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Lightweight Hybrid CNN—Vision
Transformer for Real-Time Automated
Shipping Container Damage Detection

Manual container inspections often lead to inconsistencies and
inefficiencies, which can disrupt supply chains and increase operational
costs. The time-consuming nature of manual checks makes automation
an appealing alternative. This paper presents a lightweight hybrid model
combining Convolutional Neural Networks (CNN) and Vision
Transformers (ViT), specifically designed for automated container
damage classification. The CNN extracts fine-grained local features,
while the ViT models global structural patterns, overcoming the
limitations of purely convolutional architectures. We evaluate four model
variants on a dataset of 2,116 images, collected from container depots
near Jakarta Port. Our proposed CNN-ViT hybrid model generalized
well with this dataset and achieves 96.57% + 0.83 accuracy, 0.089 +
0.015 binary cross-entropy loss, and 64.21 £ 1.47 ms inference latency,
peaking at 97.2% accuracy and 62 ms latency in the best trial with only I
million parameters. Compared to MobileNetV2, our approach improves
classification accuracy by about 1% while reducing inference time by
approximately 9 ms, demonstrating its efficiency for real-time automated
container inspection in resource-constrained environments.

Keywords: computer vision, lightweight models, binary classification,
CNN, ViT, container inspection.

1. INTRODUCTION

Shipping containers play an essential role in global
trade, facilitating the transportation of goods over large
distances. However, containers might get damaged by
impact [1] during transit or gradual wear over time. To
ensure the reliability and security of shipments, they
need to be inspected regularly. However, manual
inspections are labor intensive, time consuming, and
prone to human error. Field observations reveal that
inspecting stacked containers is labor-intensive and
time-consuming, as they must be grounded for
assessment. Automated inspection promises faster, more
accurate, and more consistent inspection solutions.
Advances in computer vision and deep learning have
made it increasingly feasible to automate visual inspec—
tion tasks. Convolutional Neural Networks (CNN) are
renowned for their ability to extract detailed local fea—
tures, while Vision Transformers (ViT) excel at mode—
ling global dependencies and the overall structure of
visual data. Over the years, artificial neural networks
(ANN) have been widely applied in industrial appli—
cations, demonstrating their effectiveness in modeling
and optimizing complex processes [2]. In the context of
container damage detection, leveraging ANN-based
models allows for improved predictive accuracy,
making automated inspection systems more robust and
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efficient for real-world deployment.

However, due to the difficulty of obtaining a suitable
dataset, we opted to collect and manually annotate the
data ourselves. In this paper, we address the binary
classification problem of container damage detection—
specifically, distinguishing between damaged and
normal exterior and interior panels of containers. Given
the dataset’s limited size, we designed an efficient and
robust model tailored to dataset’s limitation.

To achieve this, a lightweight hybrid model is
proposed that merges a CNN fine-grained feature
extraction with a miniaturized ViT global self-attention.
The CNN uncovers localized damage details—Ilike rust
spots and small dents—while the ViT captures broader
structural ~deformities, overcoming CNN inherent
locality bias. Despite using only 1 million parameters,
our model achieves up to 97.2% accuracy and delivers
an average inference time of 62 ms per image, making it
perfectly suited for real-time, resource-constrained
container inspections.

2.1 Convolutional Neural Network (CNN)

The foundation of Convolutional Neural Networks
(CNN) was laid by LeCun et al. [3] through the intro—
duction of LeNet-5, one of the earliest successful
applications of neural networks to image recognition
tasks such as handwritten digit classification. CNNs
fundamentally operate by stacking multiple stages, each
typically consisting of a convolutional layer followed by
a non-linear activation function and a pooling layer.
Convolutional layers apply local filters to extract spatial
features such as edges, textures, and patterns, while
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pooling layers reduce the spatial dimensions, making
the representations progressively more abstract and
robust to small translations.

