
© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (2025) 53, 525-536  525
 

Received: February 2025, Accepted: June 2025 
Correspondence to: Dr. Mohamed El-sayed M. Essa 
Institute of Aviation Engineering and Technology, 
Egyptian Aviation Academy, Giza, Egypt,  
E-mail: mohamed.essa@iaet.edu.eg 
doi: 10.5937/fme2504525E 

Mohamed El-sayed M. Essa 
Associate Professor 

Electrical Power and Machines Dept, 
Institute of Aviation Engineering and 

Technology  
Egyptian Aviation Academy  

 Ministry of  Civil Aviation  
Imbaba Airport, Giza,  

Egypt  
 

Mahmoud M. Khalil  
Teaching Assistant 

Mathematics and Engineering Physics Dept, 
Institute of Aviation Engineering and 

Technology  
Egyptian Aviation Academy  

 Ministry of  Civil Aviation  
Imbaba Airport, Giza,  

Egypt  
 

Mohamed A. El-Beltagy  
Professor 

Mathematics and Engineering Physics Dept, 
Faculty of Engineering  

Cairo University  
Giza 12613,  

Egypt  

Intelligent Improvement of Kalman 
Filter based on Artificial Intelligence for 
Sensorless Speed Estimation and 
Control of DC Motors 
 
The state estimation is considered as an essential and complex task for 
accurate and efficient plant control and monitoring in industrial 
applications. The measuring system including sensors is a significant 
investments for any control systems to monitor both non-measurable and 
measurable variables of state for dynamic systems. As a result, the 
limitation of cost can be reduced by using sensorless strategies that 
estimate variables of state. The aim of this paper is to implement an 
intelligent improved Kalman Filter (KF) based on different machine 
learning algorithms for sensorless speed estimation of DC motor. The 
intelligent methods are Artificial Neural Network (ANN), Adaptive Neuro 
Fuzzy Inference System (ANFIS), Genetic Algorithm (GA) and Particle 
Swarm Optimization (PSO). These algorithms are used to improve and 
tune the KF. To improve accuracy of estimation, the parameters of KF 
were optimized using PSO and GA. The research explores three kinds of 
architectures of ANN were implemented and compared with ANFIS to 
estimate the motor speed, employing collected data that involved voltage, 
current, and outputs speed of traditional KF. The models were tested and 
evaluated using multiple error criteria metrics. Results indicated that 
ANN-based Baysian Regulation Algorithm (BR) significantly outperformed 
other models, achieving minimum values of error metrics. The proposed 
intelligent sensorless speed estimation based on ANN-based BR strategy 
proves potential as adaptive solution, accurate, and cost-effective 
methodology for speed control of DC motor. The study findings offer 
valuable and distinct insights for investigation cost-effective and efficient 
sensorless cost-effective and efficient sensorless control schemes. 

 
Keywords: DC Motor, Kalman Filter, Speed Estimation, ANFIS, ANN, 
PSO, GA. 

 
 

1. INTRODUCTION  
 
The approach of KF has been proposed as a viable way 
to deal with different issues in various industrial app–
lications. The KF is defined as a recursive mathematical 
algorithm that optimally estimates system states. It is 
also a mathematical technique that optimally esti–
mates system states by combining multiple measu–
rement sources, gradually improving accuracy. This 
method enables accurate DC motor speed estimate 
while mitigating the effect of noise ripple [1]. Besides, 
investigation of sensorless DC motors control of speed 
via a KF, which incorporates the motor’s mathematical 
model, as presented in [2]. In [2], the system inputs 
include noisy measurements of armature current, 
angular velocity, and voltage, the estimated motor speed 
is the output of the system. The KF estimates speed, 
mitigating noise interference. This estimated speed is 
then compared to a reference value as discussed in [2]. 

The study in [3], demonstrates the modeling, inspection, 
and impact of the KF in a noisy environment while 
comparing the performance of filtered controllers for a 
DC motor. The KF was implemented to enhance con–
troller performance in noisy environments. The con–
troller was designed and simulated with MATLAB, with 
results analyzed based on the simulated environment 
[3]. The research in [4], discusses recent academic 
developments in state estimation, focusing on integ–
rated models that combine KFs and neural networks. 
This incorporation signifies   an important growth in the 
field of technology of state estimation and demon–
strating some of the research progresses, emphasizing 
their benefits and functions. The study starts by ob–
serving the properties and concept of KFs, comprising 
their different improved versions. It then delivers a 
short-lived introduction to numerous widely utilized 
ANN technique [4]. Furthermore, estimation of state 
plays very important role in industrial situations, hel–
ping as a basis for effective plant control and moni–
toring [5].  In fact, recent control systems often need 
expensive measurement equipment and sensors to 
precisely assess both unmeasurable and measurable 
state variables in processes of dynamic industrial. This 
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requirement for expensive hardware poses a significant 
obstacle in applying comprehensive strategies of state 
estimation across numerous industrial applications [5]. 

