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With the growing demand for enhanced machinery reliability, the
application of artificial intelligence (Al) in fault diagnosis is becoming
increasingly important. However, limited research has systematically
compared the performance of various machine learning algorithms for
bearing fault diagnosis. This paper presents a comparative analysis of five
widely-used machine learning algorithms—linear SVM, Gaussian SVM,
SVM Kernel, Weighted K-Nearest Neighbors (WKNN), and Artificial
Neural Networks (ANN). Faults were induced using wire EDM on test
bearings, and vibration data were recorded using a National Instruments
data acquisition system with LABVIEW. Results indicate that while
weighted KNN demonstrated 100% accuracy in testing, ANN emerged as
the most reliable, achieving 100% accuracy in both validation and testing
phases. The trained ANN was further employed to predict bearing
conditions across ten random datasets, affirming its potential for real-time
condition monitoring of industrial machinery.
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1. INTRODUCTION

In the contemporary industrial landscape, machinery has
become increasingly complex, often operating under
unpredictable and challenging conditions. With this rise
in complexity, machinery becomes more prone to bre—
akdowns, and unforeseen failures can lead to unplanned
maintenance, creating delays that ripple through inter—
connected systems. Consequently, monitoring the health
of machines is essential to ensure their availability, re—
duce downtime, and increase customer satisfaction [1,2].
Among various machinery components, rolling ele—
ment bearings (REB) are critical, playing a key role in
mechanical systems while also being a significant cause
of failures. Studies have shown that between 45% and
55% of failures in rotating machines are attributed to
bearing faults [3]. Thus, detecting faults in bearings has
become a major area of research aimed at improving
reliability and reducing maintenance costs. Fault detec—
tion generally involves three stages: data acquisition,
feature extraction, and fault classification [4]. Vibration-
based data acquisition is widely used due to its effec—
tiveness in identifying machine faults, as vibration
signals carry critical information about the operating
condition of the bearings [5]. Feature extraction iden—
tifies key patterns in these vibration signals, and mac—
hine learning algorithms are then applied for fault cla—
ssification to determine the fault’s nature and severity.
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Vibration-based monitoring techniques have been
extensively studied, with applications in industries such
as aerospace, power generation, and material handling
[6]. Vibration arises from various sources, even in new
bearings with no defects, due to inherent imperfections
like variable compliance [7]. These vibrations can be
analyzed in both the time and frequency domains using
various advanced signal processing techniques. Methods
include analog signal acquisition with accelerometers
and statistical analysis, which extract parameters like
peak value, root mean square (RMS), kurtosis (KU),
and crest factor (CF) to assess the condition of the
bearings [8—10]. Additionally, characteristic frequencies
such as Ball Pass Frequency of the Outer Race (BPFO),
Ball Pass Frequency of the Inner Race (BPFI), and
Fundamental Train Frequency (FTF) serve as critical
indicators of bearing faults [11].

With advancements in artificial intelligence (Al),
machine learning techniques like Artificial Neural Net—
works (ANNs) and Support Vector Machines (SVMs)
have been employed for fault diagnosis. ANNs, parti—
cularly using the feed-forward back-propagation (FFBP)
algorithm, have been widely used due to their pattern
recognition capabilities [12]. In fault diagnosis, SVMs
have demonstrated high accuracy when applied to time-
domain and frequency-domain data, particularly for cy—
lindrical roller bearings [11]. Moreover, environments like
MATLAB are extensively used for employing machine
learning algorithms to diagnose faults in REBs [13,14].

Although fault diagnosis in rolling element bearings
has been extensively studied, the specific focus on
cylindrical roller bearings with roller defects remains
relatively underexplored. This gap exists because analy—
zing vibration signals from cylindrical roller bearings is
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often complicated by background noise, which makes
the detection of roller-specific faults particularly chal—
lenging [15-17]. Furthermore, while artificial intel-
ligence (Al) techniques have been employed in fault
diagnosis for rolling element bearings, to the best of the
authors' knowledge, there is currently no literature that
provides a comparative study of various machine lear—
ning algorithms aimed at conclusively demonstrating
their performance in condition monitoring.

