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Comparative Evaluation of Recurrent
and Attention-Based Deep Learning
Models for Wind Speed Forecasting

Wind speed forecasting is critical for enhancing wind energy output and
improving efficiency. Although traditional statistical and physical models
are commonly used but fail to capture the complex, non-linear, and time-
varying nature of meteorological data. Therefore, this study explores four
deep learning architectures: Recurrent Neural Network (RNN), Gated
Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and
transformer. These models are analyzed using multivariate and hourly
meteorological data from the Al-Ahsa region over 24 years (2001-2024).
The dataset includes five features: wind speed at 10 meters above ground
(used as a reference), air temperature at 2 meters, specific humidity at 2
meters, wind direction at 10 meters, and surface pressure. The models
were trained on 80% of the dataset, validated on 10%, and tested on the
remaining 10%. The GRU model achieved the best performance with
RMSE = 0.3126 m/s and R? = 0.9759.

Keywords:Deep learning architectures; wind speed, short-term prediction;
Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), Long

Short-Term Memory (LSTM); and Transformer

1. INTRODUCTION

Traditionally, energy generation has relied heavily on
electricity produced from fossil fuels or other
conventional sources, where most systems require either
fuel or grid-based electricity to operate. However, with
rising energy consumption and the associated
environmental impacts, there is a growing need to adopt
more sustainable, low-emission energy sources for
electricity and energy production [1-4]. As a response to
the growing environmental concerns linked to fossil fuel
combustion, many countries are transitioning toward
renewable and sustainable energy sources. Kingdom of
Saudi Arabia, in particular, has outlined clear national
targets to annually reduce carbon emissions by 278
million tons and increase the renewables share by 50%
of total electricity generation by 2030. These efforts
align with the country’s objective of achieving net-zero
carbon emissions by 2060 [5].

Wind energy is a renewable and environmentally
acceptable source of power that is an alternative to
conventional fossil fuel-based energy systems. The
main advantage of wind energy is its ability to generate
electricity with minimal greenhouse gas emissions or
other pollutants[6-10]. Thus, it is an eco-friendly system
and an essential component of global decarbonization
efforts to mitigate climate change. However, it has some
drawbacks as well, including intermittency, noise pol—
lution, and the environmental costs of turbine produc—
tion and disposal, all of which limit its widespread
adoption.
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The working principle of wind energy generation
involves converting wind kinetic energy into electrical
using wind turbines. The wind flow causes blades to
rotate and generate power through gear box and the
generator. Since, wind is an inexhaustible and widely
available resource, it enables countries to diversify their
energy portfolio toenhance energy security and reduce
dependence on fossil fuels [8]. However, wind power
deployment faces challenges due to its unpredictable
and variable characteristics, which can undermine
system reliability and power quality while increasing
wind penetration levels.

The electrical power generated by a wind turbine is
directly dependent on the cube of wind speed, making it
a critical in the production process. It indicates that
small changes in wind speed may lead to significant
variations in output power. Thus, accurate prediction of
wind speed is crucial for optimizing turbine operation,
scheduling energy supply, managing grid stability, and
integrating wind power effectively into the electricity
system [11]. These predictions can significantly reduce
wind curtailments, helping to lower operational costs
while increasing revenue in electricity market
operations. However, accurate forecasting is affected by
the inherent unpredictability and variability of the wind,
making it difficult at times. Accordingly, many studies
have attempted to develop and refine advanced
forecasting techniques to better address the complexities
of wind speed and power prediction [11-18].

Based on the existing literature, a wide spectrum of
prediction methods has been used. These methods range
from simple to complex approaches, each differing in
characteristics and performance. In general, there are
two types of forecasting: short-term and long-term, each
with its own advantages. For example, short-term
forecasts play a critical role in power system operations,
particularly in day-ahead predictions, as they are

FME Transactions (2025) 53, 693-704 693



essential for unit commitment, load balancing, and
scheduling [19-22]. On the other hand, long-term fore—
casts support strategic planning by anticipating seasonal
trends and optimizing resource allocation; thus, redu—
cing reliance on reserve capacities [23]. In the recent
times, machine learning (ML), artificial neural networks
(ANNs) have emerged as some of the effective models
for wind speed prediction. This is attributed to their
non-linear learning capabilities, which can reduce wind
power grid costs and support the selection of optimal
reserve capacities at various time intervals [24-26].

Recurrent neural networks (RNNs) are used for
sequential and time-series data as they retain a hidden
state that evolves at each time step to capture temporal
dependencies. Thus, RNNs are efficient for time-series
wind speed predictions. However, standard RNNs often
struggle to preserve information over long sequences
due to the vanishing gradient problem [21]. To address
this, gated variants, namely gated recurrent units (GRU)
and long-short-term memory (LSTM) networks, incor—
porate learnable gating mechanisms that selectively
retain and update relevant context over much longer
horizons [22-26]. As a result, GRUs and LSTMs are
particularly well suited for wind speed forecasting,
where current values are heavily influenced by past
behavior. In the present study, we implement and com—
pare three architectures: simple RNN, GRU, and LSTM
to evaluate their effectiveness in predicting 24-hour
wind speeds.

Being able to retain hidden state of the sequential
and time-series data, RNNs are used to capture temporal
dependencies. Thus, RNNs are efficient for time-series
wind speed predictions. However, standard RNNs often
struggle to preserve information over long sequences
due to vanishing gradient problem [27]. To address it,
gated recurrent units (GRU) and long-short-term
memory (LSTM) networks are used to retain and update
relevant context over much longer horizons [28-32]. As
a result, GRUs and LSTMs are particularly well suited
for wind speed forecasting, where current values are
heavily influenced by past behavior. In the present
study, we implement and compare three architectures:
simple RNN, GRU, and LSTM to evaluate their
effectiveness in predicting 24-hour wind speeds.