Alternatively, in [6], it discusses an innovative 
method for sensorless speed control of discretely excited 
DC motors using technology of ANN. The suggested 
method relies solely on measurements of current sensor, 
removing the need for conventional sensors of speed and 
their related physical and mec–hanical limitations. By 
leveraging the adaptive abilities of ANN, the system 
forecasts the speed of motor based on two main inputs: 
current of motor readings from the recreated waveform of 
terminal voltage and the circuit of driving resulting from 
the pulses of PWM for the DC chopper. This strategy of 
sensorless control offers an efficient and powerful 
alternative to traditional speed measurement methods in 
applications of DC motor [6]. In addition, a technique of 
sensorless speed control ac–complished of adjusting a 
DC motor separately excited through ANN methodology 
without utilizing sensors of speed has been suggested in 
[7]. An algorithm of sensorless based on ANN is applied 
for estimating of shaft speed for DC motor in systems 
with closed-loop control as depicted in [8]. In this 
method, the ANN is utilized to give optimal adjustment, 
so as to increase the accuracy of the actual speed model. 
Three different architectures were gave and used 
evaluated using a set of three performance metrics. Based 
on the assessment results, the LM back-propagation 
algorithm is consi–dered as the best performance for 
optimal learning for this model. It was then equated with 
the KF in the identical conditions [8].  

The research in [9], discusses the usage of an 
ANN for controlling the speed   of DC drive without 
commissioning a sensor of speed. In [9], the control of 
sensorless system integrates an ANN based feed for–
ward for speed simulation and estimation using toolbox 
of MATLAB-Simulink package. In [10], ANN cont–
roller is demonstrated for responsive and precise regu–
lation of speed. The model is structured through toolbox 
of ANN in MATLAB package. Furthermore, an alter–
native ANN’s controller was applied as a distinct 
replacement for the conventional PID regulators in 
controlling the angular DC motor position operating a 
robot arm. The ANN was trained utilizing supervised 
learning, and its performance was tested via simulations 
in MATLAB. The results depicted that the ANN strategy 
is a distinct selection for applications of reference con–
trol in industrial usage, presenting superior performance 
or comparable to the PID methodology [11]. A 
comparative research in [12] is discussed for ANFIS 
and ANN as approaches for speed control of DC motor 
based on Matlab package. The main objective of 
research in [12] is to compare and evaluate the 
performance of two methods for control of DC motor, to 
obtain the greatest efficient technique to attain efficient 
and accurate control. Authors in [13], discusses a 
comprehensive study of DC motor speed control using 
an ANN methodology. The primary aim is to improve 
an adaptable and efficient system for attaining accurate 
regulation of speed. Through using of MATLAB, a 
controller of ANN has been investigated, that can 
precisely adjust and estimate the speed of motor to cover 
the chosen specifications. The research in [13], shows 

the practical implementation, theoretical framework, 
and processes with fine-tuning of the controller of 
ANN. The study in [13], donates to the increasing field 
of intelligent systems for control and gives visions into 
the real technology of ANN application in control 
engineering of motor.  In [14], suggests an ANN model 
for adaptable the speed of a separately excited DC 
motor. In addition, ANN model can regulate both non-
linear and linear systems via training network.  

A novel hybrid method for speed control of DC 
motors is discussed in [15]. The used methodology 
merges A N N  and KF methods. The core of this 
scheme is to   use ANN to dynamically regulate the sca–
ling factors of both the outputs and inputs of the control 
strategy. This mechanism drives to improve the res–
ponse and accuracy of the motor speed, which may 
deliver enhanced performance i n  comparing to tradi–
tional methods o f  control as presented in details in 
[15]. The study in [16] demonstrates the KF usage for 
estimation of DC motor speed. Kirchhoff’s law is 
used to build a theoretical model based on electrical 
modules, while modeling of dynamic parts are utilized 
for the mechanical aspects. Estimation of parameters 
are achieved via simulations in MATLAB/Simulink 
package. The methodology in [16], used to develop 
speed control that may lead to upgraded performance in 
different applications [16]. A comparative analysis of 
different techniques for adjustable the speed of DC 
motors as presented in [17]. The paper in [18] focus 
on DC motor that are recognized for their high effec–
tiveness in systems for electric traction. They are wi–
dely utilized for applications with high-power, such as 
ship propulsion and aircraft [18]. Additionally, the 
authors in [19], demonstrated a novel employed of 
ANNs for speed control and estimation of separately 
excited DC motor. The kalman filter is proposed for 
different applications such as smart knee joint prosthesis 
in [20], estimation of roll angles of a motorcycle in [21], 
and drone SLAM in [22] which demonstrates the wide 
range of using of KF.  The techniques suggested in this 
research are not only of academic interest but also have 
strong practical relevance. They can be used in different 
real-world fields and domains such as smart Knee joint 
prosthesis, roll angles of a motorcycle, drone, air con–
ditioning system, renewable energy, battery manage–
ment, vehicle localization, indoor positioning and 
navigation, fault diagnosis, and industrial automation 
where nonlinear, complex, and uncertain environments 
need intelligent tools of decision-making. 

The motivation for this paper stems from the gro–
wing demand for cost-effective, maintenance-free motor 
drive systems, and compact, particularly in robotics, 
industrial automation, electric vehicles, and other prac–
tical embedded systems. Conventional speed sensors, 
while precise and accurate, present several limitations, 
including susceptibility to environmental damage, 
increased cost, and constraints of space. As a result, 
methods of sensorless estimation are highly distinct and 
desirable, but they constitute technical challenges rela–
ted to uncertainty of model, parameter variations, and 
external disturbances.  