Therefore, an attempt has been made to fill these
gaps by presenting a comparative analysis of five top
performing machine learning algorithms for fault
classification in cylindrical roller bearings. The primary
contributions of this work are:

1. Five top performing algorithms: Five widely used
machine learning algorithms—Ilinear SVM, Gaus—
sian SVM, SVM Kernel, Weighted K-Nearest Nei—
ghbors (WKNN), and ANN—were evaluated in
MATLAB for their performance in terms of vali—
dation and testing accuracy.

2. Experimentation and data acquisition: The expe—
riments were conducted using a machinery fault
simulator on SKF cylindrical roller bearings (N204
ECP), which included both healthy and faulty con—
ditions in the outer race and rollers at varying
speeds. Faults were introduced using wire Electrical
Discharge Machining (EDM), and vibration signals
were recorded using a National Instruments data
acquisition system with LABVIEW.

3. Feature extraction and performance evaluation:
Statistical features such as kurtosis and crest factor
were extracted from the vibration signals using MAT—
LAB. These features served as inputs for training, va—
lidating, and testing the machine learning algorithms.

4. Prediction by the best algorithm: Among the
tested algorithms, the ANN with a feed-forward
back-propagation algorithm performed the best,
achieving a validation and testing accuracy of
100%. This algorithm was further validated using
ten random datasets to ensure robustness and
consistency in fault prediction.

The remaining part of the paper consists of the
following sections: In Section 2, the methodology,
including experimentation and data acquisition, feature
extraction, and training of the machine learning
algorithms, is given. Section 3 elaborates on the
obtained results and the conclusions in Section 4.

2. METHODOLOGY

Figure 1 depicts the methodology flowchart employed
in this investigation. The experiments have been con—
ducted using a machinery fault simulator, to acquire
bearing vibrations. The statistical features have been
extracted from the raw data using MATLAB to form a
comprehensive dataset. This dataset has been used as
input for the machine learning algorithms for their trai—
ning, testing, and validation.

2.1 Vibration data acquisition from test bearings

The experiments have been conducted using a machi—
nery fault simulator, as illustrated in Figure 2, with
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different bearing conditions; both healthy states and
faults in the outer race and rollers. The experimental
setup comprises a 0.25 HP electric motor, a flexible
coupling to compensate for misalignment between the
motor and shaft, and two support bearings within pede—
stals. The good bearing is positioned at the near end,
while the test bearing is mounted at the far end of the
motor. The motor shaft's speed is controlled by a vari—
able frequency drive (VFD). The flow chart of experi—
mentation and data acquisition is shown in Figure 3.

Acquire Bearing Vibration Data

Extract Stastical Parameters using MATLAB

Train ML Algorithm with Vibration Data

Validate the Algorithm with Unknown data set

Figure 1. Flow Chart of the Methodology

An accelerometer is mounted to the pedestal to
capture the vibration of the test bearing, as shown in
Figure 2.This accelerometer has been connected to the
NI9234, a specialized module made especially for
acquiring vibration and sound, has been mounted on to
the NI ¢cDAQ 9178 chassis. LabVIEW facilitates data
collecting, and a USB cable connects this chassis to the
PC. A LabVIEW program, outlined in Figure 4, has
been developed. Initially, the vibration signal in the time
domain is acquired, followed by conversion to the
frequency domain using the ‘spectral measurement’ tool
in LabVIEW. Subsequently, both time domain and
frequency domain data are plotted and saved using the
'write to measurement' tool for further analysis. The
saved time domain data will be utilized to extract
statistical features using MATLAB.

The specifications of the test bearing (SKF N204:
cylindrical roller bearing) are presented in Table 1.
Different faults have been induced using wire EDM on
the test bearings, as illustrated in Figure 5. Experiments
have been conducted for each bearing under four diffe—
rent speeds, as detailed in Table 2. Each test condition
was repeated five times, and the vibration data were
recorded for further analysis. Consequently, a total of 60
experiments (3 bearing conditions x 4 speeds x 5 repe—
titions) have been carried out.

