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1. INTRODUCTION

Intelligent Improvement of Kalman
Filter based on Artificial Intelligence for
Sensorless Speed Estimation and
Control of DC Motors

The state estimation is considered as an essential and complex task for
accurate and efficient plant control and monitoring in industrial
applications. The measuring system including sensors is a significant
investments for any control systems to monitor both non-measurable and
measurable variables of state for dynamic systems. As a result, the
limitation of cost can be reduced by using sensorless strategies that
estimate variables of state. The aim of this paper is to implement an
intelligent improved Kalman Filter (KF) based on different machine
learning algorithms for sensorless speed estimation of DC motor. The
intelligent methods are Artificial Neural Network (ANN), Adaptive Neuro
Fuzzy Inference System (ANFIS), Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO). These algorithms are used to improve and
tune the KF. To improve accuracy of estimation, the parameters of KF
were optimized using PSO and GA. The research explores three kinds of
architectures of ANN were implemented and compared with ANFIS to
estimate the motor speed, employing collected data that involved voltage,
current, and outputs speed of traditional KF. The models were tested and
evaluated using multiple error criteria metrics. Results indicated that
ANN-based Baysian Regulation Algorithm (BR) significantly outperformed
other models, achieving minimum values of error metrics. The proposed
intelligent sensorless speed estimation based on ANN-based BR strategy
proves potential as adaptive solution, accurate, and cost-effective
methodology for speed control of DC motor. The study findings offer
valuable and distinct insights for investigation cost-effective and efficient
sensorless cost-effective and efficient sensorless control schemes.

Keywords: DC Motor, Kalman Filter, Speed Estimation, ANFIS, ANN,
PSO, GA.

The study in [3], demonstrates the modeling, inspection,
and impact of the KF in a noisy environment while

The approach of KF has been proposed as a viable way
to deal with different issues in various industrial app—
lications. The KF is defined as a recursive mathematical
algorithm that optimally estimates system states. It is
also a mathematical technique that optimally esti—
mates system states by combining multiple measu—
rement sources, gradually improving accuracy. This
method enables accurate DC motor speed estimate
while mitigating the effect of noise ripple [1]. Besides,
investigation of sensorless DC motors control of speed
via a KF, which incorporates the motor’s mathematical
model, as presented in [2]. In [2], the system inputs
include noisy measurements of armature current,
angular velocity, and voltage, the estimated motor speed
is the output of the system. The KF estimates speed,
mitigating noise interference. This estimated speed is
then compared to a reference value as discussed in [2].
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comparing the performance of filtered controllers for a
DC motor. The KF was implemented to enhance con—
troller performance in noisy environments. The con—
troller was designed and simulated with MATLAB, with
results analyzed based on the simulated environment
[3]. The research in [4], discusses recent academic
developments in state estimation, focusing on integ—
rated models that combine KFs and neural networks.
This incorporation signifies an important growth in the
field of technology of state estimation and demon—
strating some of the research progresses, emphasizing
their benefits and functions. The study starts by ob—
serving the properties and concept of KFs, comprising
their different improved versions. It then delivers a
short-lived introduction to numerous widely utilized
ANN technique [4]. Furthermore, estimation of state
plays very important role in industrial situations, hel—
ping as a basis for effective plant control and moni—
toring [5]. In fact, recent control systems often need
expensive measurement equipment and sensors to
precisely assess both unmeasurable and measurable
state variables in processes of dynamic industrial. This
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requirement for expensive hardware poses a significant
obstacle in applying comprehensive strategies of state
estimation across numerous industrial applications [5].

Alternatively, in [6], it discusses an innovative
method for sensorless speed control of discretely excited
DC motors using technology of ANN. The suggested
method relies solely on measurements of current sensor,
removing the need for conventional sensors of speed and
their related physical and mec-hanical limitations. By
leveraging the adaptive abilities of ANN, the system
forecasts the speed of motor based on two main inputs:
current of motor readings from the recreated waveform of
terminal voltage and the circuit of driving resulting from
the pulses of PWM for the DC chopper. This strategy of
sensorless control offers an efficient and powerful
alternative to traditional speed measurement methods in
applications of DC motor [6]. In addition, a technique of
sensorless speed control ac—complished of adjusting a
DC motor separately excited through ANN methodology
without utilizing sensors of speed has been suggested in
[7]. An algorithm of sensorless based on ANN is applied
for estimating of shaft speed for DC motor in systems
with closed-loop control as depicted in [8]. In this
method, the ANN is utilized to give optimal adjustment,
so as to increase the accuracy of the actual speed model.
Three different architectures were gave and used
evaluated using a set of three performance metrics. Based
on the assessment results, the LM back-propagation
algorithm is consi—dered as the best performance for
optimal learning for this model. It was then equated with
the KF in the identical conditions [8].

