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A Comparative Analysis of Machine 
Learning Algorithms for Fault 
Classification in Cylindrical Roller 
Bearings 
 
With the growing demand for enhanced machinery reliability, the 
application of artificial intelligence (AI) in fault diagnosis is becoming 
increasingly important. However, limited research has systematically 
compared the performance of various machine learning algorithms for 
bearing fault diagnosis. This paper presents a comparative analysis of five 
widely-used machine learning algorithms—linear SVM, Gaussian SVM, 
SVM Kernel, Weighted K-Nearest Neighbors (WKNN), and Artificial 
Neural Networks (ANN). Faults were induced using wire EDM on test 
bearings, and vibration data were recorded using a National Instruments 
data acquisition system with LABVIEW. Results indicate that while 
weighted KNN demonstrated 100% accuracy in testing, ANN emerged as 
the most reliable, achieving 100% accuracy in both validation and testing 
phases. The trained ANN was further employed to predict bearing 
conditions across ten random datasets, affirming its potential for real-time 
condition monitoring of industrial machinery. 
 
Keywords:Vibration data acquisition, Statistical feature extraction, 
Training validation and testing, Artificial Intelligence, Bearing fault 
diagnosis. 

 
 

1. INTRODUCTION 
 

In the contemporary industrial landscape, machinery has 
become increasingly complex, often operating under 
unpredictable and challenging conditions. With this rise 
in complexity, machinery becomes more prone to bre–
akdowns, and unforeseen failures can lead to unplanned 
maintenance, creating delays that ripple through inter–
connected systems. Consequently, monitoring the health 
of machines is essential to ensure their availability, re–
duce downtime, and increase customer satisfaction [1,2]. 

Among various machinery components, rolling ele–
ment bearings (REB) are critical, playing a key role in 
mechanical systems while also being a significant cause 
of failures. Studies have shown that between 45% and 
55% of failures in rotating machines are attributed to 
bearing faults [3]. Thus, detecting faults in bearings has 
become a major area of research aimed at improving 
reliability and reducing maintenance costs. Fault detec–
tion generally involves three stages: data acquisition, 
feature extraction, and fault classification [4]. Vibration-
based data acquisition is widely used due to its effec–
tiveness in identifying machine faults, as vibration 
signals carry critical information about the operating 
condition of the bearings [5]. Feature extraction iden–
tifies key patterns in these vibration signals, and mac–
hine learning algorithms are then applied for fault cla–
ssification to determine the fault’s nature and severity. 

Vibration-based monitoring techniques have been 
extensively studied, with applications in industries such 
as aerospace, power generation, and material handling 
[6]. Vibration arises from various sources, even in new 
bearings with no defects, due to inherent imperfections 
like variable compliance [7]. These vibrations can be 
analyzed in both the time and frequency domains using 
various advanced signal processing techniques. Methods 
include analog signal acquisition with accelerometers 
and statistical analysis, which extract parameters like 
peak value, root mean square (RMS), kurtosis (KU), 
and crest factor (CF) to assess the condition of the 
bearings [8–10]. Additionally, characteristic frequencies 
such as Ball Pass Frequency of the Outer Race (BPFO), 
Ball Pass Frequency of the Inner Race (BPFI), and 
Fundamental Train Frequency (FTF) serve as critical 
indicators of bearing faults [11]. 

With advancements in artificial intelligence (AI), 
machine learning techniques like Artificial Neural Net–
works (ANNs) and Support Vector Machines (SVMs) 
have been employed for fault diagnosis. ANNs, parti–
cularly using the feed-forward back-propagation (FFBP) 
algorithm, have been widely used due to their pattern 
recognition capabilities [12]. In fault diagnosis, SVMs 
have demonstrated high accuracy when applied to time-
domain and frequency-domain data, particularly for cy–
lindrical roller bearings [11]. Moreover, environments like 
MATLAB are extensively used for employing machine 
learning algorithms to diagnose faults in REBs [13,14].  

Although fault diagnosis in rolling element bearings 
has been extensively studied, the specific focus on 
cylindrical roller bearings with roller defects remains 
relatively underexplored. This gap exists because analy–
zing vibration signals from cylindrical roller bearings is 
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often complicated by background noise, which makes 
the detection of roller-specific faults particularly chal–
lenging [15–17]. Furthermore, while artificial intel–
ligence (AI) techniques have been employed in fault 
diagnosis for rolling element bearings, to the best of the 
authors' knowledge, there is currently no literature that 
provides a comparative study of various machine lear–
ning algorithms aimed at conclusively demonstrating 
their performance in condition monitoring. 