It is emphasize that although traditional KFs are wi–
dely utilized for tasks of estimation, their performance 
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can destroy in the presence of un-modeled dynamics or 
nonlinearities. To address and cover this issue, this 
research present an AI-based mechanism to adaptively 
optimize parameters of KF in real-time. This integration 
permits the KFs to reject noise, better track dynamics of 
motor, and enhance overall performance of control. As a 
result, the proposed strategies consequently contributes 
both practically and theoretically to the field of DC 
motor applications. From a perspective of theoretical, it 
suggests a hybrid estimation approaches combining 
data-driven (AI) methods and the strengths of model-
based KF. Besides, from a practical perspective, it 
improves the performance of DC motor drives in 
configurations of sensorless, creating them cost-efficient 
and more reliable. The conclusion of this paper could be 
summarized as points in the following. 
1. Proposed different ANN techniques based on 

Levenberg-Marquardit Algorithm (LM), Baysian 
Regulation Algorithm (BR), Scaled Congugate 
Gradient Algorithm (SCG). 

2. Proven significant reductions of error in speed 
estimation of DC motor using KF- based ANN-LM, 
KF- based ANN-BR, KF- based ANN-SCG, KF-
based ANFIS, KF-based GA and KF-based PSO. 

3. Comprehensive Error Evaluation based Mean 
Square Error (MSE), Root Mean Square Error 
(RMSE), Integral Square Error (ISE), Integral Time 
Absolute Error (ITAE) and Average Absolute Error 
(AAE) to compare suggested estimation models for 
speed estimation. 

4. Showed that the ANN-based BR strategy achieved 
MSE of 0.2526, RMSE of 0.5026, ISE of 0.11367, 
ITAE of 0.0347, and AAE of 0.3422, outper–
forming others techniques. 

5. Demonstrated the effectiveness of PSO and GA in 
enhancing performance of KF, reducing errors 
criteria compared to traditional KF. 

6. Provided recommendations for choosing models 
based on requirements of accuracy and system 
dynamics. 

7. Validated obtained models using real data, 
underlining applicability of practical. 

The rest of the article is organized as follows: 
Section 2 discusses the problem formulation, section 3 
describes the methodology, section 4 shows the simu–
lation results, and section 5 summarizes conclusions and 
recommends potential avenues for future research. 

 
2. PROBLEM FORMULATION  
 
DC motor systems often used for position and velocity 
control for different industrial applications [23, 24, 25]. 
The independently excited DC motor is chosen since 
the study of linear speed control for a DC motor is 
the main issue of this work. The velocity of the DC 
motor is controlled via the armature voltage control 
technique. With this technique, the armature voltage 
regulates the motor speed while the field current fixes 
the flux, which results in a constant flux. Figure 1 
displays the DC motor’s control equivalent circuit 
based on armature voltage control technique. 

 
Figure 1. Equivalent Circuit of DC Motor using the 
Armature Voltage Control. 

 
Figure 2. Proposed Structure of Speed Estimation for DC Motor  
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The armature resistance is denoted by Ra, the ar–
mature inductance by La, the armature current by ia, 
and the field current by if  . ea  stands for the input 
voltage, and eb for the back electromotive force (EMF). 
Tm  indicates the motor torque, while ω shows the 
rotor’s angular velocity. With Kb  stands for the 
EMF constant and Kt  as the  torque constant, J  is 
the motor and bearing’s rotational inertia. Given 
that the speed ω   is linearly proportional to the back 
EMF eb [25]: 

( ) ( )b b b
de t K K t
dt
θ ω= ⋅ = ⋅  (1) 

Using Kirchhoff’s Voltage Law (KVL), we can 
express the armature voltage as: 

( ) ( ) ( ) ( )a
a a a a b

di t
e t R i t L e t

dt
= ⋅ + ⋅ +  (2) 

Newton’s law states that the torque of the motor is 
given by: 

( ) ( ) ( )
2

2m t a
d t

T t J K i t
dt

θ
= ⋅ + ⋅  (3) 

Taking the Laplace transform of (1) to (3), we ob–
tain: 

( ) ( ) ( ) ( )a a a a bE s R L s l s E s= + ⋅ ⋅ +  (4) 

( ) ( )b bE s K sω= ⋅   (5) 

( ) ( ) ( )m t aT s J s s K I sω= ⋅ ⋅ = ⋅  (6) 

Figure 2 demonstrates the proposed structure of 
speed estimation system based on suggested intelligent 
techniques and optimization methods 

 
3. METHODOLOGY  
 
The proposed methodology includes KF, ANN, and 
ANFIS. Besides, the most popular optimization 
techniques such as GA and PSO are also proposed to 
fine-tune of parameters of KF.  In this study, we have 
selected PSO and GA as the main heuristic algorithms 
for tasks of optimization. These techniques were chosen 
due to their capability to effectively explore complex 
and large search spaces, which are distinguishing of the 
problem at hand. GA is recognized for its robustness 
and efficient in discover global optima by mimicking 
processes of natural evolutionary, while PSO offers an 
efficient and fast search mechanism, mainly appropriate 
for problems of continuous optimization. Both 
techniques have been widely utilized in similar research 
areas, proving their success in achieving distinct and 
high-quality solutions. While other heuristic techniques 
and algorithms, such as Ant Colony Optimization 
(ACO) and Simulated Annealing (SA) were considered, 
PSO and GA were chosen because of their properties of 
better performance and faster convergence in our 
specific study domain. SA, for example, tends to need 
longer times of computational to find an optimal 
solution, and ACO struggles with large spaces of 
dimension, creating them less appropriate for this work. 
The used strategies are discussed in details as follows. 