The research in [9], discusses the usage of an
ANN for controlling the speed of DC drive without
commissioning a sensor of speed. In [9], the control of
sensorless system integrates an ANN based feed for—
ward for speed simulation and estimation using toolbox
of MATLAB-Simulink package. In [10], ANN cont—
roller is demonstrated for responsive and precise regu—
lation of speed. The model is structured through toolbox
of ANN in MATLAB package. Furthermore, an alter—
native ANN’s controller was applied as a distinct
replacement for the conventional PID regulators in
controlling the angular DC motor position operating a
robot arm. The ANN was trained utilizing supervised
learning, and its performance was tested via simulations
in MATLAB. The results depicted thatthe ANN strategy
is a distinct selection for applications of reference con—
trol in industrial usage, presenting superior performance
or comparable to the PID methodology [11]. A
comparative research in [12] is discussed for ANFIS
and ANN as approaches for speed control of DC motor
based on Matlab package. The main objective of
research in [12] is to compare and evaluate the
performance of two methods for control of DC motor, to
obtain the greatest efficient technique to attain efficient
and accurate control. Authors in [13], discusses a
comprehensive study of DC motor speed control using
an ANN methodology. The primary aim is to improve
an adaptable and efficient system for attaining accurate
regulation of speed. Through using of MATLAB, a
controller of ANN has been investigated, that can
precisely adjustand estimate the speed of motor to cover
the chosen specifications. The research in [13], shows
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the practical implementation, theoretical framework,
and processes with fine-tuning of the controller of
ANN. The study in [13], donates to the increasing field
of intelligent systems for control and gives visions into
the real technology of ANN application in control
engineering of motor. In [14], suggests an ANN model
for adaptable the speed of a separately excited DC
motor. In addition, ANN model can regulate both non-
linear and linear systems via training network.

A novel hybrid method for speed control of DC
motors is discussed in [15]. The used methodology
merges ANN and KF methods. The core of this
scheme is to use ANN to dynamically regulate the sca—
ling factors of both the outputs and inputs of the control
strategy. This mechanism drives to improve the res—
ponse and accuracy of the motor speed, which may
deliver enhanced performance in comparing to tradi—
tional methods of control as presented in details in
[15]. The study in [16] demonstrates the KF usage for
estimation of DC motor speed. Kirchhoff’s law is
used to build a theoretical model based on electrical
modules, while modeling of dynamic parts are utilized
for the mechanical aspects. Estimation of parameters
are achieved via simulations in MATLAB/Simulink
package. The methodology in [16], used to develop
speed control that may lead to upgraded performance in
different applications [16]. A comparative analysis of
different techniques for adjustable the speed of DC
motors as presented in[17]. The paper in [18] focus
on DC motor that are recognized for their high effec—
tiveness in systems for electric traction. They are wi—
dely utilized for applications with high-power, such as
ship propulsion and aircraft [18]. Additionally, the
authors in [19], demonstrated a novel employed of
ANNSs for speed control and estimation of separately
excited DC motor. The kalman filter is proposed for
different applications such as smart knee joint prosthesis
in [20], estimation of roll angles of a motorcycle in [21],
and drone SLAM in [22] which demonstrates the wide
range of using of KF. The techniques suggested in this
research are not only of academic interest but also have
strong practical relevance. They can be used in different
real-world fields and domains such as smart Knee joint
prosthesis, roll angles of a motorcycle, drone, air con—
ditioning system, renewable energy, battery manage—
ment, vehicle localization, indoor positioning and
navigation, fault diagnosis, and industrial automation
where nonlinear, complex, and uncertain environments
need intelligent tools of decision-making.

The motivation for this paper stems from the gro—
wing demand for cost-effective, maintenance-free motor
drive systems, and compact, particularly in robotics,
industrial automation, electric vehicles, and other prac—
tical embedded systems. Conventional speed sensors,
while precise and accurate, present several limitations,
including susceptibility to environmental damage,
increased cost, and constraints of space. As a result,
methods of sensorless estimation are highly distinct and
desirable, but they constitute technical challenges rela—
ted to uncertainty of model, parameter variations, and
external disturbances.

It is emphasize that although traditional KFs are wi—
dely utilized for tasks of estimation, their performance
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can destroy in the presence of un-modeled dynamics or
nonlinearities. To address and cover this issue, this
research present an Al-based mechanism to adaptively
optimize parameters of KF in real-time. This integration
permits the KFs to reject noise, better track dynamics of
motor, and enhance overall performance of control. As a
result, the proposed strategies consequently contributes
both practically and theoretically to the field of DC
motor applications. From a perspective of theoretical, it
suggests a hybrid estimation approaches combining
data-driven (AI) methods and the strengths of model-
based KF. Besides, from a practical perspective, it
improves the performance of DC motor drives in
configurations of sensorless, creating them cost-efficient
and more reliable. The conclusion of this paper could be
summarized as points in the following.

1. Proposed different ANN techniques based on
Levenberg-Marquardit Algorithm (LM), Baysian
Regulation Algorithm (BR), Scaled Congugate
Gradient Algorithm (SCG).

2. Proven significant reductions of error in speed
estimation of DC motor using KF- based ANN-LM,
KF- based ANN-BR, KF- based ANN-SCG, KF-
based ANFIS, KF-based GA and KF-based PSO.

3. Comprehensive Error Evaluation based Mean
Square Error (MSE), Root Mean Square Error
(RMSE), Integral Square Error (ISE), Integral Time
Absolute Error (ITAE) and Average Absolute Error
(AAE) to compare suggested estimation models for
speed estimation.