Therefore, an attempt has been made to fill these 
gaps by presenting a comparative analysis of five top 
performing machine learning algorithms for fault 
classification in cylindrical roller bearings. The primary 
contributions of this work are: 
1. Five top performing algorithms: Five widely used 

machine learning algorithms—linear SVM, Gaus–
sian SVM, SVM Kernel, Weighted K-Nearest Nei–
ghbors (WKNN), and ANN—were evaluated in 
MATLAB for their performance in terms of vali–
dation and testing accuracy. 

2. Experimentation and data acquisition: The expe–
riments were conducted using a machinery fault 
simulator on SKF cylindrical roller bearings (N204 
ECP), which included both healthy and faulty con–
ditions in the outer race and rollers at varying 
speeds. Faults were introduced using wire Electrical 
Discharge Machining (EDM), and vibration signals 
were recorded using a National Instruments data 
acquisition system with LABVIEW. 

3. Feature extraction and performance evaluation: 
Statistical features such as kurtosis and crest factor 
were extracted from the vibration signals using MAT–
LAB. These features served as inputs for training, va–
lidating, and testing the machine learning algorithms. 

4. Prediction by the best algorithm: Among the 
tested algorithms, the ANN with a feed-forward 
back-propagation algorithm performed the best, 
achieving a validation and testing accuracy of 
100%. This algorithm was further validated using 
ten random datasets to ensure robustness and 
consistency in fault prediction. 

The remaining part of the paper consists of the 
following sections: In Section 2, the methodology, 
including experimentation and data acquisition, feature 
extraction, and training of the machine learning 
algorithms, is given. Section 3 elaborates on the 
obtained results and the conclusions in Section 4. 

 
2. METHODOLOGY 
 
Figure 1 depicts the methodology flowchart employed 
in this investigation. The experiments have been con–
ducted using a machinery fault simulator, to acquire 
bearing vibrations. The statistical features have been 
extracted from the raw data using MATLAB to form a 
comprehensive dataset. This dataset has been used as 
input for the machine learning algorithms for their trai–
ning, testing, and validation. 
 
2.1 Vibration data acquisition from test bearings 
 
The experiments have been conducted using a machi–
nery fault simulator, as illustrated in Figure 2, with 

different bearing conditions; both healthy states and 
faults in the outer race and rollers. The experimental 
setup comprises a 0.25 HP electric motor, a flexible 
coupling to compensate for misalignment between the 
motor and shaft, and two support bearings within pede–
stals. The good bearing is positioned at the near end, 
while the test bearing is mounted at the far end of the 
motor. The motor shaft's speed is controlled by a vari–
able frequency drive (VFD). The flow chart of experi–
mentation and data acquisition is shown in Figure 3. 

 
Figure 1.  Flow Chart of the Methodology 

An accelerometer is mounted to the pedestal to 
capture the vibration of the test bearing, as shown in 
Figure 2.This accelerometer has been connected to the 
NI9234, a specialized module made especially for 
acquiring vibration and sound, has been mounted on to 
the NI cDAQ 9178 chassis. LabVIEW facilitates data 
collecting, and a USB cable connects this chassis to the 
PC. A LabVIEW program, outlined in Figure 4, has 
been developed. Initially, the vibration signal in the time 
domain is acquired, followed by conversion to the 
frequency domain using the ‘spectral measurement’ tool 
in LabVIEW. Subsequently, both time domain and 
frequency domain data are plotted and saved using the 
'write to measurement' tool for further analysis. The 
saved time domain data will be utilized to extract 
statistical features using MATLAB. 