Table 1. Specification of the Test Bearings (N204)

Type Cylindrical Roller Bearing
Inner diameter (ID) 20 mm
Outer diameter (OD) 47 mm
Race width (B) 14 mm
Roller diameter (d) 6 mm
Pitch diameter (D) 35.99 mm
No. rollers (n) 10
Contact angle(¢) 0°
Material Chrome Steel
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Figure 3. Flow Chart of Experimentation and Data Acquisition
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Figure 4. Data Acquisition using LabVIEW
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Figure 5. Faults on the Test Bearings

Table 2. Test Conditions

Test Bearing Condition Speed (RPM)
100
Healthy | Faulton | Fault on 200
Bearing |Outer Race| Roller 300
(HB) (ORD) | (RED) 200

2.2 Statistical feature extraction using MATLAB

The time-domain signal can be utilized in identifying
the faults through statistical features like RMS, Kur—
tosis, and Crest Factor [18]. Notably, indicators like KU
and CF exhibit heightened sensitivity in the diagnosis of
faults in rolling element bearings [19]. RMS value,

Kurtosis and Crest Factor can be computed using (1),
(2) and (4), with standard deviation using (3) [20,21].

2

RMS = y? ~~0.707y (1)
N —\4
_ 2 (vi-9)
T .
N —\2
_ (i
o= Zl_lg\ll ) (3)
CF= Peak Value @)
RMS Value

Statistical features, namely RMS, kurtosis, and crest
factor have been extracted using the Diagnostic Feature
Designer tool in MATLAB from the vibration data to
form a robust data set for training and testing the
machine learning algorithms.

2.3 Training, validation, and testing of machine
learning algorithms

Machine Learning (ML) has gained immense popularity
for its ability to empower computers with the capacity
to learn patterns and make predictions or decisions wit—
hout explicit programming. This capability is realized
through the application of algorithms and statistical
models. MATLAB, a high-level programming language
and environment developed by MathWorks, finds
widespread usage in scientific and engineering appli—
cations, including machine learning [22-25]. Figure 6
shows the flow chart of the training, validation, and
testing of five widely used machine learning algorithms
for bearing fault classification.

In this analysis, five prominent machine learning
algorithms within the MATLAB environment—Linear
SVM, Gaussian SVM, SVM Kernel, Weighted KNN,
and ANN—have been explored. These algorithms are
trained using a comprehensive dataset prepared as deta—
iled in the preceding section. The primary objective is to
accurately differentiate between healthy bearings and
those with outer race or roller defects.

Forming Data-set for
Training, Validation and
Testing ML Algorithms

tatistical Features
Extraction using
MATLAB

Linear SVM Gaussian SVM

SVM Kernel

Weighted k-NN ANN

Performance Evaluation
based on Validation and Testing Accuracies

Prediction using the
Most Accurate
Algorithm

Figure 6. Flow Chart of Training, Validation and Testing of Machine Learning Algorithms
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3. RESULTS AND DISCUSSION
3.1 Vibration signals from test bearings

A peak in the frequency spectra indicates the existence
of a problem in a bearing element. However, the size,
shape, position, and kind of the fault all affect how
much this vibration peak vibrates. The roller pass
frequency for the outer and inner races (RPFO/RPFI),
the roller spin frequency (RSF), and the fundamental
train frequency (FTF) are the usual labels for the
bearing characteristic frequencies for the faults on the
outer race, inner race, and cage, respectively.

Equations (5-10) [26] illustrate how the shape of
the bearing and the shaft's rotational speed affect these
theoretical bearing characteristic frequencies. Using the
(5-10), the theoretical bearing characteristic frequencies
for the test bearing with the geometric features from
Table 1 for a shaft speed (N) of 400 rpm have been
calculated and are shown in Table 3.

n N d
RPFO =——|1——cos 5
260( D (pJ %)
n N d
RPFI =2 1+< 6
260( DCOS(/)) ©)
2
RSF:RE l—d—cos2¢) 7
2d 60| p?
IN(. d
FTF =——| 1——cos 8
260( D (0) ®
2
REDF =2+ s =2V 1—d—cos2(p )
d 60| p2
veF =ns FTF =Y (12 % cosp (10)
2600 D

Vibration signals were acquired from bearings using
the machine fault simulator and LabVIEW for three
bearing conditions: healthy, fault on outer race, and
fault on roller. The simulator operated for 10 seconds at
four different speeds—100 RPM, 200 RPM, 300 RPM,
and 400 RPM. For each type of bearing, 10 data sets

have been recorded to ensure a robust dataset. Figures 7
— 12 show the time domain and frequency domain plots
for the three different bearings.