This basic architecture enables CNN to learn incre—
asingly complex features, from low-level edges to high
level object parts, across deeper layers. The introduction
of AlexNet [4] in 2012 dramatically accelerated CNN
development by demonstrating the effectiveness of deep
CNN trained on large datasets like ImageNet using
modern GPU. This success popularized CNNs as a
backbone for computer vision tasks. Moreover, CNN
have been applied to multi domain problems such as
forecasting wind power density [5] and seismic signal
denoising [6].

2.2 Vision Transformer (ViT)

The Vision Transformer (ViT) [7] marked a significant
effort to make transformer applicable to work in image
classification. ViT splits images into fixed size patches
and processes them as sequences using self-attention
mechanisms. This design enables ViT to model global
dependencies across an image more effectively than
conventional CNN. However, ViT models generally
require large-scale datasets and extensive pre-training to
perform well. Subsequent work like DeiT [8], improved
ViT’s data efficiency such as pre-trained CNN, heavy
augmentation, and regularization, making them more
applicable to smaller datasets.

A similar strategy has been adopted in defect
detection applications, where pre-trained ViT models
are integrated into transformer-based object detection
architectures. For instance, YOLOS-PV [9] leverages a
ViT backbone trained on large-scale datasets before
feeding extracted features into a transformer encoder for
improved defect localization. This approach has de—
monstrated strong performance in detecting solar panel
defects, reinforcing the viability of ViT in automated
visual inspection systems, including container damage
detection.

2.3 Container Damage Detection

Recent studies have significantly advanced automated
visual inspection methods for shipping containers.

Huang, et. al. [10] in 2024, proposed a Vision
Transformer (ViT) model to detect container damage.
Their dataset consisted of images categorized into three
types of container aging damage—Rust, Distort, and
Dent. While the total dataset was reported as 3,000
images, only 1,500 were explicitly mentioned in the
training and testing process. The dataset was split in a
9:1 ratio. Their approach aimed to improve automated
damage classification by leveraging ViT’s capability to
capture both local and global image details. The
experimental results showed an accuracy of 80.6%, a
loss function of 0.724, and a learning rate of 0.001,
demonstrating the effectiveness of their method in
detecting container aging and damage. However, this
level of accuracy may not be enough for industrial
application, showing a room for improvement.

Lietal. [11] proposed RP-FCN a fully convolutional
network based on ResNeXt50. The authors claim to get
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85% compared to another model with normal FCN and
FCN with fusion Up-sampling respectively 74% and
78%. However, the authors didn’t provide more detail
about dataset used in the research. The lack of details
makes it difficult to verify the results’ s generalizability.

Wang et al. [12] previously applied MobileNetV2
for detecting multiple types of container damages. The
authors employed 1543 sample images divided to 9
class: 7 types of damages, container, and surrounding
environment. Training set and validation set divided
according to 9:1. achieving a verification accuracy of
97.99% after retraining, with significant improvements
over initial training performance (training accuracy
improved from 86.21% to 95.32%, and training loss
reduced from 40.59% to 23.31%). The authors tested
the model on-site. The accuracy varied across classes
due to uneven number of images. However, the author
didn’t explain clearly how they attempted to mitigate
this problem, which can affect model reliability.

Bahrami et al. [13] implemented and optimized
several models: Faster R-CNN, SSD-MobileNet, and
SSD InceptionV2 for object detection container dama—
ge. The authors introduce anchor box optimization that
can adapted during training. This technique improves
detection accuracy by more than 5%.

Kuo et al. [14] in 2025 introduced the Cad-Trans—
former, a hybrid CNN-Transformer architecture for
shipping container defect classification. They utilized
random image masking and transformer-based recon—
struction alongside CNN-based feature extraction speci—
fically from visible patches. This combined approach
achieves an average accuracy around 85% across
multiple defect categories.

The literature shows significant progress in auto—
mating container inspection, with methods of combi—
nation of CNN and transformer or complex hybrid
models. Many of these studies aim to solve the tough
problem of classifying multiple types of damage at
once. However, this often creates a trade-off, some
models require huge dataset of over 16,000 images to
achieve moderate accuracy, while others that seem
accurate might have higher latency, making them less
ideal for real-time use.

