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Lightweight Hybrid CNN–Vision 
Transformer for Real-Time Automated 
Shipping Container Damage Detection

Manual container inspections often lead to inconsistencies and 
inefficiencies, which can disrupt supply chains and increase operational 
costs. The time-consuming nature of manual checks makes automation 
an appealing alternative. This paper presents a lightweight hybrid model 
combining Convolutional Neural Networks (CNN) and Vision 
Transformers (ViT), specifically designed for automated container 
damage classification. The CNN extracts fine-grained local features, 
while the ViT models global structural patterns, overcoming the 
limitations of purely convolutional architectures. We evaluate four model 
variants on a dataset of 2,116 images, collected from container depots 
near Jakarta Port. Our proposed CNN–ViT hybrid model generalized 
well with this dataset and achieves 96.57% ± 0.83 accuracy, 0.089 ± 
0.015 binary cross-entropy loss, and 64.21 ± 1.47 ms inference latency, 
peaking at 97.2% accuracy and 62 ms latency in the best trial with only 1 
million parameters. Compared to MobileNetV2, our approach improves 
classification accuracy by about 1% while reducing inference time by 
approximately 9 ms, demonstrating its efficiency for real-time automated 
container inspection in resource-constrained environments. 

Keywords: computer vision, lightweight models, binary classification, 
CNN, ViT, container inspection. 

1. INTRODUCTION

Shipping containers play an essential role in global 
trade, facilitating the transportation of goods over large 
distances. However, containers might get damaged by 
impact [1] during transit or gradual wear over time. To 
ensure the reliability and security of shipments, they 
need to be inspected regularly. However, manual 
inspections are labor intensive, time consuming, and 
prone to human error. Field observations reveal that 
inspecting stacked containers is labor-intensive and 
time-consuming, as they must be grounded for 
assessment. Automated inspection promises faster, more 
accurate, and more consistent inspection solutions. 

Advances in computer vision and deep learning have 
made it increasingly feasible to automate visual inspec–
tion tasks. Convolutional Neural Networks (CNN) are 
renowned for their ability to extract detailed local fea–
tures, while Vision Transformers (ViT) excel at mode–
ling global dependencies and the overall structure of 
visual data. Over the years, artificial neural networks 
(ANN) have been widely applied in industrial appli–
cations, demonstrating their effectiveness in modeling 
and optimizing complex processes [2]. In the context of 
container damage detection, leveraging ANN-based 
models allows for improved predictive accuracy, 
making automated inspection systems more robust and 

efficient for real-world deployment. 
However, due to the difficulty of obtaining a suitable 

dataset, we opted to collect and manually annotate the 
data ourselves. In this paper, we address the binary 
classification problem of container damage detection—
specifically, distinguishing between damaged and 
normal exterior and interior panels of containers. Given 
the dataset’s limited size, we designed an efficient and 
robust model tailored to dataset’s limitation. 

To achieve this, a lightweight hybrid model is 
proposed that merges a CNN fine-grained feature 
extraction with a miniaturized ViT global self-attention. 
The CNN uncovers localized damage details—like rust 
spots and small dents—while the ViT captures broader 
structural deformities, overcoming CNN inherent 
locality bias. Despite using only 1 million parameters, 
our model achieves up to 97.2% accuracy and delivers 
an average inference time of 62 ms per image, making it 
perfectly suited for real-time, resource-constrained 
container inspections. 

2.1 Convolutional Neural Network (CNN) 

The foundation of Convolutional Neural Networks 
(CNN) was laid by LeCun et al. [3] through the intro–
duction of LeNet-5, one of the earliest successful 
applications of neural networks to image recognition 
tasks such as handwritten digit classification. CNNs 
fundamentally operate by stacking multiple stages, each 
typically consisting of a convolutional layer followed by 
a non-linear activation function and a pooling layer. 
Convolutional layers apply local filters to extract spatial 
features such as edges, textures, and patterns, while 



538 ▪ VOL. 53, No 4, 2025 FME Transactions
 

pooling layers reduce the spatial dimensions, making 
the representations progressively more abstract and 
robust to small translations. 

This basic architecture enables CNN to learn incre–
asingly complex features, from low-level edges to high 
level object parts, across deeper layers. The introduction 
of AlexNet [4] in 2012 dramatically accelerated CNN 
development by demonstrating the effectiveness of deep 
CNN trained on large datasets like ImageNet using 
modern GPU. This success popularized CNNs as a 
backbone for computer vision tasks. Moreover, CNN 
have been applied to multi domain problems such as 
forecasting wind power density [5] and seismic signal 
denoising [6]. 