Recent advancements in wind speed forecasting
have focused on addressing key challenges related to the
nonlinearity, uncertainty, and volatility inherent in wind
data [33]. Lv et al. [16] proposed a dynamic adaptive
interval prediction model that integrates fuzzy infor—
mation granulation with a dynamically adjusted time
window and least squares support vector machine. This
method was designed to enhance the accuracy of pre—
diction point and reliability of intervals. By effectively
capturing the non-stationary behavior of wind speed
time series, their approach demonstrated superior
performance across various interval evaluation metrics
at confidence levels of 0.90 and 0.95. Both Maruthi et
al. [20] and Amirteimoury et al. [24] investigated the
challenge of wind speed variability with advanced hyb—
rid and ensemble techniques designed to enhance fore—
casting accuracy and grid integration. While Amirtei—
moury et al. developed a hybrid model combining
Discrete Wavelet Transform (DWT) for signal smoot—
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hing, Mutual Information (MI) for time-series compo—
nents extraction, the Coot Optimization Algorithm
(COOT) for optimal feature selection, and a Bidi—
rectional LSTM network for temporal modeling.Maruthi
et al. [20] introduced a multi-model integration frame—
work (MIDF) based on the ensemble of DeepAR and
Temporal Fusion Transformer (TFT). These studies
attained coefficient of determination above 0.89.

Unlike the prior studies, Xiao et al. [25] prioritized
data quality and noise reduction as the foundation for
accurate wind speed forecasting. Thus, they developed a
hybrid approach combining Weighted Principal Com—
ponent Analysis (WPCA) and a Particle Swarm Optimi—
zation-tuned Gated Recurrent Unit (PSO-GRU) net—
work. WPCA was used to extract the most informative
features while mitigating data noise, and PSO was
employed to optimize the GRU model’s hyperpa—
rameters. This hybrid architecture achieved significant
reductions in MAE and RMSE by 5.3% to 16% and
improved R? scores by 2.1% to 3.1% compared to
conventional models. Similarly, Du et al. [26]proposed
framework integrates Variational Mode Decomposition
(VMD) for effective signal denoising, Runge—Kutta
Optimization (RUN) for fine-tuning decomposition
parameters, and a Sequence-to-Sequence model with an
Attention mechanism (Seq2Seq-Attention) for multi-
step forecasting. The study demonstrated substantial
improvements in forecast accuracy, with correlation
coefficients exceeding 0.9 across 1-to-12-hour predic—
tion horizons and up to a 21% increase in predictive
performance.

Despite significant advancements, considerable cha—
llenges remain in pre-processing noisy wind speed data,
selecting the most informative features, and balancing
prediction accuracy with computational efficiency. Mo—
reover, current models often lack the capacity to dyna—
mically adapt to changing atmospheric conditions or to
seamlessly integrate domain knowledge. Recent lite—
rature emphasizes that continued progress in wind speed
forecasting depends on the hybridization of advanced
deep learning architectures with robust data processing
techniques and adaptive learning capabilities. In res—
ponse to these gaps, the main objective of the present
study is to systematically evaluate and compare the per—
formance of four prominent models, which are RNN,
GRU, LSTM, and transformer, in forecasting wind spe—
ed using real-world meteorological datasets, focusing on
their accuracy, robustness, and practical applicability.

2. METHODOLOGY

This study employed a detailed analysis to investigate the
application of neural network architectures in wind
prediction. The models are selected to predict wind speed
using a dataset obtained from the NASA POWER
database (https://power.larc.nasa.gov/). NASA POWER
provides high-quality meteorological data from satellite
observations and weather models, with global coverage
that supports diverse applications. Additionally, the da—
taset spans a wide range of climatic conditions, inclu—
ding remote and extreme environments, which can int—
roduce complexities and affect the accuracy of wind pre—
dictions in specific regions. Once the dataset was obta—
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ined, it was pre-processed, and features were extracted.
These features were then used in the neural network
models to predict wind speed. Figure 1 summarizes the
overall methodological framework for this study.

DATA SET PRE-PROCLSSING FEATURE EXTRACTION PREDICTION

Figure 1. Methodological framework: Acquired data are pre-
processed, features are extracted, and then used for
prediction

2.1 Dataset

Al-Ahsa region, located in the eastern part of the
Kingdom of Saudi Arabia, is widely recognized for its
desert climate observing high temperatures. During the
summer months, the area experiences average daily ma—
ximum temperatures that typically range between 44°C
and 46°C, making it one of the hottest regions in the
country [34]. These climatic conditions pose significant
challenges for various sectors, including agriculture,
energy, and urban planning, which rely heavily on
accurate meteorological data for decision-making and
resource management. The dataset used in this inves—
tigation contains meteorological measurements colle—
cted hourly from this region over 24 years (from 2001 to
2024), resulting in 210,360 data points.

2.2 Pre-processing of the Data

Pre-processing is a crucial step to ensure data quality
and improve model performance. In Python software
(version 3.11), the raw data underwent several pre-pro—
cessing steps, like handling missing values, normalizing
it, and selecting relevant features for wind speed pre—
diction. After the dataset was loaded, the time-related
columns (Year, MO, DY, and HR) were renamed as
year, month, day, and hour, respectively. Then, a new
timestamp column was created by combining these
time-related columns into a single datetime column to
ensure chronological order. This was essential for time-
series analysis to sort the data based on the newly
created timestamp. Afterward, the data was sorted based
on the “TIMESTAMP” to maintain the correct sequence
of observations. A key aspect of this pre-processing was
handling missing values (if exists), though in this
dataset, no explicit missing values were found. If any
gaps were detected, interpolation techniques could have
been used to fill missing time-series data based on the
surrounding points. The dataset was then filtered to
include only the relevant features. One of the most
significant pre-processing steps involved normalizing
the features using a Min-Max scaler.

The min-max scaler was applied to range between 0
and 1. This step is important for improving the perfor—
mance of machine learning models, which are sensitive to
the magnitude of input values. Without this scaling,
features with larger ranges could dominate the learning
process, leading to suboptimal model performance. By
normalizing the features, the data was made more
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uniform and ready for model training. Finally, the scaled
features were combined with the TIMESTAMP column.