The specifications of the test bearing (SKF N204: 
cylindrical roller bearing) are presented in Table 1. 
Different faults have been induced using wire EDM on 
the test bearings, as illustrated in Figure 5. Experiments 
have been conducted for each bearing under four diffe–
rent speeds, as detailed in Table 2. Each test condition 
was repeated five times, and the vibration data were 
recorded for further analysis. Consequently, a total of 60 
experiments (3 bearing conditions × 4 speeds × 5 repe–
titions) have been carried out.  
Table 1. Specification of the Test Bearings (N204) 

Type Cylindrical Roller Bearing 
Inner diameter (ID) 20 mm 
Outer diameter (OD) 47 mm 
Race width (B) 14 mm 
Roller diameter (d) 6 mm 
Pitch diameter (D) 35.99 mm 
No. rollers (n) 10 
Contact angle( ) 0º 
Material Chrome Steel 
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Figure 2. Experimental setup 

 
Figure 3.  Flow Chart of Experimentation and Data Acquisition 

 
Figure 4. Data Acquisition using LabVIEW 
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A)  

B)  

C)  
Figure 5. Faults on the Test Bearings 

Table 2. Test Conditions 

Test Bearing Condition Speed (RPM) 

Healthy 
Bearing 
(HB) 

Fault on 
Outer Race 

(ORD) 

Fault on 
Roller 

(RED) 

100 
200 
300 
400 

 
2.2 Statistical feature extraction using MATLAB 
 
The time-domain signal can be utilized in identifying 
the faults through statistical features like RMS, Kur–
tosis, and Crest Factor [18]. Notably, indicators like KU 
and CF exhibit heightened sensitivity in the diagnosis of 
faults in rolling element bearings [19]. RMS value, 

Kurtosis and Crest Factor can be computed using (1), 
(2) and (4), with standard deviation using (3) [20,21]. 

2yRMS ~ 0.707y
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Statistical features, namely RMS, kurtosis, and crest 
factor have been extracted using the Diagnostic Feature 
Designer tool in MATLAB from the vibration data to 
form a robust data set for training and testing the 
machine learning algorithms.  
 
2.3 Training, validation, and testing of machine 

learning algorithms 
 
Machine Learning (ML) has gained immense popularity 
for its ability to empower computers with the capacity 
to learn patterns and make predictions or decisions wit–
hout explicit programming. This capability is realized 
through the application of algorithms and statistical 
models. MATLAB, a high-level programming language 
and environment developed by MathWorks, finds 
widespread usage in scientific and engineering appli–
cations, including machine learning [22–25]. Figure 6 
shows the flow chart of the training, validation, and 
testing of five widely used machine learning algorithms 
for bearing fault classification. 

In this analysis, five prominent machine learning 
algorithms within the MATLAB environment—Linear 
SVM, Gaussian SVM, SVM Kernel, Weighted KNN, 
and ANN—have been explored. These algorithms are 
trained using a comprehensive dataset prepared as deta–
iled in the preceding section. The primary objective is to 
accurately differentiate between healthy bearings and 
those with outer race or roller defects. 

 
Figure 6.  Flow Chart of Training, Validation and Testing of Machine Learning Algorithms 
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3. RESULTS AND DISCUSSION 
 
3.1 Vibration signals from test bearings 
 
A peak in the frequency spectra indicates the existence 
of a problem in a bearing element. However, the size, 
shape, position, and kind of the fault all affect how 
much this vibration peak vibrates. The roller pass 
frequency for the outer and inner races (RPFO/RPFI), 
the roller spin frequency (RSF), and the fundamental 
train frequency (FTF) are the usual labels for the 
bearing characteristic frequencies for the faults on the 
outer race, inner race, and cage, respectively. 

 Equations (5–10) [26] illustrate how the shape of 
the bearing and the shaft's rotational speed affect these 
theoretical bearing characteristic frequencies. Using the 
(5–10), the theoretical bearing characteristic frequencies 
for the test bearing with the geometric features from 
Table 1 for a shaft speed (N) of 400 rpm have been 
calculated and are shown in Table 3. 
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Vibration signals were acquired from bearings using 
the machine fault simulator and LabVIEW for three 
bearing conditions: healthy, fault on outer race, and 
fault on roller. The simulator operated for 10 seconds at 
four different speeds—100 RPM, 200 RPM, 300 RPM, 
and 400 RPM. For each type of bearing, 10 data sets 

have been recorded to ensure a robust dataset. Figures 7 
– 12 show the time domain and frequency domain plots 
for the three different bearings. 
Table 3. Characteristic Frequencies of Test Bearing 

Characteristic Frequencies (Hz) 
Variable Competence Frequency (VCF) 27.78 
Roller Pass Frequency for the Outer Race (RPFO) 27.78 
Roller Pass Frequency for the Inner Race (RPFI) 38.89 
Roller Spin Frequency (RSF) 19.44 
Fundamental Train Frequency (FTF) 2.778 
Rolling Element Defect Frequency (REDF) 38.88 