We decided to take different approach by focusing
on a foundation first step: creating a fast and highly
reliable model that simply determines wheter a con—
tainer is “damaged” or “normal”. This kind of quick,
yes-or-no check is incredibly valuable for initial scree—
ning in busy port or crowded depot where speed is cru—
cial. To address this, we introduce our lightweight
hybrid CNN-VIiT architecture, designed to provide a
robust and practical solution for this essential first step
in automated damage detection.

2. HYBRID CNN-VIT ARCHITECTURE

Combining both local feature extraction and global
context modeling, we adopt a two-branch network
whose outputs are fused before the final decision.
Figure 1 depicts the overall structure. The input to the
model is an RGB image with a size of 224 x 224.

2.4 Convolutional Stem
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A lightweight four-block CNN serves as our local
feature extractor. It is made up of four sequential blocks
and each block includes:

Conv2D — BatchNorm — ReLU — MaxPool (1)

with channel widths for the four sequential blocks are
considered as 16, 32, 64, and 128; respectively. After
four downsampling stages, spatial resolution is reduced
by a factor of 16, yielding a 14 x 14 x 128 feature map.
A final Global Pooling collapses this into a single 128-
dimensional vector veyy.

2.5 Vision Transformer Branch

In parallel, a compact ViT branch captures long-range
dependencies.

Output Layer

t
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GlobalAveragePooling}D
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Figure 1. Hybrid CNN-VIT architecture: a lightweight CNN
stem extracts fine-grained local features (edges, textures),
a compact ViT head captures global context via self-
attention, and their fused 256-D feature vector is classified
by an MLP for binary damage detection.

Patch Embedding. We use a straightforward method to
convert image patches into embeddings by applying a
single Conv2D layer. The kernel size and stride are set
to the same value as the patch size, so the layer splits
the image into non-overlapping patches and projects
them directly into the embedding space. This avoids the
usual method in ViT, which first slices the image and
then uses a linear layer. Our method is inspired by the
ViT-Lite model [15], which showed that this approach
can reduce complexity and still perform well, especially
when there isn’t a lot of training data. Unlike other
models that use extra convolution or pooling layers
before the transformer, we maintained a clean design
aligned with the original ViT approach, with fewer
built-in assumptions from CNN.

A Conv2D layer (kernel, £ = 16, stride, s = 16,
filters, f = 128) is applied to the input image,

X e R¥?%22%3  The output tensor, X € RIAX14x128

represents 196 patches, each mapped to a-128-dimen—
sional vector.
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X, =conv2D(X;k=16,s=16, f =128) (2)
We reshape these patches into tokens with
dimension, (196, 128).

196x128
X, = Reshape(Xp) eR7™ 3)

Thus, patches become tokens arranged sequentially,
ready for processing by the transformer.
Positional Encoding. Learned embeddings P @ R196x128
are added to each patch vector:

Z=X, +P @)

Transformer Blocks. Stack L = 4 blocks, each perfor—
ming Multi Head Self-Attention with set to 2 with
residual block then feed forward MLP with residual
block.

Z' = Z + MHSA(LayerNorm(Z)) Q)
Z"=Z7'+MLP(LayerNorm(Z')) (6)

where the MLP is a two-layer feed-forward network
with inner dimension 256, GELU activation, and drop—
out0.1.

Global Pooling. A final GlobalAveragePoolinglD re—
duces the sequence of 196 tokens to a single 128-dim
vector vy Instead of using a special [CLS] token to
represent the whole image, we keep things simpler by
applying global average pooling [16]. This averages all
patch embeddings into a single vector. It’s lightweight,
doesn’t add extra parameters, and works well - espe—
cially when training data is limited. While the [CLS]
token can sometimes help by learning to focus on im—
portant parts of the image, it also makes the model a bit
more complex. For a compact and efficient design,
global pooling is often the better choice.

2.6 Feature Fusion and Classification
We concatenate the two branch outputs,

V= [VCNN ;vViT] S R256 (7)

and feed v into a two-layer MLP with sigmoid activation
for binary classification. We insert two Dropout layers
to mitigate overfitting during training.