2.3 Feature Extraction

Once the data was pre-processed, the features in the
dataset were used to facilitate the prediction process.
The features were selected based on their established
significance in meteorological modeling and their direct
influence on the accuracy of wind speed prediction. The
features are illustrated in Table 1. The wind speed
(WS10M) and the wind direction (WD10M) are mea—
sured at 10 meters above the ground (used as a refe—
rence). The air temperature (T2M) and the specific
humidity (QV2M) are measured at 2 meters above the
ground. The wind direction at 10 meters indicates the
direction from which the wind is blowing at a height of
10 meters above the ground. To account for its circular
nature, the WD10M was transformed using its sine and
cosine components.

Wind speed and other meteorological variables can
vary significantly at different altitudes due to factors
such as atmospheric stability. By using data from mul—
tiple heights, a more comprehensive representation of
the atmospheric conditions influencing wind patterns at
various levels can be obtained. Moreover, the dataset
does not offer measurements at all possible heights or a
flexible selection of heights. Other combinations of fea—
tures could have been explored. For example, features
such as relative humidity, solar radiation, or cloud cover
could be included to capture other atmospheric variables
that influence wind patterns and speed. Another alter—
native would be using forecasted weather data or sea—
sonal variations to improve model accuracy, especially
in regions with strong seasonal wind variations.

Table 1. Relevant features used for accurate wind speed
prediction

Feature | Description Units

WS10M Wind speed at 10 meters/second (m/s)
meters above ground

2M Air temperature at 2 degrees Celsius (°C)
meters
Specific humidity at 2

QvV2M mmeters grams/kg (g/kg)

WD10M Wind direction at 10 degrees (°)
meters

PS Surface pressure kilopascals (kPa)

2.4 Neural Models Implementation and Training

The pre-processed data was divided into three segments:
training (80%), validation (10%), and testing (10%).
Based on the data split strategy, the training set covers a
total of 168,290 hourly samples, while the validation
and test sets contain 21,034 and 21,036 hourly samples,
respectively. The 80/10/10 configuration offered the
best balance between training data and model evalu—
ation. Following such a temporal split ensures that the
model is tested on unseen data, which is important to
simulate a real-world forecasting scenario. Also, it helps
to eliminate data leakage that occurs in random splits.
Four neural models were used in this study, which
are RNN, GRU, LSTM, and Transformer networks.
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These models were implemented and trained on the pre-
processed data to predict wind speed. All models
followed a sequence-to-one regression design, where a
24-hour sliding window of past data was used to predict
wind speed for the following hour. This structure
reflects practical forecasting applications and enables
the models to learn from recent temporal patterns. For
the initial setup, each model began with a single recur—
rent or encoder layer, followed by a dense layer and a
final output node for regression tasks. Once the baseline
architecture was established, various parameters, such
as the number of units, the addition of a second re—
current layer, dropout rates, and learning rate, were fine-
tuned to improve performance. All models were trained
for 30 epochs, providing enough iterations for conver—
gence without overfitting. This number was chosen after
considering the trade-off between adequate learning and
model generalization, though techniques like early stop—
ping could further refine training in future experiments.

The optimization parameters were determined thro—
ugh a process of hyperparameter tuning, where multiple
combinations of model parameters were tested to iden—
tify the best performing configuration. The tuning pro—
cess involved adjusting key parameters such as dropout
rate and learning rate, among others. The goal was to
maximize model performance, ensuring that it learned
from the data effectively while avoiding overfitting. For
example, the RNN model was optimized with 192 units
in the first recurrent layer, and a dropout rate of 0.2,
which helped prevent overfitting by randomly dropping
some neurons during training. The GRU was configured
with 128 units in its first layer and similarly had a 0.2
dropout rate. The LSTM model, which is known for its
ability to handle long-range dependencies, was optimi—
zed with 160 units in the first recurrent layer and a 0.1
dropout rate, emphasizing its ability to learn from
complex sequences while minimizing overfitting. For
the Transformer model, a more advanced architecture,
the hyperparameters were adjusted to incorporate 3
attention heads in the encoder layers, which helps the
model focus on different aspects of the input sequence
at once. The learnable positional encoding was included
to help the Transformer model understand the order of
sequence elements, a feature crucial for handling time-
series data. Each model was optimized using the Adam
optimizer, which is widely used for training deep
learning models due to its efficient gradient descent
approach. A summary of the optimization parameters
can be found in Table 2.

Evaluating the neural network models is a crucial
step for performance of the trained models. Specifically,
the models were assessed based on their ability to accu—
rately forecast wind speed values using the test dataset.
Four key statistical measures Mean Squared Error
(MSE), Mean Absolute Error (MAE), Root Mean Squa—
red Error (RMSE), and the Coefficient of Determination
(R?) were employed. To illustrate, MSE and RMSE are
more sensitive to large prediction deviations, making
them useful for evaluating models. MAE, on the other
hand, provides average absolute difference between
predicted and actual values. The R? score measures how
well the predicted and true values match each other. By
analyzing these metrics, the effectiveness and reliability
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of the trained models were systematically evaluated,
allowing for a robust comparison between different
architectures and configurations.