 
Different peaks may be seen in Figure 8 at roughly 

223 Hz, 247 Hz, and 277 Hz. These frequencies are lin–
ked to the variable competence frequency (VCF) harm–
onics. The VCF in theory is 27.78 Hz, which suggests a 
sound bearing. Conversely, the observation in Figure 10 
shows peaks at 112 Hz, 246 Hz, and 271 Hz, aligning 
with the harmonics of the RPFO. The anticipated 
theoretical RPFO is 27.28 Hz, indicating the presence of 
a fault in the outer race. Furthermore, Figure 12 exhibits 
peaks nearly at 114 Hz and 272 Hz, correspond to the 
harmonics REDF. The theoretical REDF is 38.88 Hz, 
pointing towards a fault in the roller. These observations 
provide valuable insights into the specific nature of the 
faults present in the bearing components. 

 
3.2 Statistical features from the acquired vibration 

signals 
 
The statistical features, namely RMS, crest factor, and 
kurtosis, have been extracted from the saved vibration 
data using MATLAB. A sample data of the statistical 
features extracted from the vibration signal is presented 
in Table 4. 

In Table 4, it can be noted from column 4 that 
kurtosis values are approximately 3 for healthy bea–
rings, while higher values indicate faults in the bearings. 
Furthermore, it is observed that the kurtosis value 
remains consistent across different speeds, aligning with 
the findings reported by previous literatures [26–27]. 

 
Figure 7. Time Domain Plot for the Healthy Bearing 



686 ▪ VOL. 53, No 4, 2025 FME Transactions
 

 
Figure 8. Frequency Domain Plot for the Healthy Bearing 

 
Figure 9. Time Domain Plot for Bearing with Fault on Outer Race 

 
Figure 10. Frequency Domain Plot for Bearing with Fault on Outer Race 
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Figure 11. Time Domain Plot for Bearing with Fault on Roller 

 
Figure 12. Frequency Domain Plot for Bearing with Fault on Roller

Similarly, examining column 5 of Table 4 reveals 
that the crest factor values for healthy bearings are 
approximately 3.5, whereas higher values are indicative 
of bearings with faults. This observation is consistent 
with the findings presented in previous literature [28]. 
Table 4. Sample of Statistical Features 

Test Bearing 
Condition 

Speed 
(RPM) RMS Kurtosis Crest 

Factor 

Healthy (HB) 

100 0.006 3.023 3.570 
200 0.009 3.009 3.686 
300 0.010 2.915 3.600 
400 0.013 2.866 3.460 

Fault on Outer 
Race (ORD) 

100 0.006 3.626 4.285 
200 0.006 4.085 4.219 
300 0.008 3.847 5.041 
400 0.020 5.508 6.603 

Fault on Roller 
(RED) 

100 0.011 7.194 9.330 
200 0.038 5.948 10.362 
300 0.063 5.993 13.811 
400 0.086 6.228 14.207 

 

3.3 Training, validation, and testing of machine 
learning algorithms 

 
As Heng and Nor [27] have concluded that, employing 
more advanced parameters on vibration signals did not 
offer a significant advantage over using kurtosis or crest 
factor for identifying faults in rolling element bearings.  

In this analysis, kurtosis and crest factor have been 
selected as the input responses for training, validation, 
and testing of the five machine learning algorithms na–
mely, Linear SVM, Fine Gaussian SVM, SVM Kernel, 
Weighted KNN, and ANN.  

Figure 13 shows the scatter plot (crest factor Vs 
kurtosis plot) of the input data for three different 
conditions of bearings namely, healthy bearings (HB) 
bearings with faults on the outer race (ORD) and 
bearings with faults on the roller (RED). The validation 
and testing performance of these algorithms are 
discussed in the following sections, focusing on their 
ability to distinguish between these conditions. 
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Figure 13. Scatter Plot of the Input Data 

 

3.3.1 Linear SVM 
 
The performance of the linear SVM model for the 
classification of bearings is analyzed based on scatter 
plot as shown in Figure 13 and validation and testing 
confusion matrices as presented in Table 5.  