3.1 Kalman Filter 
 
The KF approach is widely used in dynamic systems to 
reduce estimation mistakes, such as RMSE [26]. It is a 
popular choice for a variety of applications due to its 
precision and adaptability. The KF’s efficiency with 
uncertain models enables strong projections of future 
occurrences as well as exact evaluation of current and 
historical data [27]. Several versions of KF have been 
produced to solve various issues, comprising the 
extended KF, standard KF [28, 29],  ensemble KF, and 
unscented KF [30,31]. The standard type of KF is applied 
to make a distance estimation as it offers suitable criteria 
for decreasing noise and assuring stability in different 
systems such as DC motors [32], [33]. Prediction and 
updating are the two important phases for the KF method. 
The current status of the system is estimated throughout        
the step of prediction utilizing historical data. In addition, 
the stage of update improves this process of estimation 
through integrating extra measurements,  resulting in 
gradually precise estimates over time. The iterative 
technique develops the precision of the filter with each 
cycle [1]. The mathematical model of the standard KF 
has been decreased for convenience of usage. The 
governing mathematical equations identify the relation–
ships between the estimated variables, gain factor, and 
covariance matrices. By means of these mathematical 
equations, the KF offers a strong basis for both prediction 
and estimation, resulting in considerable enhancements in 
efficiency and performance across a varied range of 
applications. The mathematical representation of 
prediction is demonstrated in the following equations: 

| 1 1| 1t t t tx x− − −=   (7) 

| 1 1| 1t t t t tP p Q− − −= +   (8) 

Process of update created based on following, 9 to 11 

( )| | 1 | 1t t t t M t t tx x PSI y X− −= + ⋅ +  (9) 

( ) 1
| 1 | 1M t t t tPSI P P R

−
− −= +  (10) 

| | 1(1 )t t M t tP PSI P −= − ⋅    (11) 

In this circumstance, the value of input being calcu–
lated is signified by the variable x, throughout the 
process of estimation, the matrix of covariance is 
symbolized by Pt. The matrix Qt  relates to the cova–
riance process of noise, accounting for uncertainties in 
the model. The gain Kalman factor, signified as PSIM, is 
critical in regulating the estimation based on new 
measurements. Furthermore, the covariance matrix of 
measurement noise is symbolized by R, which cal–
culates the uncertainty in the observed data. The 
notation t|t point to the value of the adaptable at this 
time step, t-1|t-1 denotes to its value at the   prior time 
step, and t|t - 1signifies the forecasted value prior to 
integrating the most latest measurement. 

 
3.2 Artificial Neural Network 
 
ANNs are very effective in approximating complex, 
non-linear systems because they can identify and depict 
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non-linear correlations in their inputs. Because of this 
capability, ANNs can be applied in scenarios where 
more conventional control strategies, such the propor–
tional-integral (PI) controller, might not work well, 
particularly when there are fluctuations in loads, distur–
bances, and system uncertainties. In difficult situations, 
PI controller performance can be greatly improved by 
integrating ANNs [34]. Interconnected neurons repre–
sent input, output, and hidden layers in ANNs. Several 
factors influence the performance of the network, inc–
luding the activation function, learning rate, neural 
count in the hidden layers, as well as the training pro–
cess [35]. Key performance indicators for ANNs inc–
lude: MSE is used to measures the accuracy of the 
model by evaluating. The discrepancy between expec–
ted and real results, Number of Epochs refers to the 
number of complete training cycles through the data–
set, Training Time that represents the time taken to 
train the network, Validation Checks is used to monitor 
performance and prevent overfitting during training 
and Gradient helping to determine how weights should 
be adjusted during backpropagation for improved 
accuracy. The deep learning and ANN are proposed for 
prediction and control tasks as in [36] and [37].  

Since ANNs map information of input over a non–
linear space, the hidden layers and number of neurons 
significantly impacts the ability of model to capture 
relationships and complex patterns in the data. Incre–
asing the layers and neurons generally improves the 
capacity of the model to learn complicated nonlinear 
mappings, but it also increases and raises the overfitting 
risk and increases cost of computation. To guarantee 
effective nonlinear transformation and present nonli–
nearity into the model, the Rectified Linear Unit 
(ReLU) is used as activation function in the hidden 
layers, due to it is computationally effective and helps 
mitigate the problem of vanishing gradient, resulting to 
faster and distinct convergence during process of 
training. Besides, different numbers of numbers of neu–
rons and hidden layer are taken into consideration. The 
ANNs had 10, 20 and 40 hidden layers with 15 neurons 
in each. 

 
3.1.1 Bayesian regularization algorithm 
 
The method of BR entails altering the frequently used 
primary function, like MSE or Ed, to enhance The 
capacity of the model to generalize [38]. The typical 
primary function is expressed as: 

2
1

1 N
d iiF E e

N == = ∑   (12) 

Where e i   is the error for each point of data, and the 
sum of the points of data is N. This objective function 
is extended to improve generalization by adding a 
regularization term, Eω that represents the network 
weights’ sum of squares. The modified objective 
function is given by: 

dF E Eωβ α= ⋅ + ⋅   (13) 

Where α and β are regularization parameters optimized 
within the Bayesian framework [39-41].  

