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Comparative Evaluation of Recurrent 
and Attention-Based Deep Learning 
Models for Wind Speed Forecasting 
 
Wind speed forecasting is critical for enhancing wind energy output and 
improving efficiency. Although traditional statistical and physical models 
are commonly used but fail to capture the complex, non-linear, and time-
varying nature of meteorological data. Therefore, this study explores four 
deep learning architectures: Recurrent Neural Network (RNN), Gated 
Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and 
transformer. These models are analyzed using multivariate and hourly 
meteorological data from the Al-Ahsa region over 24 years (2001-2024). 
The dataset includes five features: wind speed at 10 meters above ground 
(used as a reference), air temperature at 2 meters, specific humidity at 2 
meters, wind direction at 10 meters, and surface pressure. The models 
were trained on 80% of the dataset, validated on 10%, and tested on the 
remaining 10%. The GRU model achieved the best performance with 
RMSE = 0.3126 m/s and R² = 0.9759. 
 
Keywords:Deep learning architectures; wind speed, short-term prediction; 
Recurrent Neural Network (RNN); Gated Recurrent Unit (GRU); Long 
Short-Term Memory (LSTM); and Transformer  

 
1. INTRODUCTION 

 
Traditionally, energy generation has relied heavily on 
electricity produced from fossil fuels or other 
conventional sources, where most systems require either 
fuel or grid-based electricity to operate. However, with 
rising energy consumption and the associated 
environmental impacts, there is a growing need to adopt 
more sustainable, low-emission energy sources for 
electricity and energy production [1-4]. As a response to 
the growing environmental concerns linked to fossil fuel 
combustion, many countries are transitioning toward 
renewable and sustainable energy sources. Kingdom of 
Saudi Arabia, in particular, has outlined clear national 
targets to annually reduce carbon emissions by 278 
million tons and increase the renewables share by 50% 
of total electricity generation by 2030. These efforts 
align with the country’s objective of achieving net-zero 
carbon emissions by 2060 [5]. 

Wind energy is a renewable and environmentally 
acceptable source of power that is an alternative to 
conventional fossil fuel-based energy systems. The 
main advantage of wind energy is its ability to generate 
electricity with minimal greenhouse gas emissions or 
other pollutants[6-10]. Thus, it is an eco-friendly system 
and an essential component of global decarbonization 
efforts to mitigate climate change. However, it has some 
drawbacks as well, including intermittency, noise pol–
lution, and the environmental costs of turbine produc–
tion and disposal, all of which limit its widespread 
adoption. 

 

The working principle of wind energy generation 
involves converting wind kinetic energy into electrical 
using wind turbines. The wind flow causes blades to 
rotate and generate power through gear box and the 
generator. Since, wind is an inexhaustible and widely 
available resource, it enables countries to diversify their 
energy portfolio toenhance energy security and reduce 
dependence on fossil fuels [8]. However, wind power 
deployment faces challenges due to its unpredictable 
and variable characteristics, which can undermine 
system reliability and power quality while increasing 
wind penetration levels. 

The electrical power generated by a wind turbine is 
directly dependent on the cube of wind speed, making it 
a critical in the production process. It indicates that 
small changes in wind speed may lead to significant 
variations in output power. Thus, accurate prediction of 
wind speed is crucial for optimizing turbine operation, 
scheduling energy supply, managing grid stability, and 
integrating wind power effectively into the electricity 
system [11]. These predictions can significantly reduce 
wind curtailments, helping to lower operational costs 
while increasing revenue in electricity market 
operations. However, accurate forecasting is affected by 
the inherent unpredictability and variability of the wind, 
making it difficult at times. Accordingly, many studies 
have attempted to develop and refine advanced 
forecasting techniques to better address the complexities 
of wind speed and power prediction [11-18]. 

Based on the existing literature, a wide spectrum of 
prediction methods has been used. These methods range 
from simple to complex approaches, each differing in 
characteristics and performance. In general, there are 
two types of forecasting: short-term and long-term, each 
with its own advantages. For example, short-term 
forecasts play a critical role in power system operations, 
particularly in day-ahead predictions, as they are 
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essential for unit commitment, load balancing, and 
scheduling [19-22]. On the other hand, long-term fore–
casts support strategic planning by anticipating seasonal 
trends and optimizing resource allocation; thus, redu–
cing reliance on reserve capacities [23]. In the recent 
times, machine learning (ML), artificial neural networks 
(ANNs) have emerged as some of the effective models 
for wind speed prediction. This is attributed to their 
non-linear learning capabilities, which can reduce wind 
power grid costs and support the selection of optimal 
reserve capacities at various time intervals [24-26]. 

Recurrent neural networks (RNNs) are used for 
sequential and time-series data as they retain a hidden 
state that evolves at each time step to capture temporal 
dependencies. Thus, RNNs are efficient for time-series 
wind speed predictions. However, standard RNNs often 
struggle to preserve information over long sequences 
due to the vanishing gradient problem [21]. To address 
this, gated variants, namely gated recurrent units (GRU) 
and long-short-term memory (LSTM) networks, incor–
porate learnable gating mechanisms that selectively 
retain and update relevant context over much longer 
horizons [22-26]. As a result, GRUs and LSTMs are 
particularly well suited for wind speed forecasting, 
where current values are heavily influenced by past 
behavior. In the present study, we implement and com–
pare three architectures: simple RNN, GRU, and LSTM 
to evaluate their effectiveness in predicting 24-hour 
wind speeds.  

Being able to retain hidden state of the sequential 
and time-series data, RNNs are used to capture temporal 
dependencies. Thus, RNNs are efficient for time-series 
wind speed predictions. However, standard RNNs often 
struggle to preserve information over long sequences 
due to vanishing gradient problem [27]. To address it, 
gated recurrent units (GRU) and long-short-term 
memory (LSTM) networks are used to retain and update 
relevant context over much longer horizons [28-32]. As 
a result, GRUs and LSTMs are particularly well suited 
for wind speed forecasting, where current values are 
heavily influenced by past behavior. In the present 
study, we implement and compare three architectures: 
simple RNN, GRU, and LSTM to evaluate their 
effectiveness in predicting 24-hour wind speeds.  