4. Showed that the ANN-based BR strategy achieved
MSE of 0.2526, RMSE of 0.5026, ISE of 0.11367,
ITAE of 0.0347, and AAE of 0.3422, outper—
forming others techniques.

5. Demonstrated the effectiveness of PSO and GA in
enhancing performance of KF, reducing errors
criteria compared to traditional KF.
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Figure 2. Proposed Structure of Speed Estimation for DC Motor
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6. Provided recommendations for choosing models
based on requirements of accuracy and system
dynamics.

7. Validated obtained models wusing real data,
underlining applicability of practical.

The rest of the article is organized as follows:
Section 2 discusses the problem formulation, section 3
describes the methodology, section 4 shows the simu—
lation results, and section 5 summarizes conclusions and
recommends potential avenues for future research.

2. PROBLEM FORMULATION

DC motor systems often used for position and velocity
control for different industrial applications [23, 24, 25].
The independently excited DC motor is chosen since
the study of linear speed control for a DC motor is
the main issue of this work. The velocity of the DC
motor is controlled via the armature voltage control
technique. With this technique, the armature voltage
regulates the motor speed while the field current fixes
the flux, which results in a constant flux. Figure 1
displays the DC motor’s control equivalent circuit
based on armature voltage control technique.
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Figure 1. Equivalent Circuit of DC Motor using the
Armature Voltage Control.
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The armature resistance is denoted by R,, the ar—
mature inductance by L,, the armature current by i,
and the field current by ir . e, stands for the input
voltage, and e, for the back electromotive force (EMF).
T, indicates the motor torque, while @ shows the
rotor’s angular velocity. With K, stands for the
EMF constant and K; as the torque constant, J is
the motor and bearing’s rotational inertia. Given
that the speed w is linearly proportional to the back
EMF ¢, [25]:

e (1) =K, %:Kb (1) (1)

Using Kirchhoff’s Voltage Law (KVL), we can
express the armature voltage as:

di, (¢
()= Ro-ia o), 220 g, 1 @
Newton’s law states that the torque of the motor is
given by:
d*o(r)

Ky (1) 3)

T, (t)=J

Taking the Laplace transform of (1) to (3), we ob—
tain:

Eg(s)=(Ry+Ly-5) Iy (s)+Ep(s) )
Ey(s)=Kp-o(s) )
Tu(s)=J s o(s)=K, 1, (s) (6)

Figure 2 demonstrates the proposed structure of
speed estimation system based on suggested intelligent
techniques and optimization methods

3. METHODOLOGY

The proposed methodology includes KF, ANN, and
ANFIS. Besides, the most popular optimization
techniques such as GA and PSO are also proposed to
fine-tune of parameters of KF. In this study, we have
selected PSO and GA as the main heuristic algorithms
for tasks of optimization. These techniques were chosen
due to their capability to effectively explore complex
and large search spaces, which are distinguishing of the
problem at hand. GA is recognized for its robustness
and efficient in discover global optima by mimicking
processes of natural evolutionary, while PSO offers an
efficient and fast search mechanism, mainly appropriate
for problems of continuous optimization. Both
techniques have been widely utilized in similar research
areas, proving their success in achieving distinct and
high-quality solutions. While other heuristic techniques
and algorithms, such as Ant Colony Optimization
(ACO) and Simulated Annealing (SA) were considered,
PSO and GA were chosen because of their properties of
better performance and faster convergence in our
specific study domain. SA, for example, tends to need
longer times of computational to find an optimal
solution, and ACO struggles with large spaces of
dimension, creating them less appropriate for this work.
The used strategies are discussed in details as follows.
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3.1 Kalman Filter

The KF approach is widely used in dynamic systems to
reduce estimation mistakes, such as RMSE [26]. It is a
popular choice for a variety of applications due to its
precision and adaptability. The KF’s efficiency with
uncertain models enables strong projections of future
occurrences as well as exact evaluation of current and
historical data [27]. Several versions of KF have been
produced to solve various issues, comprising the
extended KF, standard KF [28, 29], ensemble KF, and
unscented KF [30,31]. The standard type of KF is applied
to make a distance estimation as it offers suitable criteria
for decreasing noise and assuring stability in different
systems such as DC motors [32], [33]. Prediction and
updating are the two important phases for the KF method.
The current status of the system is estimated throughout
the step of prediction utilizing historical data. In addition,
the stage of update improves this process of estimation
through integrating extra measurements, resulting in
gradually precise estimates over time. The iterative
technique develops the precision of the filter with each
cycle [1]. The mathematical model of the standard KF
has been decreased for convenience of usage. The
governing mathematical equations identify the relation—
ships between the estimated variables, gain factor, and
covariance matrices. By means of these mathematical
equations, the KF offers a strong basis for both prediction
and estimation, resulting in considerable enhancements in
efficiency and performance across a varied range of
applications. The mathematical representation of
prediction is demonstrated in the following equations:

Xfe-1 = Xp_1jr—1 (7

By =P + 9 (8

Process of update created based on following, 9 to 11

Xy = Xy + PSTy '()’z + Xt|t—l) )
-1

PSIy = By (Pt|t—1 +R> (10)

By =(A=PSIy)- By (11)

In this circumstance, the value of input being calcu—
lated is signified by the variable x, throughout the
process of estimation, the matrix of covariance is
symbolized by P,. The matrix Q, relates to the cova—
riance process of noise, accounting for uncertainties in
the model. The gain Kalman factor, signified as PSIy, is
critical in regulating the estimation based on new
measurements. Furthermore, the covariance matrix of
measurement noise is symbolized by R, which cal-
culates the uncertainty in the observed data. The
notation #|¢ point to the value of the adaptable at this
time step, #-1]-1 denotes to its value at the prior time
step, and ¢ - lsignifies the forecasted value prior to
integrating the most latest measurement.

3.2 Artificial Neural Network

ANNs are very effective in approximating complex,
non-linear systems because they can identify and depict
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non-linear correlations in their inputs. Because of this
capability, ANNs can be applied in scenarios where
more conventional control strategies, such the propor—
tional-integral (PI) controller, might not work well,
particularly when there are fluctuations in loads, distur—
bances, and system uncertainties. In difficult situations,
PI controller performance can be greatly improved by
integrating ANNs [34]. Interconnected neurons repre—
sent input, output, and hidden layers in ANNs. Several
factors influence the performance of the network, inc—
luding the activation function, learning rate, neural
count in the hidden layers, as well as the training pro—
cess [35]. Key performance indicators for ANNs inc—
lude: MSE is used to measures the accuracy of the
model by evaluating. The discrepancy between expec—
ted and real results, Number of Epochs refers to the
number of complete training cycles through the data—
set, Training Time that represents the time taken to
train the network, Validation Checks is used to monitor
performance and prevent overfitting during training
and Gradient helping to determine how weights should
be adjusted during backpropagation for improved
accuracy. The deep learning and ANN are proposed for
prediction and control tasks as in [36] and [37].

Since ANNs map information of input over a non—
linear space, the hidden layers and number of neurons
significantly impacts the ability of model to capture
relationships and complex patterns in the data. Incre—
asing the layers and neurons generally improves the
capacity of the model to learn complicated nonlinear
mappings, but it also increases and raises the overfitting
risk and increases cost of computation. To guarantee
effective nonlinear transformation and present nonli—
nearity into the model, the Rectified Linear Unit
(ReLU) is used as activation function in the hidden
layers, due to it is computationally effective and helps
mitigate the problem of vanishing gradient, resulting to
faster and distinct convergence during process of
training. Besides, different numbers of numbers of neu—
rons and hidden layer are taken into consideration. The
ANNSs had 10, 20 and 40 hidden layers with 15 neurons
in each.

3.1.1 Bayesian regularization algorithm

The method of BR entails altering the frequently used
primary function, like MSE or E4 to enhance The
capacity ofthe model to generalize [38]. The typical
primary function is expressed as:

B 1IN 2
F—Ed —Nzl.zlei (12)

Where e; is the error for each point of data, and the
sum of the points of data is N. This objective function
is extended to improve generalization by adding a
regularization term, E, that represents the network
weights’ sum of squares. The modified objective
function is given by:

F=B-E;+a-E, (13)

Where o and f are regularization parameters optimized
within the Bayesian framework [39-41].
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3.1.2 Levenberg-Marquardt algorithm

The algorithm of LM is a widespread optimization
technique for training ANNs, mainly effective for redu—
cing functions of error in problems of least-squares. It
carries together the merits of both Gradient Descent and
Gauss-Newton approaches to attain faster convergence
and enhanced performance in training ANN [42-45], it is
often stared as a robust marginal for optimization tasks in
non-linear least squares for applications of machine
learning. The significant idea overdue the algorithm of
LM is to update iteratively the weights and biases of the
ANN to reduce the function of MSE.

3.1.3 Scaled Conjugate Gradient algorithm

The algorithm of SCG is a conjugate gradient algo—
rithms variant that enhances the process of compu-—
tational through avoiding the requirement for a search
of line at each iteration. Conventional methods of
conjugate gradient depend on searches of line, which
can be computationally costly, whereas SCG is intended
to bypass it, decreasing consumption of time while
keeping performance. Most significant merit of SCG is
that it uses a step size depending on a function of error
estimation that is quadratic. As a result, it is parti—
cularly tough and less sensitive to user-quantified
settings [35].

3.3 Adaptive Neuro-Fuzzy Inference System

The ANFIS is a hybrid system that combines the
advantages of fuzzy logic systems and neural networks
to model complex systems with improved learning and
generalization capabilities. ANFIS combines the
interpretability of fuzzy inference systems with the
learning capacity of neural networks, making it a
powerful tool for various applications, including system
modeling and control [46]. ANFIS is structured in a
five-layer architecture, where each layer serves a
specific function in processing the input data and
generating the output. The fuzzification layer is a layer
that uses functions of fuzzy membership to the data
of input. Each node implies set of fuzzy, and the
output is the degree of membership for the input in this
set of fuzzy. This layer transforms crisp inputs into
values of fuzzy [47, 48]. The ANFIS training includes
fine-tuning the parameters of both the consequents of
rule and membership functions to decrease the
inconsistency between actual and expected results. This
is accomplished via optimization methods such as
algorithm of LM or Gradient Descent [46]. ANFIS is
mostly valuable in uses where a clear sympathetic of the
system is desirable, as it offers models and interpretable
rules that are easy to modify and understand. Its
capability to regulate to varying data and its mixture of
neural network and fuzzy logic learning create it a
adaptable tool for system control and modeling [46].