3.1.2 Levenberg-Marquardt algorithm 
 
The algorithm of LM is a widespread optimization 
technique for training ANNs, mainly effective for redu–
cing functions of error in problems of least-squares. It 
carries together the merits of both Gradient Descent and 
Gauss-Newton approaches  to attain faster convergence 
and enhanced performance in training ANN [42-45], it is 
often stared as a robust marginal for optimization tasks in 
non-linear least squares for applications of machine 
learning. The significant idea overdue the algorithm of 
LM is to update iteratively the weights and biases of the 
ANN to reduce the function of MSE. 
  
3.1.3 Scaled Conjugate Gradient algorithm 
 
The algorithm of SCG is a conjugate gradient algo–
rithms variant that enhances the process of compu–
tational through avoiding the requirement for a search 
o f  line at each iteration. Conventional methods o f  
conjugate gradient depend on searches of line, which 
can be computationally costly, whereas SCG is intended 
to bypass it, decreasing consumption of time while 
keeping performance. Most significant merit of SCG is 
that it uses a step size depending on a function of error 
estimation that is quadratic. As a result, it is parti–
cularly tough and less sensitive to user-quantified 
settings [35].  
 
3.3 Adaptive Neuro-Fuzzy Inference System 
 
The ANFIS is a hybrid system that combines the 
advantages of fuzzy logic systems and neural networks 
to model complex systems with improved learning and 
generalization capabilities. ANFIS combines the 
interpretability of fuzzy inference systems with the 
learning capacity of neural networks, making it a 
powerful tool for various applications, including system 
modeling and control [46]. ANFIS is structured in a 
five-layer architecture, where each layer serves a 
specific function in processing the input data and 
generating the output. The fuzzification layer is a layer 
t h a t  uses functions o f  fuzzy membership to the data 
of input. Each node implies set of  fuzzy, and the 
output is the degree of membership for the input in this 
set of fuzzy. This layer transforms crisp inputs into 
values of  fuzzy [47, 48]. The ANFIS training includes 
fine-tuning the parameters of both the consequents of 
rule and membership functions to decrease the 
inconsistency between actual and expected results. This 
is accomplished via optimization methods such as 
algorithm of  LM or Gradient Descent [46]. ANFIS is 
mostly valuable in uses where a clear sympathetic of the 
system is desirable, as it offers models and interpretable 
rules that are easy to modify and understand. Its 
capability to regulate to varying data and its mixture of 
neural network and fuzzy logic learning create it a 
adaptable tool for system control and modeling [46]. 
 
4. RESULTS AND DISCUSSIONS  
 
In this research, we analyzed the speed estimation of a DC 
motor system utilizing a conventional KF, KF -based 
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ANN, KF-based ANFIS, GA-based KF, and PSO-based 
KF. The traditional KF, as a baseline technique, had fixed 
coefficients and was employed with a simple linear clas–
sical model. In addition, for the models of ANN, three 
various kinds were considered: LM, BR, and SCG. The 
three kinds of ANN had 10, 20 and 40 hidden layers with 
15 neurons in each. The model of ANFIS, uniting the 
strengths of fuzzy logic and neural networks, was applied 
to capture dynamics of non-linear in the system of DC 
motor more effectively. The configuration of ANFIS 
involved of a lot of fuzzy rules with a Gaussian mem–
bership function for each variable of input. The model of 
ANFIS was trained with 1000 epochs and utilized a 
method of hybrid learning integrating least squares and 
gradient descent. Moreover, the optimization of the per–
formance of KF was approved by applying two popular 
techniques of optimization: GA and PSO. These appro–
aches were used to tune the parameters of filter for 
improved speed estimation in the system of DC motor. For 
GA technique, the parameters involved a size of population 
about 50, a rate of crossover about 0.8, a rate of mutation 
about 0.05, and a maximum value of generations set to 
200. Different scenarios and error metrics were taken into 
account to compare and evaluate the effectiveness of these 
approaches. On the other hand, PSO used a size of swarm 
about 30 particles, a weight of inertia about 0.7, a coef–
ficient of cognitive of 1.5, and a coefficient of social of 1.5. 
The strategies used in this study for speed estimation of 
DC motor divided into three scenarios. Scenario 1 dis–
cusses the traditional KF with fixed parameters, scenario 2 
presents the improved mo–dels of estimation such as ANN 
and ANFIS. Besides, scenario 3 demonstrates the used of 
popular optimization algorithms like GA and PSO to tune 
the parameters of KF.   

Scenario 1: speed estimation based on traditional 
KF 

The conventional KF used as a standard estimation of 
the speed in the system of DC motor, achieving an MSE 
of 0.6513, RMSE of 0.807, ISE of 1.9539, ITAE of 
2.9015, and AAE of 0.6448. While effective in giving 
acceptable accuracy and filtering out to some extent for 
high noise underneath steady environments, the KF 
struggled to preserve precision throughout dynamic va–
riations in the speed of DC motor system (see Figure 3).  

 
Figure 3. Speed Estimation of DC Motor based traditional 
KF. 

The limitations were recognized to its dependence on 
fixed parameters and linear assumptions, which reduced 
it less behavior and effective in covering dynamics of 
non-linear intrinsic in the speed estimation of DC 
motor. Figure 3 presents the comparison between the 
actual DC motor speed and the predicted speed  
based on  traditional algorithm of KF. 