Recent advancements in wind speed forecasting 
have focused on addressing key challenges related to the 
nonlinearity, uncertainty, and volatility inherent in wind 
data [33]. Lv et al. [16] proposed a dynamic adaptive 
interval prediction model that integrates fuzzy infor–
mation granulation with a dynamically adjusted time 
window and least squares support vector machine. This 
method was designed to enhance the accuracy of pre–
diction point and reliability of intervals. By effectively 
capturing the non-stationary behavior of wind speed 
time series, their approach demonstrated superior 
performance across various interval evaluation metrics 
at confidence levels of 0.90 and 0.95. Both Maruthi et 
al. [20] and Amirteimoury et al. [24] investigated the 
challenge of wind speed variability with advanced hyb–
rid and ensemble techniques designed to enhance fore–
casting accuracy and grid integration. While Amirtei–
moury et al. developed a hybrid model combining 
Discrete Wavelet Transform (DWT) for signal smoot–

hing, Mutual Information (MI) for time-series compo–
nents extraction, the Coot Optimization Algorithm 
(COOT) for optimal feature selection, and a Bidi–
rectional LSTM network for temporal modeling.Maruthi 
et al. [20] introduced a multi-model integration frame–
work (MIDF) based on the ensemble of DeepAR and 
Temporal Fusion Transformer (TFT). These studies 
attained coefficient of determination above 0.89. 

Unlike the prior studies, Xiao et al. [25] prioritized 
data quality and noise reduction as the foundation for 
accurate wind speed forecasting. Thus, they developed a 
hybrid approach combining Weighted Principal Com–
ponent Analysis (WPCA) and a Particle Swarm Optimi–
zation-tuned Gated Recurrent Unit (PSO-GRU) net–
work. WPCA was used to extract the most informative 
features while mitigating data noise, and PSO was 
employed to optimize the GRU model’s hyperpa–
rameters. This hybrid architecture achieved significant 
reductions in MAE and RMSE by 5.3% to 16% and 
improved R² scores by 2.1% to 3.1% compared to 
conventional models. Similarly, Du et al. [26]proposed 
framework integrates Variational Mode Decomposition 
(VMD) for effective signal denoising, Runge–Kutta 
Optimization (RUN) for fine-tuning decomposition 
parameters, and a Sequence-to-Sequence model with an 
Attention mechanism (Seq2Seq-Attention) for multi-
step forecasting. The study demonstrated substantial 
improvements in forecast accuracy, with correlation 
coefficients exceeding 0.9 across 1-to-12-hour predic–
tion horizons and up to a 21% increase in predictive 
performance.  

Despite significant advancements, considerable cha–
llenges remain in pre-processing noisy wind speed data, 
selecting the most informative features, and balancing 
prediction accuracy with computational efficiency. Mo–
reover, current models often lack the capacity to dyna–
mically adapt to changing atmospheric conditions or to 
seamlessly integrate domain knowledge. Recent lite–
rature emphasizes that continued progress in wind speed 
forecasting depends on the hybridization of advanced 
deep learning architectures with robust data processing 
techniques and adaptive learning capabilities. In res–
ponse to these gaps, the main objective of the present 
study is to systematically evaluate and compare the per–
formance of four prominent models, which are RNN, 
GRU, LSTM, and transformer, in forecasting wind spe–
ed using real-world meteorological datasets, focusing on 
their accuracy, robustness, and practical applicability. 
 
2. METHODOLOGY 

 
This study employed a detailed analysis to investigate the 
application of neural network architectures in wind 
prediction. The models are selected to predict wind speed 
using a dataset obtained from the NASA POWER 
database (https://power.larc.nasa.gov/). NASA POWER 
provides high-quality meteorological data from satellite 
observations and weather models, with global coverage 
that supports diverse applications. Additionally, the da–
taset spans a wide range of climatic conditions, inclu–
ding remote and extreme environments, which can int–
roduce complexities and affect the accuracy of wind pre–
dictions in specific regions. Once the dataset was obta–
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ined, it was pre-processed, and features were extracted. 
These features were then used in the neural network 
models to predict wind speed. Figure 1 summarizes the 
overall methodological framework for this study. 

 
Figure 1. Methodological framework: Acquired data are pre-
processed, features are extracted, and then used for 
prediction 

 

2.1 Dataset 
 

Al-Ahsa region, located in the eastern part of the 
Kingdom of Saudi Arabia, is widely recognized for its 
desert climate observing high temperatures. During the 
summer months, the area experiences average daily ma–
ximum temperatures that typically range between 44°C 
and 46°C, making it one of the hottest regions in the 
country [34]. These climatic conditions pose significant 
challenges for various sectors, including agriculture, 
energy, and urban planning, which rely heavily on 
accurate meteorological data for decision-making and 
resource management. The dataset used in this inves–
tigation contains meteorological measurements colle–
cted hourly from this region over 24 years (from 2001 to 
2024), resulting in 210,360 data points.  

 
2.2 Pre-processing of the Data 

 
Pre-processing is a crucial step to ensure data quality 
and improve model performance. In Python software 
(version 3.11), the raw data underwent several pre-pro–
cessing steps, like handling missing values, normalizing 
it, and selecting relevant features for wind speed pre–
diction. After the dataset was loaded, the time-related 
columns (Year, MO, DY, and HR) were renamed as 
year, month, day, and hour, respectively. Then, a new 
timestamp column was created by combining these 
time-related columns into a single datetime column to 
ensure chronological order. This was essential for time-
series analysis to sort the data based on the newly 
created timestamp. Afterward, the data was sorted based 
on the “TIMESTAMP” to maintain the correct sequence 
of observations. A key aspect of this pre-processing was 
handling missing values (if exists), though in this 
dataset, no explicit missing values were found. If any 
gaps were detected, interpolation techniques could have 
been used to fill missing time-series data based on the 
surrounding points. The dataset was then filtered to 
include only the relevant features. One of the most 
significant pre-processing steps involved normalizing 
the features using a Min-Max scaler. 

