time 

196.1 187.0 187.6 372.4 89.7 190.4 

Avg  
Time 

2300.9 2222.5 2666.2 3255.6 2637.4 2372.9

St dev. 1259.7 1451.6 1409.2 1636.3 1537.1 1154.4

Table 5.  Results of execution times (in seconds) for grids 
of 16 × 16 to 20 × 20  

 16×16 17×17 18×18 19×19 20×20 
Max Time 6243.6 5845.1 6738.2 6135.3 5448.8 
Min Time 799.6 176.5 189.4 50.6 53.4 
Avg Time 3471.7 3759.8 3212.4 3043.8 2396.8 

St dev. 1824.6 1312.7 2021.6 1935.6 1379.9 

 
Figure 4.  Execution time count for different grid sizes 
(results of 10 × 10 to 15 × 15 are adopted from Mohandes 
et. al. [14]). 

The impact of grid size on execution time was 
further analyzed through the measurement of average 
execution time per iteration. That is, for each of the best 
30 runs, where the total execution time is reported 
above, the average execution time per iteration was also 
measured. Tables 6 and 7 provide these averages along 
with the maximum and minimum execution time per 
iteration for different grid sizes. 

The tables indicate that the highest (average) exe–
cution time of 3.24 seconds per iteration was observed 
for a grid size of 18 × 18, while the lowest (average) 
execution time per iteration was 2.06 seconds for a grid 
size of 10 × 10. Furthermore, the average execution 
time per iteration was most stable for grid size 15 × 
15 with a standard deviation of 0.04, indicating that 
for each of the 30 runs for this grid size, the average 
runtime per iteration remained more or less the same. 
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                                                       (a)                                                                                       (b)  

                                
(c)                                                                                                       (d) 

       
(e)                                                                                    (f) 

       

(g)                                                                                  (h) 

Figure 5.  Runtime for 30 runs for different grid sizes. (a) 10  x 10  (b) 11 x 11 (c) 12 x 12 (d) 13 x 13 (e) 14 x 14 (f) 15 x 15 (g) 16 x 
16 (h) 17 x 17. 
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                                           (i)                                                                                                (j)  

 

(k) 

Figure 5 (contd..).  Runtime for 30 runs for different grid sizes. (i) 18 x 18 (j) 19 x 19 (k) 20 x 20. 

In contrast, grid sizes 13 × 13 and 18 × 18 showed a 
high variation in execution time per iteration, since the 
standard deviation was the highest (0.27) for both of 
them. Overall, the table indicates that the grid size of 18 
× 18 was the worst performer due to its highest exe–
cution time per iteration, while indicating an unstable 
behavior with the highest standard deviation. 

Figure 6 illustrates the iteration-wise run times for 
all grid sizes. The iteration-wise runtimes are sorted and 
plotted for each of the 30 runs. A general trend in the 
plots is that there is not much variation in iteration-wise 
run times for different grid sizes; the values vary 
between 2.06 and 3.86 seconds per iteration. The most 
stable behavior is for grid sizes of 10 × 10 and 15 × 15, 
where the iteration-wise run time remained almost 
constant for the 30 runs. This is also confirmed by the 
low standard deviations for the two grid sizes given in 

Table 6. Furthermore, for each grid size, a typical trend 
is that plots are more or less show a linear behavior.  
Table 4.  Results of execution times (in seconds) per 
iteration for grids of 10 × 10 to 15 × 15.  

 10×10 11×11 12×12 13×13 14×14 15×15
Max Time 2.16 3.00 2.76 3.22 3.32 2.29 
Min Time 1.96 2.37 2.13 2.29 2.36 2.08 
Avg Time 2.06 2.49 2.47 2.70 2.81 2.16 
St dev. 0.07 0.14 0.18 0.27 0.24 0.04 

Table 5.  Results of execution times (in seconds) for grids 
of 16 × 16 to 20 × 20. 