4. RESULTS AND DISCUSSIONS

In this research, we analyzed the speed estimation of a DC
motor system utilizing a conventional KF, KF -based

VOL. 53, No 4, 2025 = 529



ANN, KF-based ANFIS, GA-based KF, and PSO-based
KF. The traditional KF, as a baseline technique, had fixed
coefficients and was employed with a simple linear clas—
sical model. In addition, for the models of ANN, three
various kinds were considered: LM, BR, and SCG. The
three kinds of ANN had 10, 20 and 40 hidden layers with
15 neurons in each. The model of ANFIS, uniting the
strengths of fuzzy logic and neural networks, was applied
to capture dynamics of non-linear in the system of DC
motor more effectively. The configuration of ANFIS
involved of a lot of fuzzy rules with a Gaussian mem-—
bership function for each variable of input. The model of
ANFIS was trained with 1000 epochs and utilized a
method of hybrid learning integrating least squares and
gradient descent. Moreover, the optimization of the per—
formance of KF was approved by applying two popular
techniques of optimization: GA and PSO. These appro—
aches were used to tune the parameters of filter for
improved speed estimation in the system of DC motor. For
GA technique, the parameters involved a size of population
about 50, a rate of crossover about 0.8, a rate of mutation
about 0.05, and a maximum value of generations set to
200. Different scenarios and error metrics were taken into
account to compare and evaluate the effectiveness of these
approaches. On the other hand, PSO used a size of swarm
about 30 particles, a weight of inertia about 0.7, a coef—
ficient of cognitive of 1.5, and a coefficient of social of 1.5.
The strategies used in this study for speed estimation of
DC motor divided into three scenarios. Scenario 1 dis—
cusses the traditional KF with fixed parameters, scenario 2
presents the improved mo—dels of estimation such as ANN
and ANFIS. Besides, scenario 3 demonstrates the used of
popular optimization algorithms like GA and PSO to tune
the parameters of KF.

Scenario 1: speed estimation based on traditional
KF

The conventional KF used as a standard estimation of
the speed in the system of DC motor, achieving an MSE
of 0.6513, RMSE of 0.807, ISE of 1.9539, ITAE of
2.9015, and AAE of 0.6448. While effective in giving
acceptable accuracy and filtering out to some extent for
high noise underneath steady environments, the KF
struggled to preserve precision throughout dynamic va—
riations in the speed of DC motor system (see Figure 3).
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Figure 3. Speed Estimation of DC Motor based traditional
KF.
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The limitations were recognized to its dependence on
fixed parameters and linear assumptions, which reduced
it less behavior and effective in covering dynamics of
non-linear intrinsic in the speed estimation of DC
motor. Figure 3 presents the comparison between the
actual DC motor speed and the predicted speed
based on traditional algorithm of KF.

Scenario 2: speed estimation based on GA-based
KF, and PSO-based KF

To further enhance the performance of KF, PSO and GA
were employed to fine-tune its parameters. The GA was
selected for its capability to discover the space of para—
meter efficiently, resulting to balanced enhancements
through all metrics of error (see Figure 4), an MSE of
0.454, RMSE of 0.6738, ISE of 1.3622, ITAE of 2.5509,
and AAE of 0.5772. While PSO presented faster con—
vergence, it infrequently struggled with local minima,
yielding to some extent higher errors in comparing to GA,
with MSE of 0.455, RMSE of 0.6747, ISE of 1.3659,
ITAE of 2.552, and AAE of 0.5672. GA con—firmed an
effective exploration of the space of parameter, giving this
values of errors given that balanced enric—hments across
all metrics of error. PSO algorithm, with its rapid
convergence, reached this results (see Figure 5), Though
PSO exhibited encoura—ging results, it occasionally suited
trapped in local minima, creating GA a more accurate and
stable opti—mization technique. In Fig. 4, this graph proves
the effectiveness of joining GA with KFs for accurate
estimation of real-time speed, showcasing the ability of the
system to adjust faster to sudden deviations in speed while
preserving very precise predictions.
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Figure 4. GA-based KF for Estimated Speed and Actual
Speed.
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Moreover, in Figure 5, this graph shows the success
of combining PSO with KFs for precise real-time speed
estimation. The PSO-optimized estimated speed closely
tracks the actual speed through sudden changes,
showcasing the system’s quick adaptation and high
accuracy in speed prediction tasks.