The min-max scaler was applied to range between 0 
and 1. This step is important for improving the perfor–
mance of machine learning models, which are sensitive to 
the magnitude of input values. Without this scaling, 
features with larger ranges could dominate the learning 
process, leading to suboptimal model performance. By 
normalizing the features, the data was made more 

uniform and ready for model training. Finally, the scaled 
features were combined with the TIMESTAMP column. 

 
2.3 Feature Extraction  

 
Once the data was pre-processed, the features in the 
dataset were used to facilitate the prediction process. 
The features were selected based on their established 
significance in meteorological modeling and their direct 
influence on the accuracy of wind speed prediction. The 
features are illustrated in Table 1. The wind speed 
(WS10M) and the wind direction (WD10M) are mea–
sured at 10 meters above the ground (used as a refe–
rence). The air temperature (T2M) and the specific 
humidity (QV2M) are measured at 2 meters above the 
ground. The wind direction at 10 meters indicates the 
direction from which the wind is blowing at a height of 
10 meters above the ground. To account for its circular 
nature, the WD10M was transformed using its sine and 
cosine components. 

Wind speed and other meteorological variables can 
vary significantly at different altitudes due to factors 
such as atmospheric stability. By using data from mul–
tiple heights, a more comprehensive representation of 
the atmospheric conditions influencing wind patterns at 
various levels can be obtained. Moreover, the dataset 
does not offer measurements at all possible heights or a 
flexible selection of heights. Other combinations of fea–
tures could have been explored. For example, features 
such as relative humidity, solar radiation, or cloud cover 
could be included to capture other atmospheric variables 
that influence wind patterns and speed. Another alter–
native would be using forecasted weather data or sea–
sonal variations to improve model accuracy, especially 
in regions with strong seasonal wind variations. 

Table 1. Relevant features used for accurate wind speed 
prediction 

Feature Description Units 

WS10M 
Wind speed at 10 
meters above ground 

meters/second (m/s) 

T2M 
Air temperature at 2 
meters 

degrees Celsius (°C) 

QV2M 
Specific humidity at 2 
meters 

grams/kg (g/kg) 

WD10M 
Wind direction at 10 
meters 

degrees (°) 

PS Surface pressure kilopascals (kPa) 
 

2.4 Neural Models Implementation and Training 
 

The pre-processed data was divided into three segments: 
training (80%), validation (10%), and testing (10%). 
Based on the data split strategy, the training set covers a 
total of 168,290 hourly samples, while the validation 
and test sets contain 21,034 and 21,036 hourly samples, 
respectively. The 80/10/10 configuration offered the 
best balance between training data and model evalu–
ation. Following such a temporal split ensures that the 
model is tested on unseen data, which is important to 
simulate a real-world forecasting scenario. Also, it helps 
to eliminate data leakage that occurs in random splits. 

Four neural models were used in this study, which 
are RNN, GRU, LSTM, and Transformer networks. 
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These models were implemented and trained on the pre-
processed data to predict wind speed. All models 
followed a sequence-to-one regression design, where a 
24-hour sliding window of past data was used to predict 
wind speed for the following hour. This structure 
reflects practical forecasting applications and enables 
the models to learn from recent temporal patterns. For 
the initial setup, each model began with a single recur–
rent or encoder layer, followed by a dense layer and a 
final output node for regression tasks. Once the baseline 
architecture was established, various parameters, such 
as the number of units, the addition of a second re–
current layer, dropout rates, and learning rate, were fine-
tuned to improve performance. All models were trained 
for 30 epochs, providing enough iterations for conver–
gence without overfitting. This number was chosen after 
considering the trade-off between adequate learning and 
model generalization, though techniques like early stop–
ping could further refine training in future experiments.  

The optimization parameters were determined thro–
ugh a process of hyperparameter tuning, where multiple 
combinations of model parameters were tested to iden–
tify the best performing configuration. The tuning pro–
cess involved adjusting key parameters such as dropout 
rate and learning rate, among others. The goal was to 
maximize model performance, ensuring that it learned 
from the data effectively while avoiding overfitting. For 
example, the RNN model was optimized with 192 units 
in the first recurrent layer, and a dropout rate of 0.2, 
which helped prevent overfitting by randomly dropping 
some neurons during training. The GRU was configured 
with 128 units in its first layer and similarly had a 0.2 
dropout rate. The LSTM model, which is known for its 
ability to handle long-range dependencies, was optimi–
zed with 160 units in the first recurrent layer and a 0.1 
dropout rate, emphasizing its ability to learn from 
complex sequences while minimizing overfitting. For 
the Transformer model, a more advanced architecture, 
the hyperparameters were adjusted to incorporate 3 
attention heads in the encoder layers, which helps the 
model focus on different aspects of the input sequence 
at once. The learnable positional encoding was included 
to help the Transformer model understand the order of 
sequence elements, a feature crucial for handling time-
series data. Each model was optimized using the Adam 
optimizer, which is widely used for training deep 
learning models due to its efficient gradient descent 
approach. A summary of the optimization parameters 
can be found in Table 2. 

Evaluating the neural network models is a crucial 
step for performance of the trained models. Specifically, 
the models were assessed based on their ability to accu–
rately forecast wind speed values using the test dataset. 
Four key statistical measures Mean Squared Error 
(MSE), Mean Absolute Error (MAE), Root Mean Squa–
red Error (RMSE), and the Coefficient of Determination 
(R²) were employed. To illustrate, MSE and RMSE are 
more sensitive to large prediction deviations, making 
them useful for evaluating models. MAE, on the other 
hand, provides average absolute difference between 
predicted and actual values. The R² score measures how 
well the predicted and true values match each other. By 
analyzing these metrics, the effectiveness and reliability 

of the trained models were systematically evaluated, 
allowing for a robust comparison between different 
architectures and configurations. 