 
2.2 Vision Transformer (ViT) 
 
The Vision Transformer (ViT) [7] marked a significant 
effort to make transformer applicable to work in image 
classification. ViT splits images into fixed size patches 
and processes them as sequences using self-attention 
mechanisms. This design enables ViT to model global 
dependencies across an image more effectively than 
conventional CNN. However, ViT models generally 
require large-scale datasets and extensive pre-training to 
perform well. Subsequent work like DeiT [8], improved 
ViT’s data efficiency such as pre-trained CNN, heavy 
augmentation, and regularization, making them more 
applicable to smaller datasets. 

A similar strategy has been adopted in defect 
detection applications, where pre-trained ViT models 
are integrated into transformer-based object detection 
architectures. For instance, YOLOS-PV [9] leverages a 
ViT backbone trained on large-scale datasets before 
feeding extracted features into a transformer encoder for 
improved defect localization. This approach has de–
monstrated strong performance in detecting solar panel 
defects, reinforcing the viability of ViT in automated 
visual inspection systems, including container damage 
detection. 
 
2.3 Container Damage Detection 

 
Recent studies have significantly advanced automated 
visual inspection methods for shipping containers.  

Huang, et. al. [10] in 2024, proposed a Vision 
Transformer (ViT) model to detect container damage. 
Their dataset consisted of images categorized into three 
types of container aging damage—Rust, Distort, and 
Dent. While the total dataset was reported as 3,000 
images, only 1,500 were explicitly mentioned in the 
training and testing process. The dataset was split in a 
9:1 ratio. Their approach aimed to improve automated 
damage classification by leveraging ViT’s capability to 
capture both local and global image details. The 
experimental results showed an accuracy of 80.6%, a 
loss function of 0.724, and a learning rate of 0.001, 
demonstrating the effectiveness of their method in 
detecting container aging and damage. However, this 
level of accuracy may not be enough for industrial 
application, showing a room for improvement. 

Li et al. [11] proposed RP-FCN a fully convolutional 
network based on ResNeXt50. The authors claim to get 

85% compared to another model with normal FCN and 
FCN with fusion Up-sampling respectively 74% and 
78%. However, the authors didn’t provide more detail 
about dataset used in the research. The lack of details 
makes it difficult to verify the results’ s generalizability. 

Wang et al. [12] previously applied MobileNetV2 
for detecting multiple types of container damages. The 
authors employed 1543 sample images divided to 9 
class: 7 types of damages, container, and surrounding 
environment. Training set and validation set divided 
according to 9:1. achieving a verification accuracy of 
97.99% after retraining, with significant improvements 
over initial training performance (training accuracy 
improved from 86.21% to 95.32%, and training loss 
reduced from 40.59% to 23.31%). The authors tested 
the model on-site. The accuracy varied across classes 
due to uneven number of images. However, the author 
didn’t explain clearly how they attempted to mitigate 
this problem, which can affect model reliability. 

Bahrami et al. [13] implemented and optimized 
several models: Faster R-CNN, SSD-MobileNet, and 
SSD InceptionV2 for object detection container dama–
ge. The authors introduce anchor box optimization that 
can adapted during training. This technique improves 
detection accuracy by more than 5%. 

Kuo et al. [14] in 2025 introduced the Cad-Trans–
former, a hybrid CNN–Transformer architecture for 
shipping container defect classification. They utilized 
random image masking and transformer-based recon–
struction alongside CNN-based feature extraction speci–
fically from visible patches. This combined approach 
achieves an average accuracy around 85% across 
multiple defect categories. 

The literature shows significant progress in auto–
mating container inspection, with methods of combi–
nation of CNN and transformer or complex hybrid 
models. Many of these studies aim to solve the tough 
problem of classifying multiple types of damage at 
once. However, this often creates a trade-off, some 
models require huge dataset of over 16,000 images to 
achieve moderate accuracy, while others that seem 
accurate might have higher latency, making them less 
ideal for real-time use.  

We decided to take different approach by focusing 
on a foundation first step: creating a fast and highly 
reliable model that simply determines wheter a con–
tainer is “damaged” or “normal”. This kind of quick, 
yes-or-no check is incredibly valuable for initial scree–
ning in busy port or crowded depot where speed is cru–
cial. To address this, we introduce our lightweight 
hybrid CNN-ViT architecture, designed to provide a 
robust and practical solution for this essential first step 
in automated damage detection.  
 