Scenario 3: speed estimation based on KF-based
ANN, and KF-based ANFIS

Models of ANN were established as an alternative to
improve the process of estimation. Inputs comprised
current (i,), voltage (us) and speed of traditional KF
(Wr) while proposed estimated motor speed functioned
as the output variable (W) (see Figure 6). The model of
ANN used a 21000 sample for training phase, 4500
sample for testing phase, and 4500 sample for validation
phase. Figure 7 shows the decaying of MSE during
training ANN model with best value of MSE about
0.19719 at 1000 epoch. Besides, the training state
including gradient of 0.1515 and My of 0.01 at 1000
epoch is depicted in Figure 7. Moreover, error
histogram with 20 bins for ANN model is given in
Figure 8. Figure 6 illustrates a multilayer feed-
forward network that is suggested for speed
estimation in this paper. However, Figure 7 displays
the ANN’s training performance, while Figure 8
clarifies its training state, and Figure 9 displays the
error histogram.
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Three kinds of ANNs LM, BR, and SCG were tra—
ined utilizing the captured data from the system based

on different numbers of hidden layers including 10, 15
and 40. The ANN results for 10 hidden layers are pro—

FME Transactions

vided in Table 1. This table shows the results of training
an ANN model with ten hidden neurons using three
distinct training algorithms: LM, BR, and SCG. The LM
algorithm performed the best, with an MSE of 0.2504
and an R*-value of 1.0000 for the training network.
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BR was also effective, with an MSE of 0.2699 and
an R%value of 1.0000 for the training network. In
contrast, the SCG method had the highest MSE forthe
training network, at 7.7113. Moreover, Table 2 shows
the results of the ANN model with 20 hidden layers.
Overall, performance increased as comparedto the 10-
hidden neuron model. The LM algorithm continued to
perform well, with an MSE of 0.2135 and an R*-value
of 1.0000 for the training network. BR and SCG both
worked nicely. In Table 3, the results for the ANN
model with 40 hidden layers are displayed. The LM
approach achieved an MSE of 0.1878 and an R’-value
of 1.0000 for the training network, considerably
improving the model’s performance overthe last one.
Although SCG and BR also showed good performance,
the LM approach seems to be the most effective training
procedure among the three models. In summary, the
LM algorithm-trained ANN model with 40 hidden
neurons appears to be the most successful setup based
on the results (see Tables 1,2 and 3). The LM strategy
outperforms others, and the model’s enhanced
complexity with 40 hidden neurons makes it the best
option for the task at hand.

Among the three kinds of ANN, LM exhibited the
best performance with MSE of 0.2398, RMSE of
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0.4897, ISE of 0.1079, ITAE of 0.267, and AAE of
0.4131, followed by BR with, MSE of 0.2526, RMSE of
0.5026, ISE of 0.11367, ITAE of 0.0347, and AAE of
0.3422 (see Table 4). In addition, SCG achieved a
results of MSE of 0.4233, RMSE of 0.6506, ISE of
0.19048, ITAE of 0.0493, and AAE of 0.487. While the
ANNs presented significant enhancement over the
classical KF, their performance was to some extent
inconsistent when exposed to sudden speed variants,
demonstrating sensitivity to fast variations in the studied
system. The ANN-based LM, signifying its strong point
in dealing with complex, relationships of non-linear in
the system of DC motor (see Figure 10). The models of
BR and SCG achieved sensibly well but were
considerably less accurate, with achieving several of
errors metrics. These results presented that while ANNs,
specifically LM, offer a significant enhancement over
the conventional KF, they still demonstrate some
sensitivity to fast speed deviations. In Figure 10, this
graph demonstrates the performance of an ANN for
speed estimation. The ANN-predicted speed closely
follows the actual speed through wvarious changes,
demonstrating the network’s ability to accurately
estimate speed in real-time, even during sudden
transitions (see Table 4).

Table 1. Results of ANN for 10 Hidden Layers

using ANN-based BR
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Figure 10. Estimated Speed based on ANN model with
comparison to Actual Speed

The structure of ANFIS is the same of ANN model
in inputs, output and number of samples. As a results,
inputs included current (i,), voltage (us) and speed of
traditional KF (wgr), while proposed estimated motor
speed functioned as the output variable (o). The ANFIS
model utilized a 21000 sample for training, 4500 sample
for testing, and 4500 sample for checking. Figure 11
shows the training error for speed estimation using
ANFIS, while Figure 12 displays the dataset checking,
and Figure 13 demonstrate the testing results.