Table 2. Comparison of optimized hyperparameters across 
all evaluated models 

Parameter RNN GRU LSTM Transformer 

Recurrent 
Layer 1 

192 
units 

128 
units 

160 
units 

3 heads,  
32-dim 
(Attention) 

Recurrent 
Layer 2 

32 units 
128 
units 

96 units 
3 heads,  
32-dim 
(Attention) 

Dense 
Layer Units 

96 64 96 64 

Dropout 
Rate 

0.2 0.2 0.1 0.3 

Learning 
Rate 

1.888 
×10-4 

4.692 
×10-4 

1.661 
×10-4 

11.99 
×10-4 

Total 
Trainable 
Parameters 

48,481 159,233 214,337 122,625 

Sequence 
Length 

24 24 24 24 

Architecture 
Depth 

2layers 2 layers 2layers 
2 encoder 
blocks 

Optimizer Adam Adam Adam Adam 
Positional 
Encoding 

- - - 
Learnable 
embeddings 

 
2.5 SHAP and Ablation Analyses 

 
SHAP (SHapley Additive exPlanations) and ablation 
analyses are widely used to interpret machine learning 
models and assess feature importance. SHAP technique 
measures the contribution of each input parameter to 
demonstrate how individual features influence the 
output. SHAP technique measures the contribution of 
each input feature to the model’s prediction to demon–
strate how individual features influence the output, 
while the ablation technique is the removal of individual 
features or groups of features from the trained model 
and observing the resulting change in performance of 
the model. These methods are highly useful in analyzing 
model behavior, diagnosing potential biases, and selec–
ting relative features. Therefore, SHAP analysis was 
conducted on all features across the RNN, GRU, LSTM, 
and transformer models to evaluate their relative impor–
tance. SHAP is reliable because it ensures fair, consis–
tent explanations by considering all possible feature 
combinations, providing both local and global inter–
pretability. The SHAP library is a widely used Python 
tool for efficiently computing Shapley values and 
offering visualizations like summary plots, force plots, 
and dependence plots. Similarly, in the ablation 
analysis, each feature (T2M, QV2M, WD10M, and PS) 
was individually removed from the input set to assess its 
specific impact on model accuracy. For each ablation 
experiment, the corresponding feature was excluded, the 
models were retrained using the remaining features, and 
performance metrics were recorded. This process was 
repeated for each feature to evaluate its contribution to 
the overall model performance. 

 
3. RESULTS 
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3.1 Dataset Pre-processing  
 

The pre-processed dataset was thoroughly analyzed, 
where the main features used in this study were T2M, 
QV2M, WD10M, and PS. The WS10M was used as a 
reference to compare the predicted wind speed with true 
values. The boxplot of the normalized features is pre–
sented in Figure 2 to analyze distribution of features. 
The black dots in Figure 2 represent outliers for 
WS10M and QV2M, indicating data points significantly 
higher or lower than the rest. They are shown only for 
these two variables because the other parameters (T2M, 
WD10M, and PS) do not have extreme values outside 
the defined outlier range. 

 
Figure 2. Boxplots of normalized meteorological parame–
ters: WS10M, T2M, QV2M, WD10M, and PS, showing the 
distribution, variability, and presence of outliers in the 
dataset 

3.2 Feature Extraction  
 
The features used in this investigation were chosen 

depending on the relevance to the prediction task. Table 
3 presents summary statistics for each feature. Among 
all, T2M shows the highest mean value of 0.561 and a 
notably high median of 0.568, indicating consistently 
significant values.  

 
Figure 3. Histogram distributions of meteorological 
parameters illustrating the frequency and variability of 
observed values 

WD10M also exhibits a high mean of 0.555, but 
with a much larger standard deviation of 0.350, 
reflecting substantial variability. In contrast, WS10M 
and QV2M show lower mean values of 0.262 and 0.222, 
respectively. PS has a moderate mean of 0.470 and low 
standard deviation of 0.746, suggesting relatively stable 
values across the dataset. Moreover, the histogram 
distribution of each feature, shown in Figure 3, shows 
the frequency and spread of each feature’s values to 
identify patterns, skewness, and potential outliers in the 
data. In Table 3, all the normalized values are reported. 

Table 3. Statistics for each feature, including mean, 
median, and standard deviation 

Feature Mean Median Standard Deviation 
WS10M 0.262 0.235 0.133 
T2M 0.561 0.568 0.199 
QV2M 0.222 0.193 0.125 
WD10M 0.555 0.561 0.350 
PS 0.470 0.484 0.197 

 
3.3 Neural Models Implementation and Training 
 
3.3.1 RNN Model 

 
The performance of the RNN model was evaluated 
using the metrics, provided earlier. The performance 
matricsrefers to the specific performance indicators are 
used to evaluate the effectiveness of the various models 
employed for wind prediction.  

 
Figure 4. Comparison between the actual and predicted 
values for multiple time segments. The plots illustrate the 
performance of RNN model in capturing temporal variati–
ons and short-term fluctuations in wind speed, highlighting 
the accuracy and potential discrepancies between 
observed and predicted values 

These metrics are Mean Squared Error (MSE), Mean 
Absolute Error (MAE), Root Mean Squared Error 
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(RMSE), and the Coefficient of Determination (R²). It 
provides a quantitative measure of how well the model 
predicts the wind speed or direction compared to actual 
observed values.Figure 4 shows a set of segments of 
actual versus predicted WS10M. It is noticeable that the 
predicted values have the same trend as the actual va–
lues. Based on Table 4, MSE value is 0.1191m/s bet–
ween predicted and actual values. The MAE is 
0.2191m/s, reflecting the average magnitude of predic–
tion errors regardless of direction. The RMSE, which 
provides an error measure in the original units, is 
0.3452m/s, highlighting the typical prediction deviation. 
Finally, the R² is 0.9707, demonstrating that the model 
explains approximately 97.07% of the variance in the 
observed data, indicating a strong predictive capability. 