2. HYBRID CNN–VIT ARCHITECTURE 

 
Combining both local feature extraction and global 
context modeling, we adopt a two-branch network 
whose outputs are fused before the final decision. 
Figure 1 depicts the overall structure. The input to the 
model is an RGB image with a size of 224 × 224. 
 
2.4 Convolutional Stem 
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A lightweight four-block CNN serves as our local 
feature extractor. It is made up of four sequential blocks 
and each block includes: 

2Conv D BatchNorm ReLU MaxPool→ → →  (1) 

with channel widths for the four sequential blocks are 
considered as 16, 32, 64, and 128; respectively. After 
four downsampling stages, spatial resolution is reduced 
by a factor of 16, yielding a 14 × 14 × 128 feature map. 
A final Global Pooling collapses this into a single 128-
dimensional vector vCNN. 
 
2.5 Vision Transformer Branch 

 
In parallel, a compact ViT branch captures long-range 
dependencies. 
 

 

Images (N, 224, 224, 3) 

Figure 1. Hybrid CNN–ViT architecture: a lightweight CNN 
stem extracts fine-grained local features (edges, textures), 
a compact ViT head captures global context via self-
attention, and their fused 256-D feature vector is classified 
by an MLP for binary damage detection. 

Patch Embedding. We use a straightforward method to 
convert image patches into embeddings by applying a 
single Conv2D layer. The kernel size and stride are set 
to the same value as the patch size, so the layer splits 
the image into non-overlapping patches and projects 
them directly into the embedding space. This avoids the 
usual method in ViT, which first slices the image and 
then uses a linear layer. Our method is inspired by the 
ViT-Lite model [15], which showed that this approach 
can reduce complexity and still perform well, especially 
when there isn’t a lot of training data. Unlike other 
models that use extra convolution or pooling layers 
before the transformer, we maintained a clean design 
aligned with the original ViT approach, with fewer 
built-in assumptions from CNN. 

A Conv2D layer (kernel, k = 16, stride, s = 16, 
filters, f = 128) is applied to the input image, 

224 224 3X R × ×∈ . The output tensor, 14 14 128
pX R × ×∈ , 

represents 196 patches, each mapped to a-128-dimen–
sional vector. 

( )2 ; 16, 16, 128pX conv D X k s f= = = =  (2) 

We reshape these patches into tokens with 
dimension, (196, 128). 

( ) 196 128
pr pX Reshape X R ×= ∈  (3) 

Thus, patches become tokens arranged sequentially, 
ready for processing by the transformer. 
Positional Encoding. Learned embeddings P � R196×128 
are added to each patch vector: 

prZ X P= +   (4) 

Transformer Blocks. Stack L = 4 blocks, each perfor–
ming Multi Head Self-Attention with set to 2 with 
residual block then feed forward MLP with residual 
block. 

( )( )Z Z MHSA LayerNorm Z′ = +  (5) 

( )( )MLPZ Z LayerNorm Z′′ ′ ′= +  (6) 

where the MLP is a two-layer feed-forward network 
with inner dimension 256, GELU activation, and drop–
out 0.1. 
Global Pooling. A final GlobalAveragePooling1D  re–
duces the sequence of 196 tokens to a single 128-dim 
vector vViT. Instead of using a special [CLS] token to 
represent the whole image, we keep things simpler by 
applying global average pooling [16]. This averages all 
patch embeddings into a single vector. It’s lightweight, 
doesn’t add extra parameters, and works well - espe–
cially when training data is limited. While the [CLS] 
token can sometimes help by learning to focus on im–
portant parts of the image, it also makes the model a bit 
more complex. For a compact and efficient design, 
global pooling is often the better choice.  

 
2.6 Feature Fusion and Classification  
 
We concatenate the two branch outputs, 

[ ] 256
CNN ViT;v v v R= ∈   (7) 

and feed v into a two-layer MLP with sigmoid activation 
for binary classification. We insert two Dropout layers 
to mitigate overfitting during training. 

The proposed hybrid architecture effectively com–
bines the inductive biases and efficiency of a light–
weight CNN with the global context modeling of a 
compact Vision Transformer. By concatenating the fea-
ture vectors from both branches before classification, 
the model captures complementary local and global in–
formation in a unified representation, leading to imp–
roved robustness and accuracy on small datasets while 
maintaining low computational cost - ideal for real-time 
and resource-constrained applications such as container 
damage classification. 