Table 2. Comparison of optimized hyperparameters across
all evaluated models

Parameter RNN GRU LSTM | Transformer

Recurrent 192 128 160 3 hea}ds,

Layer 1 nits nits nits 32-dim

Y Y h " (Attention)

3 heads,

ichc‘fgm 32 units llnzlis 96 units | 32-dim

Y (Attention)

Dense

Layer Units %6 64 %6 64

Dropout

Rate 0.2 0.2 0.1 0.3

Learning 1.888 4.692 1.661 11.99

Rate x10™ x10™ x10™ x10™

Total

Trainable 48,481 159,233 | 214,337 | 122,625

Parameters

Sequence

Length 24 24 24 24

Architecture 2 encoder

Depth 2layers | 2 layers | 2layers blocks

Optimizer Adam Adam Adam Adam

Positional ) ) ) Learnable

Encoding embeddings

2.5 SHAP and Ablation Analyses

SHAP (SHapley Additive exPlanations) and ablation
analyses are widely used to interpret machine learning
models and assess feature importance. SHAP technique
measures the contribution of each input parameter to
demonstrate how individual features influence the
output. SHAP technique measures the contribution of
each input feature to the model’s prediction to demon—
strate how individual features influence the output,
while the ablation technique is the removal of individual
features or groups of features from the trained model
and observing the resulting change in performance of
the model. These methods are highly useful in analyzing
model behavior, diagnosing potential biases, and selec—
ting relative features. Therefore, SHAP analysis was
conducted on all features across the RNN, GRU, LSTM,
and transformer models to evaluate their relative impor—
tance. SHAP is reliable because it ensures fair, consis—
tent explanations by considering all possible feature
combinations, providing both local and global inter—
pretability. The SHAP library is a widely used Python
tool for efficiently computing Shapley values and
offering visualizations like summary plots, force plots,
and dependence plots. Similarly, in the ablation
analysis, each feature (T2M, QV2M, WD10M, and PS)
was individually removed from the input set to assess its
specific impact on model accuracy. For each ablation
experiment, the corresponding feature was excluded, the
models were retrained using the remaining features, and
performance metrics were recorded. This process was
repeated for each feature to evaluate its contribution to
the overall model performance.

3. RESULTS
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3.1 Dataset Pre-processing

The pre-processed dataset was thoroughly analyzed,
where the main features used in this study were T2M,
QV2M, WDI0M, and PS. The WS10M was used as a
reference to compare the predicted wind speed with true
values. The boxplot of the normalized features is pre—
sented in Figure 2 to analyze distribution of features.
The black dots in Figure 2 represent outliers for
WSI10M and QV2M, indicating data points significantly
higher or lower than the rest. They are shown only for
these two variables because the other parameters (T2M,
WDI10M, and PS) do not have extreme values outside
the defined outlier range.

Boxplots of Parameters (Normalized)

ws10m T2m Quam wD10M s

Figure 2. Boxplots of normalized meteorological parame—
ters: WS10M, T2M, QV2M, WD10M, and PS, showing the
distribution, variability, and presence of outliers in the
dataset

3.2 Feature Extraction

The features used in this investigation were chosen
depending on the relevance to the prediction task. Table
3 presents summary statistics for each feature. Among
all, T2M shows the highest mean value of 0.561 and a
notably high median of 0.568, indicating consistently
significant values.

Histogram of Wind Speed Histagram of Air Temperature
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Histogram of Specific Humidity Histogram of Wind Direction (Cosine)
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Figure 3. Histogram distributions of meteorological
parameters illustrating the frequency and variability of
observed values
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WDIO0M also exhibits a high mean of 0.555, but
with a much larger standard deviation of 0.350,
reflecting substantial variability. In contrast, WS10M
and QV2M show lower mean values of 0.262 and 0.222,
respectively. PS has a moderate mean of 0.470 and low
standard deviation of 0.746, suggesting relatively stable
values across the dataset. Moreover, the histogram
distribution of each feature, shown in Figure 3, shows
the frequency and spread of each feature’s values to
identify patterns, skewness, and potential outliers in the
data. In Table 3, all the normalized values are reported.

Table 3. Statistics for each feature, including mean,
median, and standard deviation

Feature Mean Median | Standard Deviation
WS10M 0.262 0.235 0.133
2M 0.561 0.568 0.199
QV2M 0.222 0.193 0.125
WDI10M 0.555 0.561 0.350
PS 0.470 0.484 0.197

3.3 Neural Models Implementation and Training
3.3.1 RNN Model

The performance of the RNN model was evaluated
using the metrics, provided earlier. The performance
matricsrefers to the specific performance indicators are
used to evaluate the effectiveness of the various models
employed for wind prediction.
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Figure 4. Comparison between the actual and predicted
values for multiple time segments. The plots illustrate the
performance of RNN model in capturing temporal variati—
ons and short-term fluctuations in wind speed, highlighting
the accuracy and potential discrepancies between
observed and predicted values

These metrics are Mean Squared Error (MSE), Mean
Absolute Error (MAE), Root Mean Squared Error
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(RMSE), and the Coefficient of Determination (R?). It
provides a quantitative measure of how well the model
predicts the wind speed or direction compared to actual
observed values.Figure 4 shows a set of segments of
actual versus predicted WS10M. It is noticeable that the
predicted values have the same trend as the actual va—
lues. Based on Table 4, MSE value is 0.1191m/s bet—
ween predicted and actual values. The MAE is
0.2191m/s, reflecting the average magnitude of predic—
tion errors regardless of direction. The RMSE, which
provides an error measure in the original units, is
0.3452m/s, highlighting the typical prediction deviation.
Finally, the R? is 0.9707, demonstrating that the model
explains approximately 97.07% of the variance in the
observed data, indicating a strong predictive capability.

Table 4. Performance metrics of the RNN model for wind
speed prediction using a random seed of 42

Metrics of RNN Model
MSE (m/s) | MAE (m/s) | RMSE (m/s) R?
0.1191 0.2191 0.3452 0.9707

3.3.2 GRU Model

The proposed GRU model was evaluated using the error
metrics explained above. The predicted values are
almost identical to actual values of WS10M as shown in
Figure 5.