The proposed hybrid architecture effectively com—
bines the inductive biases and efficiency of a light—
weight CNN with the global context modeling of a
compact Vision Transformer. By concatenating the fea-
ture vectors from both branches before classification,
the model captures complementary local and global in—
formation in a unified representation, leading to imp—
roved robustness and accuracy on small datasets while
maintaining low computational cost - ideal for real-time
and resource-constrained applications such as container
damage classification.

3. EXPERIMENTAL SETTING AND ENVIRONMENT

In this section we discuss dataset preparation, image
pre-processing, and experimental setup on Kaggle.
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2.7 Dataset preparation

One of the primary challenges in applying computer
vision to container damage detection is the limited
availability of relevant datasets. To address this, we
constructed a custom dataset comprising images of both
the exterior and interior panels of shipping containers,
which are commonly subject to damage from impact,
prolonged use, or environmental exposure. The dataset
was collected from real-world shipping container depots
near Jakarta Port (Tanjung Priok) between 2023 and
2025. The photos were captured on-site by depot sur—
veyors and third-party independent surveyors under
natural daylight with varying lighting conditions. Most
images were captured using smartphones or compact
digital cameras, later compressed to reduce storage re—
quirements - mimicking the quality constraints of actual
field inspections. Both interior and exterior container
panels were included, with attention to areas most
susceptible to damage. The images were then resized or
cropped to get focused on damage areas.

Figure 2. Sample dataset container labeled as normal

All images were manually labeled into two classes:
normal and damaged, based on visual signs such as
dents, rust, cut, broken, chemical contamination, surface
deformation, or holes. The total number of images
acquired was 2116 images: 1081 labeled as damage and
1035 labeled as normal. The dataset was then split into
three subsets: training (80%), validation (10%), and
testing (10%). Annotations were performed by a single
annotator, and although care was taken, some subjec—
tivity may remain. No formal inter-annotator agreement
process was conducted. To enhance annotation relia—
bility and reduce bias, in the future, multiple annotators
will be involved to improve labeling consistency, along
with a formal inter-annotator reliability measure like
Cohen’s Kappa. Expert validation and collaborative
labeling will further increase dataset accuracy and
quality, ensuring ambiguous cases are addressed.

2.8 Pre-processing Images

Before feeding the images into the network, all images
were resized to 224x224 pixels. This convention
ensures compatibility with to ImageNet pre-trained
models [4, 17]. Since our dataset has limited variability,
extensive data augmentation is applied to enhance
diversity and better reflect real-world scenarios. There
isn’t a clear theoretical guideline for choosing the best
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augmentation techniques to maximize dataset benefits
[18], so we focused on approaches that would streng—
then generalization and help the model perform well in
different conditions. In this project, we implemented a
strong data augmentation pipeline during the training
images, ensuring diversity while preserving their essen—
tial features. The augmentation techniques used inc—
luded horizontal flipping, rotations, zooming, contrast,
and brightness each randomly up to 20% adjustments.

!

§LDU
431453 3
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~
%

Figure 3. Sample dataset container labeled as damage

2.9 Environment Setting

The experiment uses GPU P100 provided by Kaggle,
running TensorFlow 2.18 and Python 3.11. Batch size is
set to 64. We use Adam [19] as the optimizer with a
learning rate of 0.001 and train for 50 epochs. Given the
simplicity of our task - binary classification of container
damage with a relatively small dataset - we primarily
rely on CNN for feature extraction and classification
due to its efficiency. To enhance the model’s ability to
capture long-range dependencies, we integrate ViT,
which improves contextual understanding without
adding excessive complexity.

We use ReduceLROnPlateau to dynamically adjust
the learning rate when validation loss plateaus, stabi—
lizing training and reducing overfitting. Additionally,
EarlyStopping is implemented to halt training when
further improvements cease, reducing unnecessary
computations and refining model generalization. These
techniques collectively optimize the training process,
allowing CNN-based architecture to perform more
effectively with ViT integration.