Performance Metrics Results Test Network
Training Algorithm Sample MSE R’ Sample MSE R?
s s
ANN-based LM 21001 0.2504 1.0000 4500 0.2574 1.0000
ANN-based BR 21001 0.2699 1.0000 4500 0.2630 1.0000
ANN-based SCG 21001 7.7113 0.9993 4500 5.0775 0.9995
Table 2. Results of ANN for 20 Hidden Layers
Performance Metrics Results Test Network
Training Algorithm Samples MSE R Samples MSE R
ANN-based LM 21001 0.2135 1.0000 4500 0.2102 1.0000
ANN-based BR 21001 0.2854 1.0000 4500 0.2843 1.0000
ANN-based SCG 21001 0.4376 1.0000 4500 0.4297 1.0000
Table 3. Results of ANN for 40 Hidden Layers
Performance Metrics Results Test Network
Training Algorithm Samples MSE R Samples MSE R
ANN-based LM 21001 0.1878 1.0000 4500 0.2013 1.0000
ANN-based BR 21001 0.1981 1.0000 4500 0.2050 1.0000
ANN-based SCG 21001 2.1572 0.9998 4500 1.9277 0.9998
Table 4 Comparison of performance metrics for various speed estimation algorithms
Algorithm MSE RMSE - (;fs?mr ITAE | AAE
Traditional KF 0.6513 0.807 1.9539 2.9015 0.6448
KF- based GA 0.454 0.6738 1.3622 2.5509 0.5772
KF- based PSO 0.4552 0.6747 1.3659 2.5525 0.5672
ANN-based LM 0.2398 0.4897 0.1079 0.267 0.4131
ANN-based BR 0.2526 0.5026 0.11367 0.0347 0.3422
ANN-based SCG 0.4233 0.6506 0.19048 0.0493 0.487
ANFIS- based KF 0.20824 0.45633 0.6474 0.7373 0.356
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The model of ANFIS, in contrast, evidenced to be a
robust methodology for speed estimation. By integrating
the strengths of fuzzy logic and neural networks, ANFIS
covered the non-linear relations more efficiently than the
models of ANN. Its capability to adapt to conditions of
dynamic caused in superior performance, attaining an
MSE of 0.20824, RMSE of 0.45633, ISE of 0.6474,
ITAE of 0.7373, and AAE of 0.356 (see Table 4) . This
benefit was mainly evident throughout abrupt variations
in speed, where ANFIS reliably outperformed both the
conventional KF, optimized KF based on GA and PSO
and models of ANN in terms of performance metrics,
filtering, accuracy and robustness (see Figure 14). In
Figure 14, this plot compares the performance of a
standard KF and an Integrated KF-ANFIS approach for
speed estimation. The ANFIS-based KF closely track the
actual speed more than traditional type, demonstrating its
effectiveness in real-time speed estimation, parti—cularly
during rapid changes. Figure 15 demonstrates the compa—
rison between suggested techniques in this study. Figure
16 presents comparison chart for performance metrics of
errors. In addition, Table 4 summarizes the obtained
comparative simulation results of all approaches, disp—
laying ANN-based BR as the most efficient and reliable
estimation model for scenarios including fast and
frequent changes in speed, while ANFIS depicted a
reasonable alternative for smoother environments.
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Figure 11. ANFIS Training for Speed Estimation of DC
Motor
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Figure 13. ANFIS Testing for Speed Control of DC Motor
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Figure 15. Speed Estimation using Suggested Techniques

5. CONCLUSION

This paper highlights the efficient and effectiveness of
intelligent algorithms in enhancing accuracy of
estimation task of speed for DC motor. A comparative
study involving traditional KF, GA-optimized KF, PSO-
optimized KF, , and hybrid approaches that incorporate
nominal KF with ANN and ANFIS exposes significant
and distinct disparities of performance, highlighting the
importance of choosing suitable algorithms based on
needs of application. ANN models, particularly BR,
pointedly enhanced accuracy of estimation and
outperformed others suggested models, achieving MSE
of 0.2526, RMSE of 0.5026, ISE of 0.11367, ITAE of
0.0347, and AAE of 0.3422 demonstrating robustness in
dynamic scenarios. The paper obviously presents how
effective and efficient these strategies are in precisely
the speed estimation of studied motor, which was
implemented encouraging by a  Matlab\Simulink
package that recreates the DC motor dynamics based on
identified mathematical equations. Furthermore, the
paper highlights the simplicity and robustness of each
methodology of speed estimation, indicating how
integrating ML and optimization techniques may
enhance accuracy of estimation. In order to improve
accuracy of estimation, this strategy may be hybridized
and optimized in the future with recent techniques.

VOL. 53, No 4, 2025 = 533



Type of Error for each Algorithm

[S]

| I lll. = -

KF with GA Optimization  KF with PS Optimization ANN (Levenberg-Marguardt) ANN (Bayesian Regularization) ANN (Scaled Conjugate ANFIS

Gradient)

EMSE EHRMSE EISE HITAE HAverage Error

Figure 16. Comparison Chart for Performance Metrics of Errors

APPENDIX:

Motor Parameters

Parameters Values
Voltage (Uy,) 280V
Nominal angular speed (w,) 172 rad/s
Power (P 1.5 kw
Torque (T, 8.85 N.m
Current (I, 72 A
Resistance (Ry 6.41Q
Inductance (L,) 23 mH
Moment of inertia (J) 0.026 Kg.m’
Sampling time (T, 107s
Time delay (Tyelay) 2 T,
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NOMENCLATURE

U, Voltage

Wi Nominal angular speed
P, Power

Ty Torque

1, Current

R, Resistance

L, Inductance

J Moment of inertia

T Sampling time

Tgey ~ Time delay

PSI,,  Gain Kalman Factor

e, Input Voltage

ex(t) Back electromotive force (EMF).
o(¢) Rotor position angle

K, EMF constant

K; Torque constant

P, Matrix of covariance

0O, Covariance Process of Noise

R Covariance Matrix of Measurement Noise
X Value of input being calculated

time step
t—1|t-1 Value at the prior time step

measurement
F Objective Function
€ The error for each point of data
N Sum of the points of data.
Eq Typical primary function of BR