Scenario 2: speed estimation based on GA-based 
KF, and PSO-based KF 

To further enhance the performance of KF, PSO and GA 
were employed to fine-tune its parameters. The GA was 
selected for its capability to discover the space of para–
meter efficiently, resulting to balanced enhancements 
through all metrics of error (see Figure 4),   an MSE of 
0.454, RMSE of 0.6738, ISE of 1.3622, ITAE of 2.5509, 
and AAE of 0.5772. While PSO presented faster con–
vergence, it infrequently struggled with local minima, 
yielding to some extent higher errors in comparing to GA, 
with MSE of 0.455, RMSE of 0.6747, ISE of 1.3659, 
ITAE of 2.552, and AAE of 0.5672. GA con–firmed an 
effective exploration of the space of parameter, giving this 
values of errors given that balanced enric–hments across 
all metrics of error. PSO algorithm, with its rapid 
convergence, reached this results (see Figure 5), Though 
PSO exhibited encoura–ging results, it occasionally suited 
trapped in local minima, creating GA a more accurate and 
stable opti–mization technique. In Fig. 4, this graph proves 
the effectiveness of joining GA with KFs for accurate 
estimation of real-time speed, showcasing the ability of the 
system to adjust faster to sudden deviations in speed while 
preserving very precise predictions.  

 
Figure 4. GA-based KF for Estimated Speed and Actual 
Speed. 

 
Figure 5. PSO-based KF for Estimated Speed and Actual 
Speed. 
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Moreover,  in Figure 5, this graph shows the success 
of combining PSO with KFs for precise real-time speed 
estimation. The PSO-optimized estimated speed closely 
tracks the actual speed through sudden changes, 
showcasing the system’s quick adaptation and high 
accuracy in speed prediction tasks. 

Scenario 3: speed estimation based on KF-based 
ANN, and KF-based ANFIS 

Models of ANN were established as an alternative to 
improve the process of estimation. Inputs comprised 
current (ia), voltage (us) and speed of traditional KF 
(WKF) while proposed estimated motor speed functioned 
as the output variable (W) (see Figure 6). The model of 
ANN used a 21000 sample for training phase, 4500 
sample for testing phase, and 4500 sample for validation 
phase. Figure 7 shows the decaying of MSE during 
training ANN model with best value of MSE about 
0.19719 at 1000 epoch. Besides, the training state 
including gradient of 0.1515 and MU of 0.01 at 1000 
epoch is depicted in Figure 7. Moreover, error 
histogram with 20 bins for ANN model is given in 
Figure 8. Figure 6 illustrates a multilayer feed-
forward network that is suggested for speed 
estimation in this paper. However, Figure 7 displays 
the ANN’s training performance, while Figure 8 
clarifies its training state, and Figure 9 displays the 
error  histogram. 

 
Figure 6. Schematic diagram for proposed ANN 

 
Figure 7. Training performance of ANN 

Three kinds of ANNs LM, BR, and SCG were tra–
ined utilizing the captured data from the system based 
on different numbers of hidden layers including 10, 15 
and 40. The ANN results for 10 hidden layers are pro–

vided in Table 1. This table shows the results of training 
an ANN model  with ten hidden neurons using three 
distinct training algorithms: LM, BR, and SCG. The LM 
algorithm performed the best, with an MSE of 0.2504 
and an R2-value of 1.0000 for the training network. 

 
Figure 8. Training State of ANN 

 

Figure 9. Error Histogram of ANN 

BR was also effective, with an MSE  of 0.2699 and 
an R2-value of 1.0000 for the training network. In 
contrast, the SCG method had the highest MSE for   the 
training network, at 7.7113. Moreover, Table 2 shows 
the results of the ANN model with 20 hidden layers. 
Overall, performance increased as compared to the 10-
hidden neuron model. The LM algorithm continued to 
perform well, with an MSE of 0.2135 and an R2-value 
of 1.0000 for the training network. BR and SCG both 
worked nicely. In Table 3, the results for the ANN 
model with 40 hidden layers are displayed. The LM 
approach achieved an MSE of 0.1878 and an R2-value 
of 1.0000 for the training network, considerably 
improving the model’s performance over the last one. 
Although SCG and BR also showed good performance, 
the LM approach seems to be the most effective training 
procedure among the three models. In summary, the 
LM algorithm-trained ANN model with 40 hidden 
neurons appears to be the most successful setup based 
on the results (see Tables 1,2 and 3). The LM strategy 
outperforms others, and the model’s enhanced 
complexity with 40 hidden neurons    makes it the best 
option for the task at hand. 

Among the three kinds of ANN, LM exhibited the 
best performance with MSE of 0.2398, RMSE of 
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0.4897, ISE of 0.1079, ITAE of 0.267, and AAE of 
0.4131, followed by BR with, MSE of 0.2526, RMSE of 
0.5026, ISE of 0.11367, ITAE of 0.0347, and AAE of 
0.3422 (see Table 4). In addition, SCG achieved a 
results of MSE of 0.4233, RMSE of 0.6506, ISE of 
0.19048, ITAE of 0.0493, and AAE of 0.487. While the 
ANNs presented significant enhancement over the 
classical KF, their performance was to some extent 
inconsistent when exposed to sudden speed variants, 
demonstrating sensitivity to fast variations in the studied 
system. The ANN-based LM, signifying its strong point 
in dealing with complex, relationships of non-linear in 
the system of DC motor (see Figure 10). The models of 
BR and SCG achieved sensibly well but were 
considerably less accurate, with achieving several of 
errors metrics. These results presented that while ANNs, 
specifically LM, offer a significant enhancement over 
the conventional KF, they still demonstrate some 
sensitivity to fast speed deviations. In Figure 10, this 
graph demonstrates the performance of an ANN for 
speed estimation. The ANN-predicted   speed closely 
follows the actual speed through various changes, 
demonstrating the network’s ability to accurately 
estimate speed in real-time, even during sudden 
transitions (see Table 4). 