4. RESULTS AND DISCUSSION

In this section we present the best performance of our
proposed model based on ten independent runs to see its
stability and use SHAP to analyze the performance of
our model.

Model Performance Evaluation

Our experiments demonstrate that integrating a light—
weight Vision Transformer (ViT) with the Base CNN
yields superior results for container damage classi—
fication. This hybrid model achieved a peak accuracy of
97.2% while maintaining computational efficiency with
a modest 1 M parameters and a rapid inference time of
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62 ms, as detailed in Table 1. This highlights the
model’s balance between spatial detail and contextual
understanding.

Ablation Study

To evaluate the performance of adding a lightweight
ViT branch, we benchmarked four variants: Base CNN
alone, MobileNetV2 alone, and each fused with our ViT
module. As shown in Table 1, the Base CNN alone
achieved an accuracy of 95.8%. Integrating the ViT
module boosted its accuracy to 97.2%, while also lowe—
ring loss by 36%, with only a slight latency increase of
6 ms.

Table 1. Integrating the ViT branch into our Base CNN not
only boosts accuracy by 1.4 points but also lowers
validation loss significantly, all with just a 6 ms latency
increase.

Model Params Acc Val Inference

M) (%) Loss Time

Base CNN 0.1 95.8 0.1064 56 ms

MobileNetV?2 2.3 94.8 0.1321 73 ms

Base CNN+ | 10 972 | 0.0679 | 62ms

ViT

MobileNetV2

L VIT 32 95.3 0.1251 80 ms

Additionally, we further analysed model perfor—
mance using precision, recall, and Fl-score metrics
(Table 2). The Base CNN-ViT model consistently de—
monstrated higher precision (96%—98%), recall (96%—
98%), and F1-score (97%) compared to Base CNN and
MobileNetV2 variants. This enhancement indicates a
stronger, more reliable capability in accurately detecting
container damage. Particularly notable is the improved
recall, essential in practical inspection scenarios where
minimizing missed damage detections is critical. In
contrast, integrating ViT with MobileNetV2 yielded
smaller improvements, highlighting the Base CNN-ViT
combination as the most balanced and efficient choice
among the evaluated models.

Table 2. F1-scores for the damage and normal classes
across all four model variants, including macro and
weighted average F1, highlighting the improvement
achieved by integrating the ViT branch.

Model Class Prec. | Recall | '1 Sup.
score

damage 0.94 0.98 0.96 109

Base CNN ™ ormal | 098 | 093 | 096 | 104
MobileNet | damage 0.93 0.97 0.95 109
V2 normal 0.97 0.92 0.95 104
Base CNN | damage 0.96 0.98 0.97 109
+ViT normal 0.98 0.96 0.97 104
MobileNet | damage 0.94 0.97 0.95 109
V2 + ViT normal 0.97 0.93 0.95 104

Error Analysis

The confusion matrix (Figure 4) predominantly
occurring near the decision threshold of 0.5. In Figure 5,
we isolated six misclassifications and categorized them
according to the visual cues present.

Low-Visibility Defects (Figs. 5a—5b): Two damage
examples are simply too faint or partially hidden to
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stand out. In Fig. 5a, a thin rust patch (and overlaid
chalk) barely alters the panel’s texture, while in Fig. 5b
a larger rust streak is broken by a shadow or marking.
We initially underestimated how often inspectors' chalk
markings confused the model, revealing the need for
context-aware attention mechanisms.

100

80

60

- 40

Confusion Matrix

=

'
damage normal
Predicted

True
damage

normal

Figure 4. Confusion matrix for the CNN-ViT model: 107/109
damaged and 100/104 normal accurately classified.

High-Contrast Distractors (Figs. 5c—5f): Four normal
panels contain bold, reflective, or textured elements that
mimic damage. A yellow sign’s glare (5¢), dirt streaks
and weld seams (5d), a sensor box shadow (5¢), and
thick container lettering (5f) all produce high-intensity
or irregular patterns that can be mistaken for corrosion.
For further analysis of model behavior, we
conducted a SHAP analysis presented in the Section 5.5.