Actual Versus Predicted Wind Speed Using GRU Model: Segment 1

) &0 w0 e
Tene stzp

Actual Versus Predicted Wind Speed Using GAU Model: Segment 2

E=
Actual Versus Predicted Wind Spaed Using GAI Model: Segmant 3

Tone stz
Actual Versus Predicted Vind Speed Using Gl Hodel: Segment 4

Tene S
Actual Versus Predicted Wind Speed Using GRU Model: Segment 5

Figure 5. Comparison between the actual and predicted
values across multiple time segments. The plots illustrate
the performance of GRU model in capturing temporal
variations and short-term fluctuations in wind speed

Multiple examples of comparison between the pre—
dicted and the actual values of the wind speed over
different time pans show an excellent trend matching,
Figure 5.The R? value of 0.9759 showed an excellent

698 = VOL. 53, No 4, 2025

match between the predicted and the actual values,
Table 5. Lower values of RMSE, MAE, and MSE of
0.3126 m/s, 0.1928 m/s, and 0.0977; further strengthen
the good performance of the GRU model.

Table 5. Performance metrics of the GRU model for wind
speed prediction using a random seed of 42

Metrics of GRU Model
MSE (m/s) MAE (m/s) RMSE (m/s) R?
0.0977 0.1928 0.3126 0.9759

3.3.3 LSTM Model

The LSTM model showed further better performance
where the difference between predicted and actual
values is concerned, as illustrated in Figure 6. This
model achieved an MSE of 0.1120m/s, MAE of
0.2062m/s, and RMSE of 0.3347m/s, as summarized in
Table 6.The model’s R? value suggests that appro—
ximately 97.24% of the variance in the observed data is
explained by the model.

3.3.4 Transformer Model

The transformer model also showed a good perfo—
rmance, where predicted values were close to actual
values, as shown in Figure 7. The R? value of 0.9402
indicates a strong correlation between the predicted and
observed data, Table 7.

Actual Vessus Predicted Wind Speed Using LSTM Madel: Segment 1

e s
Actual Versus Predicted Wind Speed Using LSTM Model: Segment 2

Actual Yersus Predicted Wind Speed Using LSTM Model: Segment 3

Figure 6. Comparison of actual versus predicted wind
speed across multiple time segments. The plots illustrate
the performance of LSTM model in capturing temporal
variations and short-term fluctuations in wind speed,
highlighting the accuracy and potential discrepancies
between observed and predicted values
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Table 6. Error values for LSTM model for wind speed
prediction using a random seed of 42

Metrics of LSTM Model
MSE (m/s) MAE (m/s) RMSE (m/s) R?
0.1120 0.2062 0.3347 0.9724

3.3.5 Comparison Across Models

To compare the performance of different predictive mo—
dels, a zoomed-in segment is plotted for visual inspec—
tion, where both actual and predicted wind speeds are
compared for each model. The zoomed-in segment
helps identify discrepancies, trends, and overall model
reliability, as shown in Figure 8. The plots show the
comparison of actual versus predicted wind speed for
the first segment across four different models: RNN,
GRU, LSTM, and Transformer. All models display
relatively close predictions to the actual values, with the
Transformer model appearing to capture the overall
trend more smoothly, particularly in handling fluctu—
ations. The GRU and LSTM models also show strong
performance but with slight discrepancies in higher and
lower peaks. The RNN model exhibits more noticeable
variations between the predicted and actual values,
especially in the latter part of the segment.

Actual Versus Predicted Wind Speed Using Transformer Modst: Seqment 1

‘Actual Versus Predicted Wind Speed Using RNN Model: Segment 1

Actual Versus Predicted Wind Speed Using GRU Model: Segment 1

A

‘Actual Versus Predicted Wind Speed Using LSTM Model: Segment 1

Actual Versus Predicted Wind Spe

.....

Figure 8. Zoomed-in view of actual vs. predicted wind
speed for the first segment across different models.

3.3.6 Multiple Runs of Models

Different seed numbers in machine learning algorithms
affect the accuracy of tested models because they
control random processes like weight initialization, data
shuffling, and stochastic operations such as dropout in
neural networks. A different seed leads to a different
initialization of model weights, which can cause the
model to converge to a different local minimum during
training. This variability in the training process can
impact the final performance and accuracy of the model.
Thus, the use of different seeds typically results in slight
variations in model accuracy because the model might
learn slightly different or make different decisions
during training. This randomness, especially in complex
models, can lead to changes in accuracy between runs.
Running the model multiple times with different seeds
and reporting the average accuracy can provide a more
stable and reliable evaluation of its performance.

Table 8. Performance evaluation of all models across five
different random seeds (7, 42, 88, 123, 2024)

— Model Seed MSE MAE | RMSE R
ode (m/s) (m/s) (m/s)
L M‘ [l ‘ b il fl4 [ A ChAf |‘|“ | 7 0.2151 | 0.3103 | 0.4637 | 0.9471
A \ W A0 T A A AT i,

Wy — g " ' iy "I‘ A 42 0.1191 | 0.2191 | 0.3452 | 0.9707
- - RNN 88 0.1795 | 0.2853 | 0.4237 | 0.9558
Figure 7. Comparison of actual versus predicted wind 123 0.1840 | 0.2875 | 0.4289 | 0.9547
speed across multiple time segments. The plots illustrate 2024 | 0.2211 | 0.3490 | 0.4702 | 0.9456
the performance of transformer model in capturing 7 0.1569 1 0.2593 | 0.3962 | 0.9614

temporal variations and short-term fluctuations in wind ’ ’ ’ ’
speed, highlighting the accuracy and potential 42 0.0977 | 0.1928 | 0.3126 | 0.9759
discrepancies between observed and predicted values GRU 88 0.1471 | 0.2467 | 0.3836 | 0.9638
Table 7. Error values for transformer model for wind speed 123 | 0.1473 | 0.2485 | 0.3838 | 0.9637
prediction using a random seed of 42 2024 | 0.1549 | 0.2565 | 0.3936 | 0.9619
Metrics of Transformer Model LSTM 7 0.2179 | 0.3190 | 0.4668 | 0.9464
MSE (m/s) MAE (m/s) RMSE (m/s) R? 42 0.1120 | 0.2062 | 0.3347 | 0.9724
0.2430 0.3439 0.4930 0.9402 88 0.1998 | 0.3031 | 0.4469 | 0.9508
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123 0.1989 | 0.3006 | 0.4460 | 0.9510
2024 | 0.2061 | 0.3023 | 0.4540 | 0.9493
7 0.2347 | 0.3502 | 0.4844 | 0.9422
42 0.2430 | 0.3439 | 0.4930 | 0.9402
Transformer | 88 0.2933 | 0.4156 | 0.5415 | 0.9278
123 0.2106 | 0.3101 | 0.4589 | 0.9481
2024 | 0.2161 | 0.3112 | 0.4648 | 0.9468