 
3. EXPERIMENTAL SETTING AND ENVIRONMENT 
 
In this section we discuss dataset preparation, image 
pre-processing, and experimental setup on Kaggle.  

 

Conv2D 
patching image 
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2.7 Dataset preparation 
 

One of the primary challenges in applying computer 
vision to container damage detection is the limited 
availability of relevant datasets. To address this, we 
constructed a custom dataset comprising images of both 
the exterior and interior panels of shipping containers, 
which are commonly subject to damage from impact, 
prolonged use, or environmental exposure. The dataset 
was collected from real-world shipping container depots 
near Jakarta Port (Tanjung Priok) between 2023 and 
2025. The photos were captured on-site by depot sur–
veyors and third-party independent surveyors under 
natural daylight with varying lighting conditions. Most 
images were captured using smartphones or compact 
digital cameras, later compressed to reduce storage re–
quirements - mimicking the quality constraints of actual 
field inspections. Both interior and exterior container 
panels were included, with attention to areas most 
susceptible to damage. The images were then resized or 
cropped to get focused on damage areas.  

 
Figure 2. Sample dataset container labeled as normal 

All images were manually labeled into two classes: 
normal and damaged, based on visual signs such as 
dents, rust, cut, broken, chemical contamination, surface 
deformation, or holes. The total number of images 
acquired was 2116 images: 1081 labeled as damage and 
1035 labeled as normal. The dataset was then split into 
three subsets: training (80%), validation (10%), and 
testing (10%). Annotations were performed by a single 
annotator, and although care was taken, some subjec–
tivity may remain. No formal inter-annotator agreement 
process was conducted. To enhance annotation relia–
bility and reduce bias, in the future, multiple annotators 
will be involved to improve labeling consistency, along 
with a formal inter-annotator reliability measure like 
Cohen’s Kappa. Expert validation and collaborative 
labeling will further increase dataset accuracy and 
quality, ensuring ambiguous cases are addressed. 

 
2.8 Pre-processing Images 

 
Before feeding the images into the network, all images 
were resized to 224×224 pixels. This convention 
ensures compatibility with to ImageNet pre-trained 
models [4, 17]. Since our dataset has limited variability, 
extensive data augmentation is applied to enhance 
diversity and better reflect real-world scenarios. There 
isn’t a clear theoretical guideline for choosing the best 

augmentation techniques to maximize dataset benefits 
[18], so we focused on approaches that would streng–
then generalization and help the model perform well in 
different conditions. In this project, we implemented a 
strong data augmentation pipeline during the training 
images, ensuring diversity while preserving their essen–
tial features. The augmentation techniques used inc–
luded horizontal flipping, rotations, zooming, contrast, 
and brightness each randomly up to 20% adjustments. 

 
Figure 3. Sample dataset container labeled as damage 
 

2.9 Environment Setting 
 

The experiment uses GPU P100 provided by Kaggle, 
running TensorFlow 2.18 and Python 3.11. Batch size is 
set to 64. We use Adam [19] as the optimizer with a 
learning rate of 0.001 and train for 50 epochs. Given the 
simplicity of our task - binary classification of container 
damage with a relatively small dataset - we primarily 
rely on CNN for feature extraction and classification 
due to its efficiency. To enhance the model’s ability to 
capture long-range dependencies, we integrate ViT, 
which improves contextual understanding without 
adding excessive complexity. 

We use ReduceLROnPlateau to dynamically adjust 
the learning rate when validation loss plateaus, stabi–
lizing training and reducing overfitting. Additionally, 
EarlyStopping is implemented to halt training when 
further improvements cease, reducing unnecessary 
computations and refining model generalization. These 
techniques collectively optimize the training process, 
allowing CNN-based architecture to perform more 
effectively with ViT integration. 
 
4. RESULTS AND DISCUSSION 
 
In this section we present the best performance of our 
proposed model based on ten independent runs to see its 
stability and use SHAP to analyze the performance of 
our model. 
 
 Model Performance Evaluation 

 
Our experiments demonstrate that integrating a light–
weight Vision Transformer (ViT) with the Base CNN 
yields superior results for container damage classi–
fication. This hybrid model achieved a peak accuracy of 
97.2% while maintaining computational efficiency with 
a modest 1 M parameters and a rapid inference time of 
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62 ms, as detailed in Table 1. This highlights the 
model’s balance between spatial detail and contextual 
understanding. 
 