(a) Score: 0.64
True: damag

(b) Score: 0.54
True: damage Pred: normal

(c) Score: 0.11
True: normal Pred: damage

(d) Score: 0.50
True: normal Pred: damage

(e) Score: 0.27 (f) Score: 0.34
True: normal Pred: damage

True: normal Pred: damage

Figure. 5: Error analysis at the 0.5 threshold. (a-b) False
negatives occur when corrosion is low-contrast or
occluded. (c—f) False positives predominantly occur due to
misleading surface artifacts or challenging lighting, which
resemble damage patterns. Each panel lists true label,
predicted label, and confidence.

Robustness and Stability Analysis

For robustness assessment, we conducted 10 indepen—
dent training runs. The average results are summarized
in Table 3. The Base CNN-ViT model consistently
delivered the highest average accuracy (96.57%0.83)
and lowest loss (0.089+0.015), while maintaining
competitive inference latency (64.2 lms/sample).

Quantitative Attribution Analysis via SHAP

A comprehensive analysis using explainable Al with
SHAP value was conducted to quantify the contribu—
tions of the CNN and ViT branches in our hybrid model
for container damage classification. The SHAP analysis
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employed Kernel SHAP, which approximates Shapley
values to explain the model's predictions. We quanti—
tatively analyzed the contributions of CNN and ViT
branches using mean absolute SHAP values at the final
block level, computed across three independent runs (500
background samples, 40 test images per run). These
settings were chosen to balance computational efficiency
with analysis stability, ensuring reliable SHAP value
estimates while keeping processing costs manageable. As
shown in Figure 6, the CNN block exhibits higher attri—
bution values (0.34+0.02) compared to ViT (0.27+0.015),
indicating that CNN features have a stronger and more
consistent influence on the model’s output.

Block-level SHAP over 3 runs

Mean |SHAP|

ViT block

CNN block

Figure 6. Mean absolute SHAP values for the CNN and ViT
branches at the final block level, averaged over three runs.
Error bars denote one standard deviation.

In our experiments, both Figures 7 and 8 analyze the
same two test images - a heavily scratched-dented panel
and a localized rust spot - but at different levels of
granularity. Figure 7 compares the CNN’s Grad-CAM
and the ViT’s attention-rollout. On the dented panel (top
row), Grad-CAM predominantly highlights the conta—
iner’s longitudinal ribs and only sparsely overlaps the true
dent, whereas the ViT rollout spans the broader scratched
region, capturing context but lacking boundary precision.
On the rust defect (bottom row), both methods fail to
focus on the small corrosion: Grad-CAM is misled by the
inspector’s white chalk marks, and the ViT rollout
produces a diffuse, unfocused heatmap.

Table 3. Ten-run average performance: the CNN-ViT model

demonstrates superior stability and accuracy with
reasonable latency.

Model Avg. Acc Avg. Loss Latency

(%) (ms)

Base CNN 95.82+£0.75 | 0.115+0.020 58.08

MobileNetV2 | 94.74+1.10 | 0.142 +0.025 73.21

Base CNN - 96.57+0.83 | 0.089+0.015 64.21

ViT

MobileNetV2 - | 95.31£0.95 | 0.108+0.018 80.05

ViT

Figure 8 presents the block-level SHAP analysis
conducted with our complete hybrid model. Input
images for testing were segmented into 100 superpixels
using the SLIC algorithm, and SHAP values were
computed based on the model predictions against a
black baseline. For visualization, we focused on the top
20% most impactful superpixels. This figure provided
more granular insights.
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On the heavy scratched-dented panel (left), SHAP
accurately identified heavily impacted superpixels,
validating CNN’s effectiveness in capturing pronounced
local damage. In contrast, for the localized rust defect
(right), SHAP correctly highlighted the rust spot in red,
indicating accurate recognition of the true damage.