The predictability of all models was evaluated across
five different random seeds (7, 42, 88, 123, 2024), see
Table 8. The GRU consistently achieved the best per—
formance, with the lowest MSE values ranging from
0.0977 to 0.1569 and the highest R? values between
0.9614 and 0.9759, indicating strong predictive accu—
racy. The LSTM and RNN models showed moderate
predictability, with MSE values between 0.1120 and
0.2211, and R? values around 0.9456 to 0.9724. The tra—
nsformer model exhibited slightly higher MSE values
(0.2106 to 0.2933) and lower R? scores (0.9278 to
0.9481), indicating relatively less accurate predictions
under the tested configurations.

3.4 Neural Models Implementation and Training

3.4.1 SHAP Analysis

SHAP analysis was conducted on the dataset to analyze
feature contributions in each model prediction. In RNN
model, the model predicted a value of approximately
0.20, slightly below the SHAP base value, as shown in
Figure 9(a). The most influential factor in lowering the
prediction was WS10M. T2M also contributed nega—
tively, while QV2M, WDI10M, and PS had positive
contributions, increasing the prediction.
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Figure 9. SHAP analysis of feature contributions to the (a)
RNN, (b) GRU, (c) LSTM, and (d) Transformer model
predictions

Similar interpretations were made across other
models. In the GRU model, only WD10M and PS inc—
reased the prediction, as shown in Figure 9(b). In the
LSTM model, WD10M, QV2M, and PS showed
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positive contributions, as shown in Figure 9(c). For the
Transformer model, PS, T2M, and QV2M increased the
prediction, as shown in Figure 9(d). While these fin—
dings demonstrate model behavior, they should be
interpreted cautiously.

3.4.2 Ablation Analysis

For each feature, models were retrained after feature
removal, and performance metrics were recorded, as
presented in Table 9. Across all models, the removal of
T2M resulted in a noticeable decline in performance,
especially for the GRU and LSTM models. These
findings confirm the positive contribution of T2M fea—
ture in increasing model predictive accuracy. For ins—
tance, the GRU model’s RMSE increased from its
typical baseline (=0.3126m/s) to 0.3257m/s when T2M
was excluded. Similarly, removing QV2M led to
moderate degradation, particularly in LSTM and RNN,
while GRU remained relatively robust (RMSE:
0.3169m/s). Interestingly, removing WDIOM had a
smaller impact, with performance metrics showing only
slight increases in error across all models, suggesting its
influence may be more context dependent. The exc—
lusion of PS also caused minor degradation in all
models, though GRU again demonstrated the highest
resilience. Notably, the transformer model showed
consistently higher error values regardless of which
feature was removed, indicating its relative sensitivity
and potentially lower adaptability in this task setting.

Table 9. Impact of individual feature removal on model per—
formance. Each model was retrained without one feature
(T2M, QV2M, WD10M, or PS), and performance metrics
(MSE, MAE, RMSE, R?) recorded to assess the contribution
of each to wind speed prediction

Features| Model MSE [ MAE [RMSE [ .
(m/s) (m/s) (m/s)

RNN 0.1382 | 0.2342 | 0.3717 | 0.9660
Without ["GRU 0.1061 | 0.2007 | 0.3257 | 0.9739
T2M LSTM 0.1255 | 0.2189 | 0.3542 | 0.9691

Transformer | 0.2203 | 0.3181 | 0.4694 | 0.9458

RNN 0.1374 | 0.2380 | 0.3707 | 0.9662
Without ["GRU 0.1004 | 0.1953 | 0.3169 | 0.9753
QV2M | LSTM 0.1167 | 0.2117 | 0.3417 | 0.9713

Transformer | 0.2058 | 0.3001 | 0.4536 | 0.9493

RNN 0.1361 | 0.2336 | 0.3689 | 0.9665
Without |"GRU 0.1182 | 0.2061 | 0.3437 | 0.9709
WDIOM | LSTM 0.1351 | 0.2261 | 0.3675 | 0.9667

Transformer | 0.2081 | 0.3186 | 0.4562 | 0.9488

RNN 0.1261 | 0.2258 | 0.3551 | 0.9689
Without |"GRU 0.1002 | 0.1926 | 0.3165 | 0.9753
PS LSTM 0.1149 | 02133 | 0.3389 | 0.9717

Transformer | 0.1977 | 0.2909 | 0.4447 | 0.9513

4. DISCUSSION

The study presented a comprehensive approach to deve—
lop and evaluate four deep learning models for wind
speed forecasting using high-resolution hourly meteo—
rological data obtained forAl-Ahsa region over a 24-
year period. To achieve the objective of this study, a
rigorous methodological approach was employed, in—
volving comprehensive data pre-processing, sequential
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data splitting, features selection, and models archi—
tecture design.

The four architectures were constructed to predict
wind speed as intended. The RNN model demonstrated
strong predictive capability and successfully captured
temporal dependencies in the input features. Visual
inspection revealed a close alignment between actual
and predicted wind speeds, as shown in Figure 4.
Although RNN model is the simplest among the
recurrent models, it performed reasonably well, with an
R? of 0.9707 and error values moderately higher than
GRU and LSTM, as illustrated in Table 4. The GRU
model consistently outperformed its counterparts across
all evaluation metrics, where predicted values perfectly
overlapped actual values, as shown in Figure 5. It
achieved the lowest error values (MSE: 0.0977m/s,
MAE: 0.1928 m/s, RMSE:0.3126 m/s) and the highest
coefficient of determination (R* = 0.9759), as illustrated
in Table 5.