Table 3. Characteristic Frequencies of Test Bearing

Characteristic Frequencies (Hz)
Variable Competence Frequency (VCF) 27.78
Roller Pass Frequency for the Outer Race (RPFO) | 27.78
Roller Pass Frequency for the Inner Race (RPFI) | 38.89

Roller Spin Frequency (RSF) 19.44
Fundamental Train Frequency (FTF) 2.778
Rolling Element Defect Frequency (REDF) 38.88

Different peaks may be seen in Figure 8 at roughly
223 Hz, 247 Hz, and 277 Hz. These frequencies are lin—
ked to the variable competence frequency (VCF) harm—
onics. The VCF in theory is 27.78 Hz, which suggests a
sound bearing. Conversely, the observation in Figure 10
shows peaks at 112 Hz, 246 Hz, and 271 Hz, aligning
with the harmonics of the RPFO. The anticipated
theoretical RPFO is 27.28 Hz, indicating the presence of
a fault in the outer race. Furthermore, Figure 12 exhibits
peaks nearly at 114 Hz and 272 Hz, correspond to the
harmonics REDF. The theoretical REDF is 38.88 Hz,
pointing towards a fault in the roller. These observations
provide valuable insights into the specific nature of the
faults present in the bearing components.

3.2 Statistical features from the acquired vibration
signals

The statistical features, namely RMS, crest factor, and
kurtosis, have been extracted from the saved vibration
data using MATLAB. A sample data of the statistical
features extracted from the vibration signal is presented
in Table 4.

In Table 4, it can be noted from column 4 that
kurtosis values are approximately 3 for healthy bea—
rings, while higher values indicate faults in the bearings.
Furthermore, it is observed that the kurtosis value
remains consistent across different speeds, aligning with
the findings reported by previous literatures [26-27].

0.6

0.4

Amplitude (g)

0.4

Healthy Bearing (Time Domain)

Figure 7. Time Domain Plot for the Healthy Bearing
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Figure 10. Frequency Domain Plot for Bearing with Fault on Outer Race
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08 Bearing with Fault on Roller (Time Domain)
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Figure 12. Frequency Domain Plot for Bearing with Fault on Roller

Similarly, examining column 5 of Table 4 reveals
that the crest factor values for healthy bearings are
approximately 3.5, whereas higher values are indicative
of bearings with faults. This observation is consistent

learning algorithms

3.3 Training, validation, and testing of machine

As Heng and Nor [27] have concluded that, employing

with the findings presented in previous literature [28].

Table 4. Sample of Statistical Features

more advanced parameters on vibration signals did not
offer a significant advantage over using kurtosis or crest
factor for identifying faults in rolling element bearings.

Test Bgaring Speed RMS Kurtosis Crest In this analysis, kurtosis and crest factor have been
Condition (RPM) Factor selected as the input responses for training, validation,
100 0.006 3.023 3.570 and testing of the five machine learning algorithms na—
Healthy (HB) 200 0.009 3.009 3.686 mely, Linear SVM, Fine Gaussian SVM, SVM Kernel,
300 0.010 2.915 3.600 Weighted KNN, and ANN.,

400 0.013 2.866 3.460 Figure 13 shows the scatter plot (crest factor Vs
Fault on Outer égg 8882 igég j;?g kurto.s%s plot) of .the input data for three. different
Race (ORD) 300 0.008 3847 = 041 condﬁwns qf bearings namely, healthy bearings (HB)
200 0.020 5503 6.603 bearings with faults on the outer race (ORD) and
100 0011 7194 9330 bearings with faults on the roller (RED). The validation
Fault on Roller 500 0.038 5948 10362 and testing performance of these algorithms are
(RED) 300 0.063 5003 13811 discussed in the following sections, focusing on their

400 0.086 6.228 14.207 ability to distinguish between these conditions.
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Figure 13. Scatter Plot of the Input Data

3.31 Linear SVM

The performance of the linear SVM model for the
classification of bearings is analyzed based on scatter
plot as shown in Figure 13 and validation and testing
confusion matrices as presented in Table 5.

In the confusion matrices the rows represent the true
class, and columns depict the predicted class. Correct
classifications are indicated by blue-background squares
on the diagonal, while misclassifications are represented
by light pink background squares off the diagonal. The
corresponding percentages of correct classifications and
misclassifications are calculated and detailed in Table 5.