In the confusion matrices the rows represent the true 
class, and columns depict the predicted class. Correct 
classifications are indicated by blue-background squares 
on the diagonal, while misclassifications are represented 
by light pink background squares off the diagonal. The 
corresponding percentages of correct classifications and 
misclassifications are calculated and detailed in Table 5. 
Table 5. Confusion Matrices for Linear SVM Model 

Validation Confusion 
Matrix Testing Confusion Matrix 

T
ru

e 
C

la
ss

 

HB 92.5 7.5 0 

T
ru

e 
C

la
ss

 HB 92.5 7.5 0 
ORD 7.5 92.5 0 ORD 5 95 0 
RED 0 2.6 97.4 RED 0 0 100

 HB ORD RED  HB ORD RED
 Predicted Class  Predicted Class 

 
Validation Confusion Matrix Analysis: In the vali–

dation matrix, the first-row, first-column square indica–
tes that 92.5% samples were correctly classified as heal–
thy bearings (HB). However, the first-row, second-col–
umn square reveals that 7.5% samples were mis–classi–
fied as bearings with an outer race fault (ORD) when they 
were, in fact, healthy. Similar observations apply to other 
classes, highlighting certain misclassifications. 

Testing Confusion Matrix Analysis: The testing mat–
rix exhibits improved predictions compared to the vali–
dation matrix. Notably, all 100% samples of bearings 
with roller faults (RED) were correctly classified. How–
ever, challenges persist, such as misclassifying healthy 
bearings as those with outer race faults. 

Conclusion: The correlation between confusion ma–
trices and the scatter plot, asevidenced by Figure 13, 
highlights the interpretability of the model's classifi-
cation behavior. The distinct placement of samples with 
roller faults in the scatter plot, juxtaposed with the 
overlap in other classes, aligns seamlessly with the con–
fusion matrix results. This visual confirmation provides a 

clear understanding of the model's occasional challen–
ges, particularly in distinguishing between healthy bea–
rings and those with outer race faults. Furthermore, the 
comparison between the testing and validation con–
fusion matrices, presented in Table 5, firmly establishes 
the model’s improved predictive capabilities, a tes–
tament to its adaptability. This enhancement can be attri–
buted to the meticulous fine-tuning and hyper parameter 
adjustments carried out during the validation process, 
ensuring optimal performance in real-world scenarios. 

 
3.3.2 Fine Gaussian SVM 
 
The performance of the Fine Gaussian SVM model for 
the classification of bearings is analyzed based on 
scatter plot (Figure 13) and validation and testing 
confusion matrices as shown in Table 6. 
Table 6. Confusion Matrices for Fine Gaussian SVM Model 

Validation Confusion 
Matrix Testing Confusion Matrix 

T
ru

e 
C

la
ss

 

HB 92.5 7.5 0 

T
ru

e 
C

la
ss

 HB 97.5 2.5 0 
ORD 5 92.5 2.5 ORD 2.5 97.5 0 
RED 0 0 100 RED 0 0 100

 HB ORD RED  HB ORD RED
 Predicted Class  Predicted Class 

 
Validation Confusion Matrix Analysis: In the vali–

dation matrix, the first-row, first-column square indi–
cates 92.5% samples correctly classified as healthy bea–
rings (HB). However, the matrix also reveals misclas–
sifications, such as 3 samples (7.5%) mis–classified as 
bearings with faults on the outer race (ORD). Similar 
observations apply to other classes, emphasizing spe–
cific misclassification instances. 

Testing Confusion Matrix Analysis: The testing 
matrix demonstrates improved predictions, with 39 
samples (97.5%) correctly classified as healthy bearings 
(HB). Nonetheless, there are still instances of misclas–
sification, as seen in the matrix. Notably, the model 
could correctly classify all 39 samples (100%) of 
bearings with roller faults (RED). 

Conclusion: The relationship between the scatter 
plot (Figure 13) and confusion matrices (table 6) is evi–
dent. The clear arrangement of samples with roller fau–
lts, juxtaposed with the observed overlap in other 
classes, harmonizes well with the predictions reflected 
in the confusion matrices. This alignment contributes to 
a holistic comprehension of the model's occasional 
challenges, particularly in its ability to distinguish bet–
ween healthy bearings and those with outer race faults. 

Further, the comparison between testing and vali–
dation confusion matrices in Table 6 establishes the 
model's improved predictive capabilities. This impro–
vement is due to careful fine-tuning and hyperparameter 
adjustments during the validation process, ensuring 
optimal performance in real-world situation. 