Damage
Pred: Damage

CNN Grad-CAM VIT Rollout (top20%)

Rust Defect

Pred: Normal CNN Grad-CAM

Figure 7. Spatial visualization of model attention. Each row:
(left) input image, (middle) CNN Grad-CAM overlay, (right)
ViT attention-rollout (top 20%). Top row: correct damage
detection. Bottom row: rust defect misclassified as normal.

However, it was evident that the CNN misin—
terpreted inspector-made white markings as significant
damage indicators as highlighted in adjacent regions.
Simultaneously, intact regions appeared prominently in
blue, strongly contributing to the incorrect normal
classification. This conflict highlights the model’s
susceptibility to false signals caused by visual artifacts.
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Figure 8. Block level SHAP explanations on two damage
examples. Left: a heavy scratched-dented container panel
with SHAP highlighting the indented superpixels in red.
Right: a localized rust with red shading over the corroded
area and blue shading on intact panel sections. Only the
top 20 % most impactful superpixels are shown; blue
regions contribute toward the “normal” class, red regions
toward the “damage” class.

Damage Rust Defect

-
]

In summary, while the CNN block significantly
contributes to accurate classifications by effectively
capturing local damage features, it remains susceptible
to misinterpretations caused by non-damage markings,
such as inspection signs. This highlights the need for
enhanced feature disambiguation strategies, such as
guided attention mechanisms or refined fusion logic.

In misclassifications, CNN’s Grad-CAM activates
on high-contrast markings (e.g., chalk) rather than the
central rust defect, suggesting overfitting to irrelevant
details. The VIiT rollout, however, shows diffuse
attention without clear focus on the defect, highlighting
its difficulty in identifying subtle localized features.

FME Transactions
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Table 4: Comparison of recent container damage detection methods showing problem type, dataset size, model architecture,
accuracy, number of parameters, and latency. The proposed method is included for reference.

Aspect [10] [11] [12] [13] [14] Our work
Domain Multi-Class Object Detection Multi-Class Object Detection Multi-Class Binary
Problem Classification Classification Classification Classification
Dataset 3,000 images, Not explicitly 1,543 images; 9 Not explicitly 16,000 images; | 2,116 images;
3 classes detailed classes detailed 8 classes 2 classes
Models Vision RP-FCN MobileNetV2 Faster R-CNN, Cad-transformer CNN-ViIT
Transformer (ResNeXt50) MobileNet,
(ViT) InceptionV2
optimized with
box anchor
Results 80.6% 85% 95.32% (train), 66% ~85% accuracy 97.2%
(Accuracy) 97.99% (validation) (averaged)
Key Transformer- Fusion Transfer Learning, Anchor Box CNN + Compact
Techniques based self- Upsampling, Image Optimization Transformer CNN-ViT
attention Pyramid Pooling, Augmentation, MAE with CFE- integration
ResNeXt50, FCN Weak Supervision VP module
structure (WESPE
enhancement)
Class Rust, Door damage, Surrounding, Corrosion Broken, Cut, Damage,
Detected Distortion, deformation, damage, hole, rusty, Dent, Hole, Normal
Dent distortion, bent, dent, open, Rust, Distorted,
concave, convex, collapse, normal Normal, Others
hole, scratch,
number losses

This behavior highlights the complementary roles of
both models: while CNN excels in precise localization
though prone to misinterpreting irrelevant details), ViT
provides contextual insights but struggles with subtle
defects.

These observations emphasize the advantage of
integrating CNN’s detailed spatial sensitivity with ViT’s
broader contextual understanding, particularly useful in
scenarios with ambiguous visual cues. Future enhan—
cements might explore methods to better harmonize
these complementary strengths. A summary of this work
alongside related studies is presented in Table 4.

5. CONCLUSIONS

This work proposes a compact hybrid architecture that
integrates a lightweight convolutional stem with a
vision ViT head to effectively capture both local and
global features for container damage classification.