E, Network Weights
a and B Regularization parameters optimized

Acronyms and abbreviations

AAE Average Absolute Error

ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network

ACO Ant Colony Optimization

BR Bayesian Regularization

DC Direct Current

EMF Electromotive Force

GA Genetic Algorithm

ITAE Integral of Time-weighted Absolute Error
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ISE Integral of Squared Error

KVL Kirchhoff’s Voltage Law

KF Kalman Filter

KFNNS KF and Neural Network Succession
LM Levenberg-Marquardt

MSE Mean Squared Error

MMSE Minimum Mean Square Error

RMSE Root Mean Square Error

PWM Pulse Width Modulation

PSO Particle Swarm Optimization
PID Proportional-Integral-Derivative
SEDCM Separately Excited DC Motor
SCG Scaled Conjugate Gradient

SA Simulated Annealing

Notation point to the value of the adaptable at this

Forecasted value prior to integrating the most latest

NHTEJUTEHTHO INIOBOJBIIAKBE
KAJIMAHOBOI' ®UJITEPA 3ACHOBAHO HA
BEIITAYKOJ HUHTEJIMT'EHIINJH 3A
MNPOLEHY BP3UHE U YIIPAB/bAIGE
JEJHOCMEPHUM MOTOPUMA

ML.E.M. Eca, M.M. Xaaua, M.A. Ea-beararu

[IpoueHa crama ce cMarpa CyIITHHCKHM M CIIOXECHUM
33JaTKOM 3a TPENN3HO U e(HUKACHO YIpaBJbamke H
npaheme MOCTpojema y WHAYCTPHjCKHM MpUMEHaMa.
MepHHU cuCTeM KOjH YKIbydyje CEH30pe IpelcTaBiba
3Ha4ajHy HWHBECTHLHM]Y 3a OWIO KOJU CHCTEM
ynpaBibamka 3a npaheme U HEMEPJbUBUX M MEPIBHBUX
MNpOMCHJbUBUX CTakba JIWMHAMHUYKHUX CHCTEMaA. Kao
pesyiraT Tora, OrpaHMYEHEe TPOIIKOBA MOXE Cce
CMambUTH KopUIThemeM 0e3ceH30pPCKUX CTpaTertja Koje
IpoLekyjy NPOMEHJbUBE cTama. L{wb oBor pama je
HMILIEMEHTAIH]ja WHTEIUT€HTHOT 1o000JbIIAHOT
Kammanosor ¢unrepa (KF) 3acHOBaHOT Ha pa3nuIuTIM
QITOPUTMHMa MAIIMHCKOT y4Yea 3a MPOIEeHYy Op3nHe
jemHocMepHOT MoTopa 0e3 ceH3opa. HHTenureHTHE
METOJe Cy BemTadka HeypoHcKa wmpexa (ANN),
aJanTuBHU  HEypo-Qa3u  HHPEPEHUHMJCKH  CUCTEM
(ANFIS), remercku amropuram (GA) u onTHMHU3aIja
poja uectuna (PSO). OBU anropuTMu ce KOPHUCTE 3a
moboJsirame U nmoaemaname KF. Jla 6u ce moboJpiana
TayHOCT IpoleHe, napamerpu KF cy onrumuszoBanu
kopumhemem PSO m GA. UctpaxuBame HCTpaxyje
TPHU BPCTE apXUTEKTYypa BEIITAYKHX HEYPOHCKHX MpexKa
(BHM) xoje cy wummiueMmeHTHpaHe Hu ymnopeheHe ca
ANFIS-om pamu mporieHe Op3nHe MOTOpa, Kopuctehn
MIPUKYIUJBCHE TOJaTKE KOjU YKJbYUYjy HAIlOH, CTPYjy U
m3nasHy Op3mHy TpamunuoHarHor KF-a. Mopemn cy
TECTUPAHHU M €BAlyHPaHH KOPHUIINEHEM BHIIECTPYKHX
METpHKa KpUTepHjyMa rpemke. Pesynraru cy nokasamu
na je bajcos perynanuonu anropuram (BP) 3acHoBan Ha
BHM 3Hauajuo Hagmammo apyre Mojene, nmoctwxkyhu
MUHUMAaJIHE BPEJHOCTU MeTpUKa rpeuke. IIpeanoxxena
MHTEJINTeHTHA ITpolleHa Op3uHe 0e3 ceH30pa 3acHOBaHa
Ha BP crparermju 3acHoBanoj ma BHM nokasyje
MOTEHLMjall Kao aJalTUBHO pellemhe, TayHa W
HACIUIATHBA METOAOJIOTHja 332 KOHTpONy Op3uHe
jemHocMepHOT MOTOpa. PesynraTtu cTynuje Hyae BpenHe
1 PasIU4UTe YBUJAE 32 HCTPAXMBAWKHE HCIIATUBHX |
e(UKaCHHX IIeMa yIpaBibama 0e3 ceH3opa.
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