Table 5. Confusion Matrices for Linear SVM Model

Validation Confusion Testing Confusion Matrix

Matrix
2 | uB [925[75] 0 HB [925]75] 0
O [orD]| 7.5 [925] 0 |2 4[ORD| 5 [95] 0
¢ [RED| 0 |26 [97.4]= C[RED] 0 [ 0 [100
= HB |ORD|RED HB |ORD|RED

Predicted Class Predicted Class

Validation Confusion Matrix Analysis: In the vali—
dation matrix, the first-row, first-column square indica—
tes that 92.5% samples were correctly classified as heal—
thy bearings (HB). However, the first-row, second-col—
umn square reveals that 7.5% samples were mis—classi—
fied as bearings with an outer race fault (ORD) when they
were, in fact, healthy. Similar observations apply to other
classes, highlighting certain misclassifications.

Testing Confusion Matrix Analysis: The testing mat—
rix exhibits improved predictions compared to the vali—
dation matrix. Notably, all 100% samples of bearings
with roller faults (RED) were correctly classified. How—
ever, challenges persist, such as misclassifying healthy
bearings as those with outer race faults.

Conclusion: The correlation between confusion ma—
trices and the scatter plot, asevidenced by Figure 13,
highlights the interpretability of the model's classifi-
cation behavior. The distinct placement of samples with
roller faults in the scatter plot, juxtaposed with the
overlap in other classes, aligns seamlessly with the con—
fusion matrix results. This visual confirmation provides a
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clear understanding of the model's occasional challen—
ges, particularly in distinguishing between healthy bea—
rings and those with outer race faults. Furthermore, the
comparison between the testing and validation con—
fusion matrices, presented in Table 5, firmly establishes
the model’s improved predictive capabilities, a tes—
tament to its adaptability. This enhancement can be attri—
buted to the meticulous fine-tuning and hyper parameter
adjustments carried out during the validation process,
ensuring optimal performance in real-world scenarios.

3.3.2 Fine Gaussian SVM

The performance of the Fine Gaussian SVM model for
the classification of bearings is analyzed based on
scatter plot (Figure 13) and validation and testing
confusion matrices as shown in Table 6.

Table 6. Confusion Matrices for Fine Gaussian SVM Model

Validation Confusion
Matrix

HB [925| 75| O HB |975]| 25| O

ORD| 5 |925]| 2.5 ORD| 2.5 |97.5| 0

RED| O 0 | 100 RED| 0 0 | 100

HB |ORD|RED HB |ORD|RED

Predicted Class Predicted Class

Testing Confusion Matrix

True
Class

True Class

Validation Confusion Matrix Analysis: In the vali—
dation matrix, the first-row, first-column square indi—
cates 92.5% samples correctly classified as healthy bea—
rings (HB). However, the matrix also reveals misclas—
sifications, such as 3 samples (7.5%) mis—classified as
bearings with faults on the outer race (ORD). Similar
observations apply to other classes, emphasizing spe—
cific misclassification instances.

Testing Confusion Matrix Analysis: The testing
matrix demonstrates improved predictions, with 39
samples (97.5%) correctly classified as healthy bearings
(HB). Nonetheless, there are still instances of misclas—
sification, as seen in the matrix. Notably, the model
could correctly classify all 39 samples (100%) of
bearings with roller faults (RED).

Conclusion: The relationship between the scatter
plot (Figure 13) and confusion matrices (table 6) is evi—
dent. The clear arrangement of samples with roller fau—
Its, juxtaposed with the observed overlap in other
classes, harmonizes well with the predictions reflected
in the confusion matrices. This alignment contributes to
a holistic comprehension of the model's occasional
challenges, particularly in its ability to distinguish bet—
ween healthy bearings and those with outer race faults.

Further, the comparison between testing and vali—
dation confusion matrices in Table 6 establishes the
model's improved predictive capabilities. This impro—
vement is due to careful fine-tuning and hyperparameter
adjustments during the validation process, ensuring
optimal performance in real-world situation.

3.33 SVM Kernel

The performance of the SVM Kernel model for the
classification of bearings is analyzed based on scatter
plot as shown in Figure 13 and validation and testing
confusion matrices as shown in Table 7.
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Validation Confusion Matrix Analysis: In the
validation confusion matrix, the first-row, first-column
square indicates that 38 samples (95%) have been cor—
rectly classified as healthy bearings (HB). Conversely,
the first-row, second-column square reveals 2 samples
(5%) misclassified as bearings with faults on the outer
race (ORD) that were actually healthy. Similar
observations apply to other classes, emphasizing spe—
cific misclassification instances.