 
3.3.3 SVM Kernel 
 
The performance of the SVM Kernel model for the 
classification of bearings is analyzed based on scatter 
plot as shown in Figure 13 and validation and testing 
confusion matrices as shown in Table 7. 
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Validation Confusion Matrix Analysis: In the 
validation confusion matrix, the first-row, first-column 
square indicates that 38 samples (95%) have been cor–
rectly classified as healthy bearings (HB). Conversely, 
the first-row, second-column square reveals 2 samples 
(5%) misclassified as bearings with faults on the outer 
race (ORD) that were actually healthy. Similar 
observations apply to other classes, emphasizing spe–
cific misclassification instances. 
Table 7. Confusion Matrices for SVM Kernel Model 

Validation Confusion 
Matrix Testing Confusion Matrix 

T
ru

e 
C

la
ss

 

HB 95 5 0 

T
ru

e 
C

la
ss

 HB 95 5 0 
ORD 2.5 92.5 5 ORD 2.5 95 2.5 
RED 0 2.6 97.4 RED 0 0 100

 HB ORD RED  HB ORD RED
 Predicted Class  Predicted Class 

 
Testing Confusion Matrix Analysis: The testing 

confusion matrix demonstrates improved predictions, 
with 38 samples (95%) each correctly classified for both 
healthy bearings (HB) and bearings with fault on outer 
race (ORD). However, there is 100% correct classifica–
tion without any confusion for bearings with fault on rol–
ler (RED). These observations are detailed in the matrix. 

Conclusion: The correlation between the scatter plot 
(Figure 13) and confusion matrices (Table 7) is evident, 
enhancing the understanding of the model's challenges, 
especially in distinguishing between healthy bearings 
and those with outer race faults. Additionally, the 
comparison between testing and validation confusion 
matrices in Table 7 highlights the model's enhanced 
predictive capabilities. 

 
3.3.4 Weighted K-Nearest Neighbors (WKNN) 
 
The performance of the weighted k-NN model for the 
classification of bearings is analyzed based on scatter 
plot as shown in Figure 13 and validation and testing 
confusion matrices as shown in Table 8. 
Table 8. Confusion Matrices for weighted k-NN Model 

Validation Confusion 
Matrix Testing Confusion Matrix 

T
ru

e 
C

la
ss

 

HB 95 5 0 

T
ru

e 
C

la
ss

 HB 100 0 0 
ORD 7.5 92.5 0 ORD 0 100 0 
RED 0 2.6 97.4 RED 0 0 100

 HB ORD RED  HB ORD RED
 Predicted Class  Predicted Class 

 
Validation Confusion Matrix Analysis: In the vali–

dation confusion matrix, the square in the first row and 
first column indicates that 38 samples (95%) have been 
correctly classified as healthy bearings (HB). Conver–
sely, the square in the first row and second column sho–
ws that 2 samples (5%) have been misclassified as bear–
ings with faults on the outer race (ORD) that were ac–
tually healthy. Similar observations apply to other clas–
ses, emphasizing specific misclassification instances. 

Testing Confusion Matrix Analysis: Similarly, in the 
testing confusion matrix, the squares in the diagonal 
indicate that all the samples (100%) in each class have 
been correctly classified. 

Conclusion: The relationship between the scatter 
plot (Figure 13) and confusion matrices (Table 8) is 
evident. The clear arrangement of samples with roller 
faults, juxtaposed with the observed overlap in other 
classes, harmonizes well with the predictions reflected 
in the confusion matrices. This alignment contributes to 
a holistic comprehension of the model's occasional cha–
llenges, particularly in its ability to distinguish between 
healthy bearings and those with outer race faults. 

Moreover, the comparison between the testing and 
validation confusion matrices, as illustrated in Table 8, 
establishes the model's remarkable improvement in pre–
dictive capabilities. 

 
3.3.5 Artificial Neural Network (ANN) 
 
The ANN model randomly allocated 70% of the samp–
les for training and reserved 15% for both testing and 
validation each. The performance of the ANN model for 
the classification of bearings is analyzed based on the 
confusion matrices as shown Table 9. 
Table 9. Confusion Matrices for ANN Model 

Validation Confusion 
Matrix Testing Confusion Matrix 

O
ut

pu
t C

la
ss

 

1: 
HB 100 0 0 

O
ut

pu
t C

la
ss

 

1: 
HB 100 0 0 

2: 
ORD 0 100 0 2: 

ORD 0 100 0 

3: 
RED 0 0 100 3: 

RED 0 0 100

 1: 
HB 

2: 
ORD

3: 
RED  1: 

HB 
2: 

ORD
3: 

RED
 Target Class  Target Class 

 
Confusion Matrices Analysis: During the training of 

the ANN model, it was confused for only one sample: a 
bearing with a healthy bearing (class 1: HB) is misc–
lassified as a fault on the outer race (class 2: ORD). 
However, all other samples were correctly classified. 
During validation and testing, the model was capable of 
classifying all samples (100%) correctly into their 
respective classes.  