Our primary contribution to the state-of-the-art is the
demonstration that a minimalist hybrid model can
outperform more complex architectures on a specialized
industrial vision task, particularly under the common
constraint of a small dataset. Through extensive
experiments on a small, real-world dataset, the model
achieved high accuracy (up to 97.2%) while maintaining
low computational cost with only 1M parameters and 62
ms inference time. Our lightweight CNN-ViT hybrid
demonstrates effectiveness as a practical, and scalable
solution for real-time inspections. Specifically, this
performance perfectly suited for deployment at the
automated gates of a port or depot. It can function as an
efficient screening tool, performing a quick “yes-or-no”
damage assessment as containers pass through. This
allows operators to immediately pull aside only
containers that need a more detail secondary inspection,
keeping traffic moving smoothly.

FME Transactions

Despite its promising results, our study is
constrained by the limited dataset and diversity,
potential annotation inconsistencies due to single-
annotator labeling, and the model’s limitation to binary
damage detection. Future work aims to address these
limitations by expanding and diversifying the image
collection, incorporating multi-annotator consensus for
more reliable labels, and extending the framework to
multiclass damage typologies.
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JIATAHHU XUBPHU/IHU CNN-VISION
TPAHC®OPMATOP 3A AYTOMATHU30BAHO
OTKPUBAILE OIITEREIA KOHTEJHEPA Y

PEAJIHOM BPEMEHY

A. KypuuaBan, M.A. Moxannec, H. Ux06aJ,
C. Pexman, X.X. Hyxa

PyuHe uHCHeKIMje KOHTEjHepa YecTo JOBOJE 0 HET0C—
JEJHOCTH M Hee(UKACHOCTH, IITO MOXKE ITOPEMETUTH
JaHIe cHaO/eBama U noBehatn onepaTtuBHE TPOILKOBE.
BpemeHckH 3axTeBHa NMpHPOAa PYyYHHX MpPOBEpa UHHH
ayToMaTu3alujy NpuBIayHoM antepHaTtuBoM. OBaj pan
MIpecTaB/ba JaraH XHOPUIHM MOJIENl KOju KOMOHWHYje
KoHBONTynioHe HeypoHcke Mpexe (CNN) u BusyenmHe
tpancopmarope (ViT), moceOHO an3ajHMpaHe 3a
ayToMaTu30BaHy Kiacuukannjy omrehema KOHTEj—
Hepa. CNN wm3nBaja (uHO 3pHACTE JIOKaTHE Kapak—
tepuctuke, 1ok ViT Monemupa rino0OanHe CTPYyKTypHE
oOpacrie, mpeBasuiasehn orpaHuyerma YHCTO KOHBO—
JIYLHMOHHUX apXWUTeKTypa. [IpouemyjeMo deTupu Bapu—
jaHTe Mojena Ha CKymy mnomataka onm 2.116 cnwmka,
NPUKYIJBCHUX W3 KOHTEJHEPCKUX [ernoa y OJIM3MHH
nyke [lakapra. Hamr mpemroskenrn CNN-VIT xubpuaau
MoJIen 100po ce TeHepalii30Bao ca OBHM CKYIIOM MOJa—
Taka M MOCTHXe TadHocT of 96,57% = 0,83, ryOurax
OmnHapHe yHakpcHe eHTpormje on 0,089 + 0,015 wu
nareHnjy uHQepernuje ox 64,21 = 1,47 ms, goctu—
xyhn BpxyHan ox 97,2% TayHOCTH M JaTeHunuje ox 62
ms y Haj0OJsEeM HWCIUTHBAKY ca caMoO | MHIHOH
napamerapa. ¥ nopehemwy ca MobileNetV2, Ham npuc—
TyH T000JbIIaBa TAYHOCT KiIacudukanuje 3a oko 1% y3
HCTOBPEMEHO CMambehe BPEeMEeHa 3aKJbyYHBamba 3a IpH—
O6mpKHO 9 ms, TeMOHCTpHUpajyhn meroBy egukacHOCT
3a ayTOMaTH30BaHy MHCIEKIIN]y KOHTEjHepa y peaHoM
BpPEMEHY y OKpYXXESHUMa ca OTpaHHYEHUM Pecypcuma.
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