Table 4. Performance metrics of the RNN model for wind 
speed prediction using a random seed of 42 

Metrics of RNN Model 
MSE (m/s) MAE (m/s) RMSE (m/s) R² 

0.1191 0.2191 0.3452 0.9707 
 
3.3.2 GRU Model 

 
The proposed GRU model was evaluated using the error 
metrics explained above. The predicted values are 
almost identical to actual values of WS10M as shown in 
Figure 5.  

 
Figure 5. Comparison between the actual and predicted 
values across multiple time segments. The plots illustrate 
the performance of GRU model in capturing temporal 
variations and short-term fluctuations in wind speed 

Multiple examples of comparison between the pre–
dicted and the actual values of the wind speed over 
different time pans show an excellent trend matching, 
Figure 5.The R² value of 0.9759 showed an excellent 

match between the predicted and the actual values, 
Table 5. Lower values of RMSE, MAE, and MSE of 
0.3126 m/s, 0.1928 m/s, and 0.0977; further strengthen 
the good performance of the GRU model. 

Table 5. Performance metrics of the GRU model for wind 
speed prediction using a random seed of 42 

Metrics of GRU Model 
MSE (m/s) MAE (m/s) RMSE (m/s) R² 

0.0977 0.1928 0.3126 0.9759 
 

3.3.3 LSTM Model 
 

The LSTM model showed further better performance 
where the difference between predicted and actual 
values is concerned, as illustrated in Figure 6. This 
model achieved an MSE of 0.1120m/s, MAE of 
0.2062m/s, and RMSE of 0.3347m/s, as summarized in 
Table 6.The model’s R² value suggests that appro–
ximately 97.24% of the variance in the observed data is 
explained by the model. 

 
3.3.4 Transformer Model 

 
The transformer model also showed a good perfo–
rmance, where predicted values were close to actual 
values, as shown in Figure 7. The R2 value of 0.9402 
indicates a strong correlation between the predicted and 
observed data, Table 7.  

 
Figure 6. Comparison of actual versus predicted wind 
speed across multiple time segments. The plots illustrate 
the performance of LSTM model in capturing temporal 
variations and short-term fluctuations in wind speed, 
highlighting the accuracy and potential discrepancies 
between observed and predicted values 
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Table 6. Error values for LSTM model for wind speed 
prediction using a random seed of 42 

Metrics of LSTM Model 
MSE (m/s) MAE (m/s) RMSE (m/s) R² 

0.1120 0.2062 0.3347 0.9724 
 
3.3.5 Comparison Across Models 

 
To compare the performance of different predictive mo–
dels, a zoomed-in segment is plotted for visual inspec–
tion, where both actual and predicted wind speeds are 
compared for each model. The zoomed-in segment 
helps identify discrepancies, trends, and overall model 
reliability, as shown in Figure 8. The plots show the 
comparison of actual versus predicted wind speed for 
the first segment across four different models: RNN, 
GRU, LSTM, and Transformer. All models display 
relatively close predictions to the actual values, with the 
Transformer model appearing to capture the overall 
trend more smoothly, particularly in handling fluctu–
ations. The GRU and LSTM models also show strong 
performance but with slight discrepancies in higher and 
lower peaks. The RNN model exhibits more noticeable 
variations between the predicted and actual values, 
especially in the latter part of the segment. 

 
Figure 7. Comparison of actual versus predicted wind 
speed across multiple time segments. The plots illustrate 
the performance of transformer model in capturing 
temporal variations and short-term fluctuations in wind 
speed, highlighting the accuracy and potential 
discrepancies between observed and predicted values 

Table 7. Error values for transformer model for wind speed 
prediction using a random seed of 42 

Metrics of Transformer Model 
MSE (m/s) MAE (m/s) RMSE (m/s) R² 

0.2430  0.3439 0.4930 0.9402 

 
Figure 8. Zoomed-in view of actual vs. predicted wind 
speed for the first segment across different models. 

 
3.3.6 Multiple Runs of Models 
 
Different seed numbers in machine learning algorithms 
affect the accuracy of tested models because they 
control random processes like weight initialization, data 
shuffling, and stochastic operations such as dropout in 
neural networks. A different seed leads to a different 
initialization of model weights, which can cause the 
model to converge to a different local minimum during 
training. This variability in the training process can 
impact the final performance and accuracy of the model. 
Thus, the use of different seeds typically results in slight 
variations in model accuracy because the model might 
learn slightly different or make different decisions 
during training. This randomness, especially in complex 
models, can lead to changes in accuracy between runs. 
Running the model multiple times with different seeds 
and reporting the average accuracy can provide a more 
stable and reliable evaluation of its performance. 