Table 7. Confusion Matrices for SVM Kernel Model

Validation Confusion Testing Confusion Matrix

Matrix
2[HB[95] 5[0 HB[95 ] 5 | 0
O [ORD[ 25 [925] 5 | g 4/ORD| 2.5 | 95 | 2.5
g [RED| 0 |26 [97.4|E T[RED| 0 | 0 [100
= HB |ORD|RED HB |ORD|RED

Predicted Class Predicted Class

Testing Confusion Matrix Analysis: The testing
confusion matrix demonstrates improved predictions,
with 38 samples (95%) each correctly classified for both
healthy bearings (HB) and bearings with fault on outer
race (ORD). However, there is 100% correct classifica—
tion without any confusion for bearings with fault on rol-
ler (RED). These observations are detailed in the matrix.

Conclusion: The correlation between the scatter plot
(Figure 13) and confusion matrices (Table 7) is evident,
enhancing the understanding of the model's challenges,
especially in distinguishing between healthy bearings
and those with outer race faults. Additionally, the
comparison between testing and validation confusion
matrices in Table 7 highlights the model's enhanced
predictive capabilities.

3.3.4 Weighted K-Nearest Neighbors (WKNN)

The performance of the weighted k-NN model for the
classification of bearings is analyzed based on scatter
plot as shown in Figure 13 and validation and testing
confusion matrices as shown in Table 8.

Table 8. Confusion Matrices for weighted k-NN Model

Validation Confusion Testing Confusion Matrix

Matrix
2 HB | 95 5 0 HB (100 | 0 0
O |ORD| 75 (925| 0 | & §ORD 0 [100] O
¢ [RED| 0 |26 [974|= C[RED| 0 | 0 [100
= HB |[ORD|RED HB |[ORD|RED
Predicted Class Predicted Class

Validation Confusion Matrix Analysis: In the vali—
dation confusion matrix, the square in the first row and
first column indicates that 38 samples (95%) have been
correctly classified as healthy bearings (HB). Conver—
sely, the square in the first row and second column sho—
ws that 2 samples (5%) have been misclassified as bear—
ings with faults on the outer race (ORD) that were ac—
tually healthy. Similar observations apply to other clas—
ses, emphasizing specific misclassification instances.

Testing Confusion Matrix Analysis: Similarly, in the
testing confusion matrix, the squares in the diagonal
indicate that all the samples (100%) in each class have
been correctly classified.

FME Transactions

Conclusion: The relationship between the scatter
plot (Figure 13) and confusion matrices (Table 8) is
evident. The clear arrangement of samples with roller
faults, juxtaposed with the observed overlap in other
classes, harmonizes well with the predictions reflected
in the confusion matrices. This alignment contributes to
a holistic comprehension of the model's occasional cha—
llenges, particularly in its ability to distinguish between
healthy bearings and those with outer race faults.

Moreover, the comparison between the testing and
validation confusion matrices, as illustrated in Table 8,
establishes the model's remarkable improvement in pre—
dictive capabilities.

3.3.5 Artificial Neural Network (ANN)

The ANN model randomly allocated 70% of the samp—
les for training and reserved 15% for both testing and
validation each. The performance of the ANN model for
the classification of bearings is analyzed based on the
confusion matrices as shown Table 9.

Table 9. Confusion Matrices for ANN Model

Validation C.onfusmn Testing Confusion Matrix
Matrix
1: 1:
. | uB 100 | O 0 . | uB 100 | O 0
21200 0] o & 2] 0 [100] o
© |ORD © |orRD
21310 0wl 23|00 100
‘OE RED ‘05 RED
1: 2: 3: 1: 2: 3:
HB [ORD|RED HB [ORD|RED
Target Class Target Class

Confusion Matrices Analysis: During the training of
the ANN model, it was confused for only one sample: a
bearing with a healthy bearing (class 1: HB) is misc—
lassified as a fault on the outer race (class 2: ORD).
However, all other samples were correctly classified.
During validation and testing, the model was capable of
classifying all samples (100%) correctly into their
respective classes.

Conclusion: This observation is depicted in Table 9.
It demonstrates the robustness of the ANN model in
bearing fault classification for predictive maintenance of
industrial machinery.