 
Figure 10. Estimated Speed based on ANN model with 
comparison to Actual Speed 

The structure of ANFIS is the same of ANN model 
in inputs, output and number of samples. As a results, 
inputs included current (ia), voltage (us) and speed of 
traditional KF (ωKF), while proposed estimated motor 
speed functioned as the output variable (ω).  The ANFIS 
model utilized a 21000 sample for training, 4500 sample 
for testing, and 4500 sample for checking. Figure 11 
shows the training error for speed estimation using 
ANFIS, while Figure 12 displays the dataset checking, 
and Figure 13 demonstrate the testing results. 

Table 1. Results of ANN for 10 Hidden Layers 

        Performance Metrics 
Training Algorithm     

Results Test Network 
Sample

s 
MSE R2 Sample

s 
MSE R2 

ANN-based LM 21001 0.2504 1.0000 4500 0.2574 1.0000 
ANN-based BR 21001 0.2699 1.0000 4500 0.2630 1.0000 

ANN-based SCG 21001 7.7113 0.9993 4500 5.0775 0.9995 

Table 2. Results of ANN for 20 Hidden Layers 

        Performance Metrics 
Training Algorithm     

Results Test Network 
Samples MSE R2 Samples MSE R2 

ANN-based LM 21001 0.2135 1.0000 4500 0.2102 1.0000 
ANN-based BR 21001 0.2854 1.0000 4500 0.2843 1.0000 

ANN-based SCG 21001 0.4376 1.0000 4500 0.4297 1.0000 

Table 3. Results of ANN for 40 Hidden Layers 

        Performance Metrics 
Training Algorithm     

Results Test Network 
Samples MSE R2 Samples MSE R2 

ANN-based LM 21001 0.1878 1.0000 4500 0.2013 1.0000 
ANN-based BR 21001 0.1981 1.0000 4500 0.2050 1.0000 

ANN-based SCG 21001 2.1572 0.9998 4500 1.9277 0.9998 

Table 4 Comparison of performance metrics for various speed estimation algorithms  

Algorithm Type of Error 
MSE RMSE ISE ITAE AAE 

Traditional KF 0.6513 0.807 1.9539 2.9015 0.6448 
KF- based GA 0.454 0.6738 1.3622 2.5509 0.5772 
KF- based PSO 0.4552 0.6747 1.3659 2.5525 0.5672 
ANN-based LM 0.2398 0.4897 0.1079 0.267 0.4131 
ANN-based BR 0.2526 0.5026 0.11367 0.0347 0.3422 
ANN-based SCG 0.4233 0.6506 0.19048 0.0493 0.487 
ANFIS- based KF 0.20824 0.45633 0.6474 0.7373 0.356 
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The model of ANFIS, in contrast, evidenced to be a 
robust methodology for speed estimation. By integrating 
the strengths of fuzzy logic and neural networks, ANFIS 
covered the non-linear relations more efficiently than the 
models of ANN. Its capability to adapt to conditions of 
dynamic caused in superior performance, attaining an 
MSE of 0.20824, RMSE of 0.45633, ISE of 0.6474, 
ITAE of 0.7373, and AAE of 0.356 (see Table 4) . This 
benefit was mainly evident throughout abrupt variations 
in speed, where ANFIS reliably outperformed both the 
conventional KF, optimized KF based on GA and PSO 
and models of ANN in terms of performance metrics, 
filtering, accuracy and robustness (see Figure 14). In 
Figure 14, this plot compares the performance of a 
standard KF and an Integrated KF-ANFIS approach for 
speed estimation. The ANFIS-based KF closely track the 
actual speed more than traditional type, demonstrating its 
effectiveness in real-time speed estimation,  parti–cularly 
during rapid changes. Figure 15 demonstrates the compa–
rison between suggested techniques in this study. Figure 
16 presents comparison chart for performance metrics of 
errors. In addition, Table 4 summarizes the obtained 
comparative simulation results of all approaches, disp–
laying ANN-based BR as the most efficient and reliable 
estimation model for scenarios including fast and 
frequent changes in speed, while ANFIS depicted a 
reasonable alternative for smoother environments.  

 
Figure 11. ANFIS Training for Speed Estimation of DC 
Motor 

 
Figure 12. ANFIS Checking Dataset for Speed control of DC 
Motor 

 
Figure 13. ANFIS Testing for Speed Control of DC Motor 

 
Figure 14. Speed Estimation using ANFIS-based KF 

 
Figure 15. Speed Estimation using Suggested Techniques 

 

5. CONCLUSION  
 
This paper highlights the efficient and effectiveness of 
intelligent algorithms in enhancing accuracy of 
estimation task of speed for DC motor. A comparative 
study involving traditional KF, GA-optimized KF, PSO-
optimized KF, , and hybrid approaches that incorporate 
nominal KF with ANN and ANFIS exposes significant 
and distinct disparities of performance, highlighting the 
importance of choosing suitable algorithms based on 
needs of application. ANN models, particularly BR, 
pointedly enhanced accuracy of estimation and 
outperformed others suggested models, achieving MSE 
of 0.2526, RMSE of 0.5026, ISE of 0.11367, ITAE of 
0.0347, and AAE of 0.3422 demonstrating robustness in 
dynamic scenarios. The paper obviously presents how 
effective and efficient these strategies are in precisely 
the speed estimation of studied motor, which was 
implemented encouraging by a  Matlab\Simulink 
package that recreates the DC motor dynamics based on 
identified mathematical equations. Furthermore, the 
paper highlights the simplicity and robustness of each 
methodology of speed estimation, indicating how 
integrating ML and optimization techniques may 
enhance accuracy of estimation. In order to improve 
accuracy of estimation, this strategy may be hybridized 
and optimized in the future with recent techniques. 
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Figure 16. Comparison Chart for Performance Metrics of Errors 