Table 8. Performance evaluation of all models across five 
different random seeds (7, 42, 88, 123, 2024) 

Model Seed 
MSE 
(m/s) 

MAE 
(m/s) 

RMSE 
(m/s) 

R²  

7 0.2151 0.3103 0.4637 0.9471 
42 0.1191 0.2191 0.3452 0.9707 

88 0.1795 0.2853 0.4237 0.9558 

123 0.1840 0.2875 0.4289 0.9547 
RNN 

2024 0.2211 0.3490 0.4702 0.9456 

7 0.1569 0.2593 0.3962 0.9614 
42 0.0977 0.1928 0.3126  0.9759 

88 0.1471 0.2467 0.3836 0.9638 

123 0.1473 0.2485 0.3838 0.9637 
GRU 

2024 0.1549 0.2565 0.3936 0.9619 

7 0.2179 0.3190 0.4668 0.9464 
42 0.1120 0.2062 0.3347 0.9724 

LSTM 

88 0.1998 0.3031 0.4469 0.9508 
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123 0.1989 0.3006 0.4460 0.9510 

2024 0.2061 0.3023 0.4540 0.9493 

7 0.2347   0.3502   0.4844   0.9422   

42 0.2430  0.3439 0.4930 0.9402 

88 0.2933   0.4156   0.5415   0.9278   

123 0.2106   0.3101   0.4589   0.9481   
Transformer 

2024 0.2161   0.3112   0.4648   0.9468 

 
The predictability of all models was evaluated across 

five different random seeds (7, 42, 88, 123, 2024), see 
Table 8. The GRU consistently achieved the best per–
formance, with the lowest MSE values ranging from 
0.0977 to 0.1569 and the highest R² values between 
0.9614 and 0.9759, indicating strong predictive accu–
racy. The LSTM and RNN models showed moderate 
predictability, with MSE values between 0.1120 and 
0.2211, and R² values around 0.9456 to 0.9724. The tra–
nsformer model exhibited slightly higher MSE values 
(0.2106 to 0.2933) and lower R² scores (0.9278 to 
0.9481), indicating relatively less accurate predictions 
under the tested configurations.  
 
3.4 Neural Models Implementation and Training 
 
3.4.1 SHAP Analysis 

 
SHAP analysis was conducted on the dataset to analyze 
feature contributions in each model prediction. In RNN 
model, the model predicted a value of approximately 
0.20, slightly below the SHAP base value, as shown in 
Figure 9(a). The most influential factor in lowering the 
prediction was WS10M. T2M also contributed nega–
tively, while QV2M, WD10M, and PS had positive 
contributions, increasing the prediction. 

 

Figure 9. SHAP analysis of feature contributions to the (a) 
RNN, (b) GRU, (c) LSTM, and (d) Transformer model 
predictions 

Similar interpretations were made across other 
models. In the GRU model, only WD10M and PS inc–
reased the prediction, as shown in Figure 9(b). In the 
LSTM model, WD10M, QV2M, and PS showed 

positive contributions, as shown in Figure 9(c). For the 
Transformer model, PS, T2M, and QV2M increased the 
prediction, as shown in Figure 9(d). While these fin–
dings demonstrate model behavior, they should be 
interpreted cautiously. 
 
3.4.2 Ablation Analysis 

 
For each feature, models were retrained after feature 
removal, and performance metrics were recorded, as 
presented in Table 9. Across all models, the removal of 
T2M resulted in a noticeable decline in performance, 
especially for the GRU and LSTM models. These 
findings confirm the positive contribution of T2M fea–
ture in increasing model predictive accuracy. For ins–
tance, the GRU model’s RMSE increased from its 
typical baseline (=0.3126m/s) to 0.3257m/s when T2M 
was excluded. Similarly, removing QV2M led to 
moderate degradation, particularly in LSTM and RNN, 
while GRU remained relatively robust (RMSE: 
0.3169m/s). Interestingly, removing WD10M had a 
smaller impact, with performance metrics showing only 
slight increases in error across all models, suggesting its 
influence may be more context dependent. The exc–
lusion of PS also caused minor degradation in all 
models, though GRU again demonstrated the highest 
resilience. Notably, the transformer model showed 
consistently higher error values regardless of which 
feature was removed, indicating its relative sensitivity 
and potentially lower adaptability in this task setting.  

Table 9. Impact of individual feature removal on model per–
formance. Each model was retrained without one feature 
(T2M, QV2M, WD10M, or PS), and performance metrics 
(MSE, MAE, RMSE, R²) recorded to assess the contribution 
of each to wind speed prediction 

Features  Model 
MSE 
(m/s) 

MAE 
(m/s) 

RMSE 
(m/s) 

R² 

RNN 0.1382 0.2342 0.3717 0.9660 

GRU 0.1061  0.2007 0.3257 0.9739 
LSTM 0.1255  0.2189 0.3542 0.9691 

Without 
T2M 

Transformer 0.2203 0.3181 0.4694 0.9458 
RNN 0.1374 0.2380 0.3707 0.9662 
GRU 0.1004  0.1953 0.3169 0.9753 
LSTM 0.1167 0.2117 0.3417 0.9713 

Without 
QV2M 

Transformer 0.2058  0.3001 0.4536 0.9493 
RNN 0.1361  0.2336 0.3689 0.9665 
GRU 0.1182  0.2061 0.3437 0.9709 
LSTM 0.1351  0.2261 0.3675 0.9667 

Without 
WD10M 

Transformer 0.2081   0.3186 0.4562 0.9488 
RNN 0.1261 0.2258 0.3551 0.9689 
GRU 0.1002  0.1926 0.3165 0.9753 
LSTM 0.1149  0.2133 0.3389 0.9717 

Without 
PS 

Transformer 0.1977  0.2909 0.4447 0.9513 
 
4. DISCUSSION 

 
The study presented a comprehensive approach to deve–
lop and evaluate four deep learning models for wind 
speed forecasting using high-resolution hourly meteo–
rological data obtained forAl-Ahsa region over a 24-
year period. To achieve the objective of this study, a 
rigorous methodological approach was employed, in–
volving comprehensive data pre-processing, sequential 

(a) 
 
 
 
 
 
(b) 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
(d) 
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data splitting, features selection, and models archi–
tecture design.    

The four architectures were constructed to predict 
wind speed as intended. The RNN model demonstrated 
strong predictive capability and successfully captured 
temporal dependencies in the input features. Visual 
inspection revealed a close alignment between actual 
and predicted wind speeds, as shown in Figure 4. 
Although RNN model is the simplest among the 
recurrent models, it performed reasonably well, with an 
R² of 0.9707 and error values moderately higher than 
GRU and LSTM, as illustrated in Table 4. The GRU 
model consistently outperformed its counterparts across 
all evaluation metrics, where predicted values perfectly 
overlapped actual values, as shown in Figure 5. It 
achieved the lowest error values (MSE: 0.0977m/s, 
MAE: 0.1928 m/s, RMSE:0.3126 m/s) and the highest 
coefficient of determination (R² = 0.9759), as illustrated 
in Table 5.  