3.4 Comparison of Algorithms’ Performance

The performance of the considered models, namely
Linear SVM, Fine Gaussian SVM, SVM Kernel, Weig—
hted KNN, and ANN have been analyzed based on vali—
dation and testing confusion matrices; their performance
accuracies are presented in Table 10 forcomparison. The
accuracy values are plotted for better visual comparison
as shown in Figure 14.

Table 10 and Figure 14 provide a clear observation
that the ANN model (represented by bars in green) de—
monstrates 100% accuracy across all three bearing
classes during both the validation and testing phases. In
contrast, the remaining four models exhibit lower accu—
racy during validation, with an improvement observed
in the testing phase. Notably, the weighted k-NN model
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(depicted by bars in purple) achieves 100% accuracy for
all three bearing classes during the testing phase. Con—
sequently, it can be concluded that both the weighted k-
NN and ANN models stand out as top-performing algo—
rithms among the five.

Table 10. Comparison of Validation and Testing Confusion

race (ORD), or RED. The model has been validated
using ten random sets of data, revealing accurate
classification of bearing conditions. The details of this
validation are presented in Table 11.

Table 11. Prediction of Bearing Condition using ANN

Matrices for Five Classification Models Original Input Data ANN
SL Beari . Crest Predicted
Validation Accuracy | Testing Accuracy No. caring Kurtosis Bearing
Condition Factor
Model (%) (%) Value Value Condition
i HB | ORD | RED | HB | ORD | RED 1 HB 3.1759 4.0533 HB
onear 925 | 925 | 974 [925 |95 | 100 2 HB 2.9996 3.7929 HB
Fine 3 HB 2.8483 3.5847 HB
Gaussian | 925 | 92.5 | 100 97.5 | 97.5 | 100 4 ORD 3.8644 4.4813 ORD
SVM 5 ORD 34739 4585 ORD
SVM o5 | ozs |ora |os o5 00 6 ORD 3.4738 4.1208 ORD
Kernel ) ’ 7 RED 5.3948 10.9439 RED
WK-NN | 95 92.5 97.4 100 100 100 8 RED 5.5664 10.7667 RED
ANN 100 | 100 | 100 100 | 100 | 100 9 RED 14.1918 21.6435 RED
10 RED 9.985 12.365 RED

Accuracy (%)

. y of Cl Models

Pr— (===
Class of Bearing

Testing Accuracy of Classification Models

Class of Bearing

Accuracy (%)

Figure 14. Accuracy of Five Classification Models
(a) Validation Accuracy, (b) Testing Accuracy

It is crucial to carefully consider the validation and
testing confusion matrices for all five models. Notably,
except for the ANN model, the other four models utilize
all samples for both validation and testing. In contrast,
the ANN model allocates distinct samples—15% each
—for validation and testing after utilizing 70% of all
samples for training. Even when presented with unseen
samples, the ANN model maintains a remarkable 100%
accuracy for both validation and testing. Consequently,
among the five models investigated in this research, the
ANN model emerges as the most reliable and robust
choice.

3.5 Prediction of Bearing Condition using ANN

Table 11 shows the details of bearing condition predic—
tion by the trained ANN model.

An additional code has been developed in MAT—
LAB to validate the ANN model. The input consisted of
a set of kurtosis and crest factor values, while the output
determined the condition of the bearing, specifically,
healthy bearing (HB), bearing with a fault on the outer
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The results indicate that when the model has been
provided with new and unfamiliar data for prediction, it
consistently made correct predictions for all instances in
the random datasets, achieving a remarkable 100%
accuracy. This high accuracy rate underscores the
exceptional performance of the ANN model in
classifying bearing conditions, emphasizing its efficacy
for predictive maintenance of machinery.

4. CONCLUSIONS

In this research an attempt has been made to conduct a
comparative evaluation of five commonly used machine
learning algorithms in the MATLAB environment: li—

near SVM, Gaussian SVM, SVM Kernel, weighted K-

Nearest Neighbours, and Artificial Neural Networks.

Following conclusions can be drawn from the research:

*  The ANN model demonstrates 100% accuracy ac—
ross all three bearing classes during both the
validation and testing phases.

* In contrast, the remaining four models exhibit lower
accuracy during validation, with an improvement
observed in the testing phase.