The LSTM model also demonstrated strong perfor—
mance, with an R? of 0.9724, as illustrated in Figure 6
and Table 6. Although its error metrics were higher than
those of GRU, it still outperformed both the standard
RNN and transformer models. It indicates that while
LSTM is capable of handling complex temporal struc—
tures, the GRU may achieve similar or better per—
formance with fewer parameters and faster training.
Lastly, the transformer, despite its success in many
sequential tasks, showed the weakest performance in
this study. As illustrated in Table 7, the transformer
lagged behind all three recurrent models with the
highest MSE of 0.2430 m/s and lowest R? of 0.9402.
This could be attributed to the model’s architecture and
data size, which may favor recurrence-based models
over self-attention mechanisms. The transformer may
require more extensive data and tuning to match the
performance of recurrent models in this context.
Nonetheless, its statistical metrics remain well within
acceptable limits, indicating reliable model perfor—
mance. Overall, all models achieved high coefficients of
determination ranging from approximately 0.94 to 0.97,
demonstrating their effectiveness in wind speed
forecasting. Since the coefficient of determination
ranges from O to 1, values closer to 1 indicate a stronger
agreement between the predicted and observed data.

The consistent superiority of the GRU model
performance across all random seeds, as shown in Table
8, suggests that its architecture is particularly well-
suited for the temporal dynamics present in meteoro—
logical data. Its gating mechanism appears effective in
preserving relevant temporal dependencies while mini—
mizing overfitting and noise sensitivity. The moderate
performance of the transformer model, despite its
growing popularity in time-series forecasting, may
reflect a mismatch between its self-attention-based
design and the relatively smooth, low-frequency pat—
terns typical of meteorological time series. The relati—
vely high variability in R? across models, particularly in
the transformer, also points to differences in stability
under random initialization. This sensitivity may have
implications for real-world deployment, where models
need to generalize well despite slight changes in training
conditions. As the performance of the GRU model
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remained nearly consistent across different seeds, with
only small variations in results, it can be considered
more reliable for forecasting.

It is worth mentioning that the development of RNN,
GRU, LSTM, and Transformer models for wind predic—
tion varies significantly in terms of complexity and
computational resource requirements. RNNs are the
simplest and least computationally demanding but stru—
ggle with long-term dependencies due to vanishing
gradient problems. GRUs and LSTMs address this issue
by introducing gates to manage memory, making them
more complex and computationally expensive, with
LSTMs requiring more resources due to their more
intricate structure. Transformers, while powerful for
capturing long-range dependencies, have the highest
complexity and require substantial computational reso—
urces, especially for training on large datasets, due to
their attention mechanism and parallelization needs. In
terms of temporal requirements, training time increases
progressively from RNNs to Transformers, with trans—
formers often needing the longest training times due to
their high parameter count and large memory usage.

Based on Figures 9(a), (b), (c), and (d) and Table 9,
the SHAP and ablation analyses together reveal that
input features do not contribute equally across models.
T2M and QV2M showed low SHAP values in some
predictions, which may indicate a limited impact on
model performance. However, ablation results revealed
that removing these features significantly reduced mo—
del performance, indicating they play a more important
role overall than SHAP alone suggests.The minor
performance degradation caused by removing PS and
WDIOM may indicate redundancy or -collinearity
among meteorological features. However, the fact that
GRU model still performed relatively well even when
these features were excluded highlights its robustness in
handling reduced or partially missing data, which is an
important practical advantage in real-world meteoro—
logical applications where sensor failures or missing
data are common.

When compared to existing literature, the present
study shows highly competitive performance in wind
speed forecasting, particularly with the GRU model. As
illustrated in Table 10, the GRU architecture achieved an
R? value of 09759 and an RMSE of 0.3126m/s,
outperforming or matching the R? values of several
advanced hybrid models applied in diverse geographical
settings and with varying temporal resolutions. Notably,
while some studies reported higher R? scores, such as
Amirteimoury et al. [24] reported coefficient of deter—
mination as 0.999. However, such results are often ob—
tained under shorter forecast horizons (e.g., 1-hour) and
potentially more favorable climatic conditions. In
contrast, the models developed in this study were
designed for a 24-hour forecast horizon and tested under
the challenging meteorological conditions of Al-Ahsa,
Saudi Arabia, a region characterized by extreme desert
climate variability. The strong performance observed,
particularly for GRU and LSTM models, underscores the
effectiveness of the methodological framework adopted
in this work, including the choice of input features, the
sequential data segmentation strategy, and the design of
robust recurrent architectures. Significantly, this perfor—
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mance was achieved without reliance on computationally
intensive hybrid techniques, complex optimization
algorithms, or elaborate data pre-processing. This simp—
licity enhances the practical applicability of the models,
making them well-suited for deployment in operational
environments with limited computational resources.

Table 10. Comparison of the performance of models in the

current study with other approaches reported in different
studies and regions

MSE MAE RMSE

2

Ref. Method (m/s) (m/s) (m/s) R
FIG-MSS-

[16] LSSVM - - - 0.936
RUN-
VMD-

[26] Seq2Seq- 3.873 - - 0.952
Attention

[35] | C-LSTM 0.437 0.127 - 0.913
DeepAR 0.00494 | 0.04609 | 0.07026 | 0.780

[20] | TET 0.00294 | 0.0595 | 0.05422 | 0.850
MIDF 0.0035 | 0.01739 | 0.01913 | 0.890
DWT-MI-

[24] | BiLSTM- 0.009 0.069 - 0.999
COOT
WPCA-

[25] PSO-GRU - 1.43 2.22 0.917
EEMD-BA-

[36] | RGRU- - 0.181 0.225 0.988
CSO

- RNN 0.1191 0.2191 0.3452 | 0.9707

g%‘ GRU 0.0977 0.1928 0.3126 | 0.9759

55 LSTM 0.1120 | 0.2062 0.3347 | 0.9724

Transformer | 0.2430 0.3439 0.4930 | 0.9402

5. CONCLUSIONS

This study provides a comprehensive evaluation of
multiple deep learning architectures for short-term wind
speed forecasting, utilizing an extensive meteorological
dataset collected from the Al-Ahsa region. The primary
objective of this study was to develop, optimize, and
analyze multiple deep learning architectures for accurate
short-term wind speed forecasting using long-term
meteorological data. The study aimed to evaluate these
models’ predictive performance, robustness, and gene—
ralization ability under realistic operational conditions,
while also investigating feature importance through
interpretability (SHAP) and sensitivity (ablation).