The LSTM model also demonstrated strong perfor–
mance, with an R² of 0.9724, as illustrated in Figure 6 
and Table 6. Although its error metrics were higher than 
those of GRU, it still outperformed both the standard 
RNN and transformer models. It indicates that while 
LSTM is capable of handling complex temporal struc–
tures, the GRU may achieve similar or better per–
formance with fewer parameters and faster training. 
Lastly, the transformer, despite its success in many 
sequential tasks, showed the weakest performance in 
this study. As illustrated in Table 7, the transformer 
lagged behind all three recurrent models with the 
highest MSE of 0.2430 m/s and lowest R² of 0.9402. 
This could be attributed to the model’s architecture and 
data size, which may favor recurrence-based models 
over self-attention mechanisms. The transformer may 
require more extensive data and tuning to match the 
performance of recurrent models in this context. 
Nonetheless, its statistical metrics remain well within 
acceptable limits, indicating reliable model perfor–
mance. Overall, all models achieved high coefficients of 
determination ranging from approximately 0.94 to 0.97, 
demonstrating their effectiveness in wind speed 
forecasting. Since the coefficient of determination 
ranges from 0 to 1, values closer to 1 indicate a stronger 
agreement between the predicted and observed data. 

The consistent superiority of the GRU model 
performance across all random seeds, as shown in Table 
8, suggests that its architecture is particularly well-
suited for the temporal dynamics present in meteoro–
logical data. Its gating mechanism appears effective in 
preserving relevant temporal dependencies while mini–
mizing overfitting and noise sensitivity. The moderate 
performance of the transformer model, despite its 
growing popularity in time-series forecasting, may 
reflect a mismatch between its self-attention-based 
design and the relatively smooth, low-frequency pat–
terns typical of meteorological time series. The relati–
vely high variability in R² across models, particularly in 
the transformer, also points to differences in stability 
under random initialization. This sensitivity may have 
implications for real-world deployment, where models 
need to generalize well despite slight changes in training 
conditions. As the performance of the GRU model 

remained nearly consistent across different seeds, with 
only small variations in results, it can be considered 
more reliable for forecasting. 

It is worth mentioning that the development of RNN, 
GRU, LSTM, and Transformer models for wind predic–
tion varies significantly in terms of complexity and 
computational resource requirements. RNNs are the 
simplest and least computationally demanding but stru–
ggle with long-term dependencies due to vanishing 
gradient problems. GRUs and LSTMs address this issue 
by introducing gates to manage memory, making them 
more complex and computationally expensive, with 
LSTMs requiring more resources due to their more 
intricate structure. Transformers, while powerful for 
capturing long-range dependencies, have the highest 
complexity and require substantial computational reso–
urces, especially for training on large datasets, due to 
their attention mechanism and parallelization needs. In 
terms of temporal requirements, training time increases 
progressively from RNNs to Transformers, with trans–
formers often needing the longest training times due to 
their high parameter count and large memory usage. 

Based on Figures 9(a), (b), (c), and (d) and Table 9, 
the SHAP and ablation analyses together reveal that 
input features do not contribute equally across models. 
T2M and QV2M showed low SHAP values in some 
predictions, which may indicate a limited impact on 
model performance. However, ablation results revealed 
that removing these features significantly reduced mo–
del performance, indicating they play a more important 
role overall than SHAP alone suggests.The minor 
performance degradation caused by removing PS and 
WD10M may indicate redundancy or collinearity 
among meteorological features. However, the fact that 
GRU model still performed relatively well even when 
these features were excluded highlights its robustness in 
handling reduced or partially missing data, which is an 
important practical advantage in real-world meteoro–
logical applications where sensor failures or missing 
data are common. 

When compared to existing literature, the present 
study shows highly competitive performance in wind 
speed forecasting, particularly with the GRU model. As 
illustrated in Table 10, the GRU architecture achieved an 
R² value of 0.9759 and an RMSE of 0.3126m/s, 
outperforming or matching the R² values of several 
advanced hybrid models applied in diverse geographical 
settings and with varying temporal resolutions. Notably, 
while some studies reported higher R² scores, such as 
Amirteimoury et al. [24] reported coefficient of deter–
mination as 0.999. However, such results are often ob–
tained under shorter forecast horizons (e.g., 1-hour) and 
potentially more favorable climatic conditions. In 
contrast, the models developed in this study were 
designed for a 24-hour forecast horizon and tested under 
the challenging meteorological conditions of Al-Ahsa, 
Saudi Arabia, a region characterized by extreme desert 
climate variability. The strong performance observed, 
particularly for GRU and LSTM models, underscores the 
effectiveness of the methodological framework adopted 
in this work, including the choice of input features, the 
sequential data segmentation strategy, and the design of 
robust recurrent architectures. Significantly, this perfor–
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mance was achieved without reliance on computationally 
intensive hybrid techniques, complex optimization 
algorithms, or elaborate data pre-processing. This simp–
licity enhances the practical applicability of the models, 
making them well-suited for deployment in operational 
environments with limited computational resources.  