*  Notably, the weighted k-NN model achieves 100%
accuracy for all three bearing classes during the
testing phase. Consequently, it can be concluded
that both the weighted k-NN and ANN models
stand out as top-performing algorithms among the
five. However, the ANN model emerges as the
most reliable and robust choice.

e Further when the ANN model has been provided
with new and unfamiliar data for prediction, it
consistently made correct predictions for all instan—
ces in the random datasets, achieving a remarkable
100% accuracy.

*  The exceptional performance of the ANN model is
particularly noteworthy, not only for its accuracy but
also for its robustness in handling new, unseen data
during the validation and testing phases. This char—
acteristic speaks to the model's potential for practical,
real-world applications, especially in the realm of
predictive maintenance for industrial machinery.
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NOMENCLATURE

B Race Width

d Roller Diameter
D Pitch diameter
N Shaft Speed

n No. of Rollers
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y vibration magnitude

Vi instantaneous magnitude

c Standard Deviation

[0) Contact angle

y mean

Abbreviations

Al Artificial Intelligence

ANN Artificial Neural Networks (ANN)
BP Back-Propagation

CF crest factor (CF),

CNN Convolutional Neural Network
EDM Electrical Discharge Machining
EI energy index (EI)

FFNN  feed-forward neural network

FTF Fundamental train Frequency

HB Healthy Bearing

ID Inner Diameter

IF impulse factor (IF),

KNN K-Nearest Neighbors

KU kurtosis (KU)

ML Machine Learning

OD Outer Diameter

ORD Fault on Outer Race

REB Rolling element bearings (REB)
RED faults on the roller

REDF  Rolling Element Defect Frequency
RMS Root Mean Square (RMS),

RPFI Rolling-Element Pass Frequency Inner Race
RPFO  Rolling-Element Pass Frequency Outer Race
RSF Rolling-Element Spin Frequency
SVM support vector machine

VCF Variable Compliance Frequency
VFD Variable Frequency Drive
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WKNN  Weighted K-Nearest Neighbors

KOMITAPATUBHA AHAJIU3A AJITOPUTAMA
MAIIWHCKOTI YYEIbA 3A KJTIACUOUKALINTY
KBAPOBA Y HWIMHAPUYHUM BAJBKACTUM

JEXAJEBUMA

II.K. Camaa, P. Cpunuau, U.M. [lamanap,
b. Baaurap

Ca pactyhoM moTpakmboM 3a MOOOJBIIAHOM IOY371a—
Homhy MamiWHA, NMPHMEHA BEIITayKe HWHTEIUTCHIIN]e
(BN) y nujarHOCTHIIM KBapoBa ITIOCTaje CBE Ba)kKHH]a.
MelyTuMm, orpaHndeHa HCTPaKMBama Cy CHCTEMATCKH
ynopehuBana mepdopmaHce Pa3TUUIUTHX aIrOpUTaMa
MAaIIMHCKOT y4ea 3a JI1jarHOCTUKY KBapoBa JIexajeBa.
OBaj paj mnpencraBjba KOMIIAPATHBHY aHAIU3Y IeT
HIMPOKO KOPUIIHEHUX aJIrOpUTaMa MallMHCKOT y4emwa -
nuHeapHor SVM-a, T'aycoBor SVM-a, SVM jesrpa,
nonyepucannx K-Hajonmmkux cyceqa (WKNN) wu
BemTaykuxX HeypoHckux Mmpexa (ANN). Ksaposu cy
nHIyKkoBaHW KopumthemeMm >xuuHor EDM-a Ha Tect
JIeKajeBMMa, a MoJalud O BuOpanujamMa Cy CHUMJBCHH
kopumhemeM cHUCTeMa 3a aKBH3WIHWjy IIOJaTaka
National Instruments ca LABVIEW-om. Pesynratu
mokasyjy Aa je, nok je monmepucann KNN mokasao
100% TtauHocT y Tectupamy, ANN ce mojaBHo Kao
Hajroy3nanuju, nocrikyhu 100% rtaunoct U y dasm
Banuaanyje U y (asu tecrupama. O0yueHa ANN je
nasbe kopuiiheHa 3a mpensuljame crama JekajeBa y
JieceT CIIyuajHHX CKYyINoOBa NojaTtaka, MoTBphyjyhu meH
MOTeHIMjall 3a npaheme cTamba HHAYCTPUjCKUX MalliHa
y PEaJTHOM BpEMEHY.
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