 16×16 17×17 18×18 19×19 20×20
Max Time 3.30 3.31 3.69 3.24 2.84 
Min Time 2.89 2.60 2.89 2.29 2.27 
Avg Time 3.06 3.09 3.24 2.86 2.43 
St dev. 0.13 0.15 0.27 0.24 0.15 

                  

(a)                                                                                             (b) 
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(c)                                                                                              (d) 

                   
(e)                                                                                            (f) 

                  
(g)                                                                                  (h) 

Figure 6. Average runtime per iteration (in seconds) for 30 runs for different grid sizes. (a) 10  x 10  (b) 11 x 11 (c) 12 x 12 (d) 13 
x 13 (e) 14 x 14 (f) 15 x 15 (g) 16 x 16 (h) 17 x 17. 

                 
(i)                                                                                              (j) 

 
(k) 

Figure 6 (contd..).  Average runtime per iteration (seconds) for 30 runs for different grid sizes. (a) 18  x 18  (b) 19 x 19 (c) 20 x 20. 
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5. DISCUSSION 
 

From the results in Sections 4.1 and 4.2, certain 
observations can be noticed. First, it is clearly observed 
that an increase in the conversion efficiency is directly 
proportional to the grid size. This is logical because a 
higher grid size gives more options for placement if the 
number of turbines is fixed (which is the case assumed 
in the present study). This allows the genetic algorithm 
to explore a higher number of possible solutions. The 
results indicated that the grid size of 19 × 19 produced 
the highest conversion efficiency. Surprisingly, the 
study by Koc [13] also revealed that the grid size of 19 
× 19 also produced the best results when they carried 
out empirical performance evaluation of their proposed 
binary invasive weed optimization algorithm.  

When it comes to the execution time, the trends do 
not go line in line with the trends on conversion 
efficiency. There is no clear trend in which grid size 
gives the minimum execution times; the execution time 
varied aggressively for all grid sizes. For each grid size, 
sometimes the optimal results were found very early 
during the execution (within the first 100 iterations), 
while in some cases the optimal results were found just 
near the end of 2000 iterations. Furthermore, the ite–
ration-wise execution time did not show much variation 
with respect to the grid size. This indicates that, in 
general, the performance of GA in terms of execution 
time is not affected by the grid size. This could possibly 
be explained by the non-deterministic (stochastic) na–
ture of GA. It is quite possible that, due to this 
stochastic behavior, the algorithm is able to explore the 
search areas that are closer to the optimal solution in 
some instances. Consequently, the algorithm would be 
able to reach the optimal solution in less time. In other 
cases, where the algorithm traverses search areas that 
are far from the optimal solutions, more execution time 
is required to reach the optimal solution. However, the 
grid size has a significant correlation with the conver–
sion efficiency, which is due to the fact that with a 
higher grid size, the algorithm has more options to 
explore (the search space gets bigger), which allows the 
algorithm to perform exploration and exploitation more 
effectively. 
 
6. CONCLUSION AND FUTURE DIRECTIONS 
 
In harnessing energy from wind, the configuration of a 
wind farm plays a crucial role. One important factor that 
contributes to this configuration is the grid structure and 
size of the wind farm. While past studies have focused 
on many other aspects of wind farm design, research on 
the impact of grid size has not been carried out with due 
attention. The novel aspects of this study include the 
utilization of a genetic algorithm to study the impact of 
various grid sizes, both in terms of the quality of 
solution produced, which is measured by conversion 
efficiency, as well as the execution time of the genetic 
algorithm. The novelty also lies in the use of real data 
collected from a potential wind farm size in Saudi 
Arabia. It has been found that while grid size has a 
notable impact on the conversion efficiency, the 

execution time of the genetic algorithm is hardly 
dependent on the grid size.  

In terms of the theoretical aspects, the findings in 
this study can be expanded into several dimensions. 
While the present study has utilized the genetic algo–
rithm, other algorithms from the domain of evolutionary 
computation and swarm intelligence, such as differential 
evolution, particle swarm optimization, ant colony 
optimization, cuckoo search, among many others, can 
be studied. Different wind scenarios, considering mul–
tiple wind speeds and/or wind coming from multiple 
directions, can also be of interest for further research. In 
addition, different mathematical models with regard to 
wake and cost modelling can be employed and mutually 
compared.  