Table 10. Comparison of the performance of models in the 
current study with other approaches reported in different 
studies and regions 

Ref. Method 
MSE 
(m/s) 

MAE 
(m/s) 

RMSE 
(m/s) 

R2 

[16] 
FIG-MSS-
LSSVM 

- - - 0.936 

[26] 

RUN-
VMD-
Seq2Seq-
Attention 

3.873 - - 0.952 

[35] C-LSTM 0.437 0.127 - 0.913 
DeepAR 0.00494 0.04609 0.07026 0.780 
TFT 0.00294 0.0595 0.05422 0.850 [20] 
MIDF 0.0035 0.01739 0.01913 0.890 

[24] 
DWT-MI-
BiLSTM-
COOT 

0.009 0.069 - 0.999 

[25] 
WPCA-
PSO-GRU 

- 1.43 2.22 0.917 

[36] 
EEMD-BA-
RGRU-
CSO 

- 0.181 0.225 0.988 

RNN 0.1191 0.2191 0.3452 0.9707 
GRU 0.0977 0.1928 0.3126  0.9759 
LSTM 0.1120 0.2062 0.3347 0.9724 

C
ur

re
nt

 
S

tu
dy

 

Transformer 0.2430  0.3439 0.4930 0.9402 
 
5. CONCLUSIONS 

 
This study provides a comprehensive evaluation of 
multiple deep learning architectures for short-term wind 
speed forecasting, utilizing an extensive meteorological 
dataset collected from the Al-Ahsa region. The primary 
objective of this study was to develop, optimize, and 
analyze multiple deep learning architectures for accurate 
short-term wind speed forecasting using long-term 
meteorological data. The study aimed to evaluate these 
models’ predictive performance, robustness, and gene–
ralization ability under realistic operational conditions, 
while also investigating feature importance through 
interpretability (SHAP) and sensitivity (ablation). 

In this study, four sequence-based models were deve–
loped, optimized, and rigorously compared through real-
world evaluation scenarios. These models are RNN, GRU, 
LSTM, and transformer. Firstly, the dataset was pre-
processed, and segmented, where 80% of dataset were 
used for training, 10% for validation and 10% for testing. 
Comprehensive hyperparameter tuning was conducted to 
optimize model architectures, focusing on key parameters 
such as the number of units, dropout rates, and learning 
rates. The transformer model was augmented with posi–
tional encoding to effectively preserve temporal depen–
dencies within the input sequences. Furthermore, all 
models were evaluated across multiple random seeds to 
ensure the reliability and robustness of results. 

Across all evaluation metrics, the GRU model 
attained the highest coefficient of determination of 

0.9759 and the lowest error metrics (MSE, RMSE, and 
MAE). The results confirmed that the GRU model de–
monstrated the best performance among all models, 
especially in terms of mean absolute error and root 
mean squared error. Although the LSTM model exhi–
bited competitive performance, the other models sho–
wed relatively lower accuracy. While the GRU model 
exhibited superior predictive performance across all 
evaluation metrics, the comparatively moderate results 
of the transformer architecture do not diminish its 
theoretical potential. Rather, they underscore opportu–
nities for methodological advancement and refinement. 
The inherent capacity of the transformer’s attention me–
chanism to model long-range dependencies and capture 
intricate temporal relationships remains underexploited 
in its current configuration.  

To enhance interpretability, SHAP analysis was 
applied to investigate feature contributions. This ana–
lysis, performed on a representative subset of the data to 
reduce computational demands, revealed that while 
some features showed variable importance across 
individual predictions, others consistently influenced the 
models’ outputs. Complementing this, ablation analysis 
provided a global sensitivity perspective. These ana–
lyses confirmed the critical roles of certain meteoro–
logical variables such as temperature and humidity, 
which, despite sometimes low local SHAP values, were 
essential for maintaining overall predictive accuracy. 

Given the potential for changes in environmental 
conditions and the availability of new data when these 
models are used in real applications. It is worth men–
tioning that, retraining the models should be done 
periodically, perhaps annually or quarterly, to adapt to 
evolving environmental conditions and ensure accuracy. 
The used models differ in how they process sequential 
data, with LSTMs and Transformers excelling at cap–
turing long-term dependencies, while Transformers 
require more computational resources. Adding more 
features like wind speed at different altitudes, solar 
radiation, or atmospheric pressure gradients could en–
hance model accuracy by providing a more compre–
hensive understanding of the factors influencing wind 
patterns.  

Future research directions include the incor–poration 
of external environmental variables (e.g., solar 
radiation, terrain elevation, and seasonal indices), integ–
rating real-time data, the exploration of probabilistic 
forecasting techniques to better quantify prediction un–
certainty, and the development of adaptive learning 
strategies such as online learning or transfer learning to 
improve model adaptability across varying climatic 
conditions and geographical locations. 
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 КОМПАРАТИВНА ЕВАЛУАЦИЈА 

РЕКУРЕНТНИХ И НА ПАЖЊИ ЗАСНОВАНИХ 
МОДЕЛА ДУБОКОГ УЧЕЊА ЗА 

ПРОГНОЗИРАЊЕ БРЗИНЕ ВЕТРА 
 

Н.Џ. Ал-Кахтани, М.С. Аболуз, М.А. Мохендес 
С. Рехман 

 
Прогнозирање брзине ветра је кључно за повећање 
производње енергије ветра и побољшање ефикас–
ности. Иако се традиционални статистички и физич–
ки модели често користе, не успевају да обухвате 
сложену, нелинеарну и временски променљиву при–
роду метеоролошких података. Стога, ова студија 
истражује четири архитектуре дубоког учења: реку–
рентну неуронску мрежу (RNN), затворену реку–
рентну јединицу (GRU), дугорочну краткорочну 
меморију (LSTM) и трансформатор. Ови модели су 
анализирани коришћењем мултиваријантних и сат–
них метеоролошких података из региона Ал-Ахса 
током 24 године (2001-2024). Скуп података укљу–
чује пет карактеристика: брзину ветра на 10 метара 
изнад тла (користи се као референца), температуру 
ваздуха на 2 метра, специфичну влажност на 2 
метра, смер ветра на 10 метара и површински при–
тисак. Модели су обучени на 80% скупа података, 
валидирани на 10% и тестирани на преосталих 10%. 
GRU модел је постигао најбоље перформансе са 
RMSE = 0,3126 m/s и R² = 0,9759. 

 