Conclusion: This observation is depicted in Table 9. 
It demonstrates the robustness of the ANN model in 
bearing fault classification for predictive maintenance of 
industrial machinery. 
 
3.4 Comparison of Algorithms’ Performance 
 
The performance of the considered models, namely 
Linear SVM, Fine Gaussian SVM, SVM Kernel, Weig–
hted KNN, and ANN have been analyzed based on vali–
dation and testing confusion matrices; their performance 
accuracies are presented in Table 10 forcomparison. The 
accuracy values are plotted for better visual comparison 
as shown in Figure 14. 

Table 10 and Figure 14 provide a clear observation 
that the ANN model (represented by bars in green) de–
monstrates 100% accuracy across all three bearing 
classes during both the validation and testing phases. In 
contrast, the remaining four models exhibit lower accu–
racy during validation, with an improvement observed 
in the testing phase. Notably, the weighted k-NN model 
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(depicted by bars in purple) achieves 100% accuracy for 
all three bearing classes during the testing phase. Con–
sequently, it can be concluded that both the weighted k-
NN and ANN models stand out as top-performing algo–
rithms among the five. 
Table 10. Comparison of Validation and Testing Confusion 
Matrices for Five Classification Models 

Model 
Validation Accuracy 
(%) 

Testing Accuracy 
(%) 

HB ORD RED HB ORD RED
Linear 
SVM 92.5 92.5 97.4 92.5 95 100 

Fine 
Gaussian 
SVM 

92.5 92.5 100 97.5 97.5 100 

SVM 
Kernel 95 92.5 97.4 95 95 100 

WK-NN 95 92.5 97.4 100 100 100 
ANN 100 100 100 100 100 100 
 

(a) 

(b) 

Figure 14. Accuracy of Five Classification Models               
(a) Validation Accuracy, (b) Testing Accuracy 

It is crucial to carefully consider the validation and 
testing confusion matrices for all five models. Notably, 
except for the ANN model, the other four models utilize 
all samples for both validation and testing. In contrast, 
the ANN model allocates distinct samples—15% each 
—for validation and testing after utilizing 70% of all 
samples for training. Even when presented with unseen 
samples, the ANN model maintains a remarkable 100% 
accuracy for both validation and testing. Consequently, 
among the five models investigated in this research, the 
ANN model emerges as the most reliable and robust 
choice. 

 
3.5 Prediction of Bearing Condition using ANN 
 
Table 11 shows the details of bearing condition predic–
tion by the trained ANN model. 

An additional code has been developed in MAT–
LAB to validate the ANN model. The input consisted of 
a set of kurtosis and crest factor values, while the output 
determined the condition of the bearing, specifically, 
healthy bearing (HB), bearing with a fault on the outer 

race (ORD), or RED. The model has been validated 
using ten random sets of data, revealing accurate 
classification of bearing conditions. The details of this 
validation are presented in Table 11. 
Table 11. Prediction of Bearing Condition using ANN 

Sl. 
No. 

Original 
Bearing 

Condition 

Input Data ANN 
Predicted 
Bearing 

Condition 
Kurtosis 

Value 

Crest 
Factor 
Value 

1 HB 3.1759 4.0533 HB 
2 HB 2.9996 3.7929 HB 
3 HB 2.8483 3.5847 HB 
4 ORD 3.8644 4.4813 ORD 
5 ORD 3.4739 4.585 ORD 
6 ORD 3.4738 4.1208 ORD 
7 RED 5.3948 10.9439 RED 
8 RED 5.5664 10.7667 RED 
9 RED 14.1918 21.6435 RED 

10 RED 9.985 12.365 RED 
 

The results indicate that when the model has been 
provided with new and unfamiliar data for prediction, it 
consistently made correct predictions for all instances in 
the random datasets, achieving a remarkable 100% 
accuracy. This high accuracy rate underscores the 
exceptional performance of the ANN model in 
classifying bearing conditions, emphasizing its efficacy 
for predictive maintenance of machinery. 