APPENDIX: 

Motor Parameters 
Parameters Values 
Voltage (Un) 280 V 
Nominal angular speed (wn) 172 rad/s 
Power (Pn) 1.5 kw 
Torque (Tn) 8.85 N.m 
Current (In) 7.2 A 
Resistance (Ra) 6.41 Ω 
Inductance (La) 23 mH 
Moment of inertia (J) 0.026 Kg.m2 

Sampling time (Ts) 10-4 s 
Time delay (Tdelay) 2 Ts  
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NOMENCLATURE 

Un Voltage  
wn Nominal angular speed  
Pn Power   
Tn Torque  
In Current  
Ra Resistance  
La Inductance  
J Moment of inertia  
Ts Sampling time  
Tdelay Time delay  
PSIM Gain Kalman Factor 
ea(t) Input Voltage 
eb(t) Back electromotive force (EMF). 
θ(t) Rotor position angle 
Kb EMF constant  
Kt  Torque constant 
Pt Matrix of covariance 
Qt  Covariance Process of Noise 
R Covariance Matrix of Measurement Noise 
x Value of input being calculated 

t|t Notation point to the value of the adaptable at this 
time step 

t – 1|t-1 Value at the   prior time step 

t|t – 1 Forecasted value prior to integrating the most latest 
measurement 

F Objective Function 
ei The error for each point of data 
N Sum of the points of data. 
Ed Typical primary function of BR 
Eω Network Weights 
α and β Regularization parameters optimized  

Acronyms and abbreviations 

AAE Average Absolute Error 
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network 
ACO Ant Colony Optimization 
BR Bayesian Regularization 
DC Direct Current 
EMF Electromotive Force 
GA Genetic Algorithm 
ITAE Integral of Time-weighted Absolute Error

ISE Integral of Squared Error 
KVL Kirchhoff’s Voltage Law 
KF Kalman Filter 
KFNNS KF and Neural Network Succession 
LM Levenberg-Marquardt 
MSE Mean Squared Error 
MMSE Minimum Mean Square Error 
RMSE Root Mean Square Error 
PWM Pulse Width Modulation 
PSO Particle Swarm Optimization 
PID Proportional-Integral-Derivative 
SEDCM Separately Excited DC Motor 
SCG Scaled Conjugate Gradient 
SA Simulated Annealing 

 
 

ИНТЕЛИГЕНТНО ПОБОЉШАЊЕ 
КАЛМАНОВОГ ФИЛТЕРА ЗАСНОВАНО НА 

ВЕШТАЧКОЈ ИНТЕЛИГЕНЦИЈИ ЗА 
ПРОЦЕНУ БРЗИНЕ И УПРАВЉАЊЕ 
ЈЕДНОСМЕРНИМ МОТОРИМА 

 
М.Е.М. Еса, М.М. Халил, М.А. Ел-Белтаги 

 
Процена стања се сматра суштинским и сложеним 
задатком за прецизно и ефикасно управљање и 
праћење постројења у индустријским применама. 
Мерни систем који укључује сензоре представља 
значајну инвестицију за било који систем 
управљања за праћење и немерљивих и мерљивих 
променљивих стања динамичких система. Као 
резултат тога, ограничење трошкова може се 
смањити коришћењем безсензорских стратегија које 
процењују променљиве стања. Циљ овог рада је 
имплементација интелигентног побољшаног 
Калмановог филтера (KF) заснованог на различитим 
алгоритмима машинског учења за процену брзине 
једносмерног мотора без сензора. Интелигентне 
методе су вештачка неуронска мрежа (ANN), 
адаптивни неуро-фази инференцијски систем 
(ANFIS), генетски алгоритам (GA) и оптимизација 
роја честица (PSO). Ови алгоритми се користе за 
побољшање и подешавање KF. Да би се побољшала 
тачност процене, параметри KF су оптимизовани 
коришћењем PSO и GA. Истраживање истражује 
три врсте архитектура вештачких неуронских мрежа 
(ВНМ) које су имплементиране и упоређене са 
ANFIS-ом ради процене брзине мотора, користећи 
прикупљене податке који укључују напон, струју и 
излазну брзину традиционалног KF-а. Модели су 
тестирани и евалуирани коришћењем вишеструких 
метрика критеријума грешке. Резултати су показали 
да је Бајсов регулациони алгоритам (БР) заснован на 
ВНМ значајно надмашио друге моделе, постижући 
минималне вредности метрика грешке. Предложена 
интелигентна процена брзине без сензора заснована 
на БР стратегији заснованој на ВНМ доказује 
потенцијал као адаптивно решење, тачна и 
исплатива методологија за контролу брзине 
једносмерног мотора. Резултати студије нуде вредне 
и различите увиде за истраживање исплативих и 
ефикасних шема управљања без сензора. 