In this study, four sequence-based models were deve—
loped, optimized, and rigorously compared through real-
world evaluation scenarios. These models are RNN, GRU,
LSTM, and transformer. Firstly, the dataset was pre-
processed, and segmented, where 80% of dataset were
used for training, 10% for validation and 10% for testing.
Comprehensive hyperparameter tuning was conducted to
optimize model architectures, focusing on key parameters
such as the number of units, dropout rates, and learning
rates. The transformer model was augmented with posi—
tional encoding to effectively preserve temporal depen—
dencies within the input sequences. Furthermore, all
models were evaluated across multiple random seeds to
ensure the reliability and robustness of results.

Across all evaluation metrics, the GRU model
attained the highest coefficient of determination of
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0.9759 and the lowest error metrics (MSE, RMSE, and
MAE). The results confirmed that the GRU model de—
monstrated the best performance among all models,
especially in terms of mean absolute error and root
mean squared error. Although the LSTM model exhi—
bited competitive performance, the other models sho—
wed relatively lower accuracy. While the GRU model
exhibited superior predictive performance across all
evaluation metrics, the comparatively moderate results
of the transformer architecture do not diminish its
theoretical potential. Rather, they underscore opportu—
nities for methodological advancement and refinement.
The inherent capacity of the transformer’s attention me—
chanism to model long-range dependencies and capture
intricate temporal relationships remains underexploited
in its current configuration.

To enhance interpretability, SHAP analysis was
applied to investigate feature contributions. This ana—
lysis, performed on a representative subset of the data to
reduce computational demands, revealed that while
some features showed variable importance across
individual predictions, others consistently influenced the
models’ outputs. Complementing this, ablation analysis
provided a global sensitivity perspective. These ana—
lyses confirmed the critical roles of certain meteoro—
logical variables such as temperature and humidity,
which, despite sometimes low local SHAP values, were
essential for maintaining overall predictive accuracy.

Given the potential for changes in environmental
conditions and the availability of new data when these
models are used in real applications. It is worth men—
tioning that, retraining the models should be done
periodically, perhaps annually or quarterly, to adapt to
evolving environmental conditions and ensure accuracy.
The used models differ in how they process sequential
data, with LSTMs and Transformers excelling at cap—
turing long-term dependencies, while Transformers
require more computational resources. Adding more
features like wind speed at different altitudes, solar
radiation, or atmospheric pressure gradients could en—
hance model accuracy by providing a more compre—
hensive understanding of the factors influencing wind
patterns.

Future research directions include the incor—poration
of external environmental variables (e.g., solar
radiation, terrain elevation, and seasonal indices), integ—
rating real-time data, the exploration of probabilistic
forecasting techniques to better quantify prediction un—
certainty, and the development of adaptive learning
strategies such as online learning or transfer learning to
improve model adaptability across varying climatic
conditions and geographical locations.
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KOMITAPATUBHA EBAJTYALIUJA
PEKYPEHTHHUX U HA TAKIbU 3ACHOBAHUX
MOJEJA IYBOKOI' YUEIBA 3A
IMPOTHO3UPAILE BP3UHE BETPA

H.II. An-Kaxtanu, M.C. Adouy3, M.A. MoxeHnaec
C. Pexman

[IporHosupame Op3uHE BeTpa je KJbyyHO 3a nosehame
MIPOM3BO/KE CHEpPrHje BeTpa M MoOoJblIame euKac—
HocTH. Mlako ce TpaauinoOHaIHNA CTAaTUCTHIKY U (pr3nd—
KM MOJEJTH YeCTO KOpPHCTe, He YCIeBajy Ia oOyxBare
CJIOKEHY, HEJIMHEapHy ¥ BPEMEHCKH POMEHJbUBY MPU—
poLy MeTeopoyolIKuX mopartaka. Crora, oBa CTyauja
UCTpaXKyje YeTUPH apXUTEKType NTyOOKOT yderma: peKy—
pentHy HeypoHcky Mpexy (RNN), 3aTBopeHy peky—
peutny jemununy (GRU), myropodHy KpaTkopouHy
memopujy (LSTM) u tpanchopmarop. OBu Momenu cy
aHAIM3MpPaHU KOpHUIThemeM MYJITHBApHUjaHTHHX M CaT—
HUX METEOpOJIOIIKMX I0o/aTaka M3 pernoHa Am-Axca
TokoM 24 rommue (2001-2024). Ckyn mojaraka yKIby—
Yyje meT KapakTepucThuka: Op3uHy BeTpa Ha 10 merapa
m3Ha7 Tina (KOPUCTU ce Kao pedepeHna), TeMueparypy
Bazayxa Ha 2 MeTpa, CreuuduyHy BIOKHOCT Ha 2
MeTpa, cMep BeTpa Ha 10 MeTapa W MOBPIIWHCKA MPU—
tHcak. Mogenu cy oOyuenn Ha 80% ckymna mopaTaka,
Banuaupanu Ha 10% u tectupanu Ha npeocranux 10%.
GRU wmopnen je mocturao Hajoosbe mepdopmance ca
RMSE =0,3126 m/s u R>=0,9759.
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