 
4. CONCLUSIONS 
 
In this research an attempt has been made to conduct a 
comparative evaluation of five commonly used machine 
learning algorithms in the MATLAB environment: li–
near SVM, Gaussian SVM, SVM Kernel, weighted K-
Nearest Neighbours, and Artificial Neural Networks. 
Following conclusions can be drawn from the research: 
• The ANN model demonstrates 100% accuracy ac–

ross all three bearing classes during both the 
validation and testing phases.  

• In contrast, the remaining four models exhibit lower 
accuracy during validation, with an improvement 
observed in the testing phase.  

• Notably, the weighted k-NN model achieves 100% 
accuracy for all three bearing classes during the 
testing phase. Consequently, it can be concluded 
that both the weighted k-NN and ANN models 
stand out as top-performing algorithms among the 
five. However, the ANN model emerges as the 
most reliable and robust choice. 

• Further when the ANN model has been provided 
with new and unfamiliar data for prediction, it 
consistently made correct predictions for all instan–
ces in the random datasets, achieving a remarkable 
100% accuracy. 

• The exceptional performance of the ANN model is 
particularly noteworthy, not only for its accuracy but 
also for its robustness in handling new, unseen data 
during the validation and testing phases. This char–
acteristic speaks to the model's potential for practical, 
real-world applications, especially in the realm of 
predictive maintenance for industrial machinery. 
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NOMENCLATURE 

B Race Width 
d Roller Diameter 
D Pitch diameter 
N Shaft Speed 
n No. of Rollers 
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y vibration magnitude 
yi instantaneous magnitude 
σ Standard Deviation 

 Contact angle 
ӯ mean 

Abbreviations 

AI Artificial Intelligence  
ANN Artificial Neural Networks (ANN) 
BP Back-Propagation 
CF crest factor (CF), 
CNN Convolutional Neural Network 
EDM Electrical Discharge Machining  
EI energy index (EI) 
FFNN feed-forward neural network 
FTF Fundamental train Frequency 
HB Healthy Bearing 
ID Inner Diameter 
IF impulse factor (IF), 
KNN K-Nearest Neighbors 
KU kurtosis (KU) 
ML Machine Learning  
OD Outer Diameter 
ORD Fault on Outer Race 
REB Rolling element bearings (REB)  
RED faults on the roller 
REDF Rolling Element Defect Frequency 
RMS Root Mean Square (RMS), 
RPFI Rolling-Element Pass Frequency Inner Race 
RPFO Rolling-Element Pass Frequency Outer Race 
RSF Rolling-Element Spin Frequency 
SVM support vector machine 
VCF Variable Compliance Frequency 
VFD Variable Frequency Drive 

WKNN Weighted K-Nearest Neighbors 
 
 

КОМПАРАТИВНА АНАЛИЗА АЛГОРИТАМА 
МАШИНСКОГ УЧЕЊА ЗА КЛАСИФИКАЦИЈУ 
КВАРОВА У ЦИЛИНДРИЧНИМ ВАЉКАСТИМ 

ЛЕЖАЈЕВИМА 
 

П.К. Самал, Р. Сриниди, И.М. Џамадар,  
Б. Балигар  

 
Са растућом потражњом за побољшаном поузда–
ношћу машина, примена вештачке интелигенције 
(ВИ) у дијагностици кварова постаје све важнија. 
Међутим, ограничена истраживања су систематски 
упоређивала перформансе различитих алгоритама 
машинског учења за дијагностику кварова лежајева. 
Овај рад представља компаративну анализу пет 
широко коришћених алгоритама машинског учења - 
линеарног SVM-а, Гаусовог SVM-а, SVM језгра, 
пондерисаних K-најближих суседа (WKNN) и 
вештачких неуронских мрежа (ANN). Кварови су 
индуковани коришћењем жичног EDM-а на тест 
лежајевима, а подаци о вибрацијама су снимљени 
коришћењем система за аквизицију података 
National Instruments са LABVIEW-ом. Резултати 
показују да је, док је пондерисани KNN показао 
100% тачност у тестирању, ANN се појавио као 
најпоузданији, постижући 100% тачност и у фази 
валидације и у фази тестирања. Обучена ANN је 
даље коришћена за предвиђање стања лежајева у 
десет случајних скупова података, потврђујући њен 
потенцијал за праћење стања индустријских машина 
у реалном времену. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 