From an application point of view, the relationship 
between different numbers of turbines and grid sizes can 
be studied. Furthermore, while the study considered a 
single turbine, several turbine models with various rated 
capacities can be evaluated. This will assist wind engi–
neers in selecting the most appropriate turbine and its 
count for a specific grid size.  The impact of grid size on 
other practical issues, such as maintenance and opera–
tion costs, as well as grid connectivity, can also be 
studied. 
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[18]  Şişbot, S., Turgut, O., Tunc¸, M., Çamdali, U.: 
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NOMENCLATURE 

vt,j Wind speed at turbine i under the wake of 
turbine j 

v0 Mean wind speed (prevailing wind) 
vi 
Rj 

Wind speed at turbine i 
Rotor radius of turbine j 

rj Wake radius 
α Entrainment factor 
di,j Distance downstream from turbine j to turbine i

(i.e., distance between the current turbine and 
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the turbine creating the wake effect on it) 

θ Angle of prevailing wind to the front of the
farm 

N Total number of turbines 
C Number of cells in the layout grid 
Pcurrent 
Pideal 
GA 
PSO 
DE 
EC 
SI 
WFLD 

Total power generated by turbines 
Ideal power generated by turbines 
Genetic algorithms 
Particle Swarm optimization 
Differential Evolution 
Evolutionary Computation 
Swarm Intelligence 
Wind Farm Layout Design 
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ВЕЛИЧИНА МРЕЖЕ ЗА ОПТИМИЗАЦИЈУ 
РАСПОРЕДА ВЕТРОЕЛЕКТРАНА 

КОРИШЋЕЊЕМ ГЕНЕТСКОГ АЛГОРИТМА 
 

М. Мохандес, С.А. Кан, Ш. Рехман, А. Ал-Шаики 
К. Икбал 

 
Енергија ветра се појавила као ефикасна алтер–
натива фосилним горивима. На комерцијалном 
нивоу, енергија ветра се користи кроз ветро–
електране, које се састоје од неколико ветротурбина 
распоређених у специфичном распореду. Иденти–
фиковање оптималног распореда ветроелектране је 
од виталног значаја за максималну апсорпцију 
енергије из ветра. Због саме сложености проблема, 
за оптимизацију распореда ветроелектрана кориш–
ћени су еволутивни и алгоритми ројне интели–
генције. Перформансе оптималног дизајна распо–
реда регулисане су неколико физичких параметара, 

као што су брзина ветра, смер ветра и величина 
мреже. Већина постојећих студија фокусирала се на 
утицај брзине ветра и смера ветра на оптимизацију 
распореда. Међутим, ограничена пажња је посве–
ћена проучавању утицаја величине мреже. Ова 
студија анализира утицај различитих неконвен–
ционалних величина мреже веће димензије, у рас–
пону од 16×16, 17×17, па све до 20×20, користећи 
генетски алгоритам као тестну лабораторију. За 
свеобухватније поређење, резултати од 10×10 до 
15×15 су усвојени из раније студије. За разлику од 
претходних студија, које су се фокусирале на 
процену квалитета резултата, нови аспект ове сту–
дије такође разматра време извршавања као меру 
учинка. Још један нови аспект је анализа учинка 
генеричког алгоритма за различите величине мреже. 
Штавише, за разлику од претходних студија, које су 
углавном користиле хипотетичке податке, ова сту–
дија користи стварне податке са потенцијалне лока–
ције у Саудијској Арабији. Резултати показују да је 
максимална просечна ефикасност конверзије од 
0,992 добијена са величином мреже 19×19, док је 
величина мреже 10×10 произвела минималну про–
сечну ефикасност конверзије од 0,813. Ови резул–
тати указују на то да повећање величине мреже 
позитивно утиче на ефикасност конверзије, која се 
користи као мера квалитета решења. Међутим, про–
мена величине мреже има занемарљив утицај на 
време извршавања генетског алгоритма. Резултати 
студије потенцијално отварају пут програмерима 
ветроелектрана да изаберу најбољу величину мреже 
за дату локацију, узимајући у обзир неколико прак–
тичних питања, као што су трошкови одржавања и 
рада, демографске и топографске структуре, између 
осталих фактора. 

 

 

 