 Ablation Study 
 
To evaluate the performance of adding a lightweight 
ViT branch, we benchmarked four variants: Base CNN 
alone, MobileNetV2 alone, and each fused with our ViT 
module. As shown in Table 1, the Base CNN alone 
achieved an accuracy of 95.8%. Integrating the ViT 
module boosted its accuracy to 97.2%, while also lowe–
ring loss by 36%, with only a slight latency increase of 
6 ms.  
Table 1. Integrating the ViT branch into our Base CNN not 
only boosts accuracy by 1.4 points but also lowers 
validation loss significantly, all with just a 6 ms latency 
increase. 

Model Params 
(M) 

Acc 
(%) 

Val 
Loss 

Inference 
Time 

Base CNN 0.1 95.8 0.1064 56 ms 
MobileNetV2 2.3 94.8 0.1321 73 ms 
Base CNN + 
ViT 1.0 97.2 0.0679 62 ms 

MobileNetV2 
+ ViT 3.2 95.3 0.1251 80 ms 

 
Additionally, we further analysed model perfor–

mance using precision, recall, and F1-score metrics 
(Table 2). The Base CNN–ViT model consistently de–
monstrated higher precision (96%–98%), recall (96%–
98%), and F1-score (97%) compared to Base CNN and 
MobileNetV2 variants. This enhancement indicates a 
stronger, more reliable capability in accurately detecting 
container damage. Particularly notable is the improved 
recall, essential in practical inspection scenarios where 
minimizing missed damage detections is critical. In 
contrast, integrating ViT with MobileNetV2 yielded 
smaller improvements, highlighting the Base CNN–ViT 
combination as the most balanced and efficient choice 
among the evaluated models. 
Table 2. F1-scores for the damage and normal classes 
across all four model variants, including macro and 
weighted average F1, highlighting the improvement 
achieved by integrating the ViT branch. 

Model Class Prec. Recall F1-
score Sup. 

Base CNN damage 0.94 0.98 0.96 109 
normal 0.98 0.93 0.96 104 

MobileNet
V2 

damage 0.93 0.97 0.95 109 
normal 0.97 0.92 0.95 104 

Base CNN 
+ ViT 

damage 0.96 0.98 0.97 109 
normal 0.98 0.96 0.97 104 

MobileNet
V2 + ViT 

damage 0.94 0.97 0.95 109 
normal 0.97 0.93 0.95 104 

 
 Error Analysis 

 
The confusion matrix (Figure 4) predominantly 
occurring near the decision threshold of 0.5. In Figure 5, 
we isolated six misclassifications and categorized them 
according to the visual cues present. 
Low-Visibility Defects (Figs. 5a–5b): Two damage 
examples are simply too faint or partially hidden to 

stand out. In Fig. 5a, a thin rust patch (and overlaid 
chalk) barely alters the panel’s texture, while in Fig. 5b 
a larger rust streak is broken by a shadow or marking. 
We initially underestimated how often inspectors' chalk 
markings confused the model, revealing the need for 
context-aware attention mechanisms. 

 
Figure 4. Confusion matrix for the CNN-ViT model: 107/109 
damaged and 100/104 normal accurately classified. 

High-Contrast Distractors (Figs. 5c–5f): Four normal 
panels contain bold, reflective, or textured elements that 
mimic damage. A yellow sign’s glare (5c), dirt streaks 
and weld seams (5d), a sensor box shadow (5e), and 
thick container lettering (5f) all produce high-intensity 
or irregular patterns that can be mistaken for corrosion. 

For further analysis of model behavior, we 
conducted a SHAP analysis presented in the Section 5.5. 

 
Figure. 5: Error analysis at the 0.5 threshold. (a–b) False 
negatives occur when corrosion is low-contrast or 
occluded. (c–f) False positives predominantly occur due to 
misleading surface artifacts or challenging lighting, which 
resemble damage patterns. Each panel lists true label, 
predicted label, and confidence. 

 Robustness and Stability Analysis 
 
For robustness assessment, we conducted 10 indepen–
dent training runs. The average results are summarized 
in Table 3. The Base CNN-ViT model consistently 
delivered the highest average accuracy (96.57%±0.83) 
and lowest loss (0.089±0.015), while maintaining 
competitive inference latency (64.21ms/sample). 
 
 Quantitative Attribution Analysis via SHAP 

 
A comprehensive analysis using explainable AI with 
SHAP value was conducted to quantify the contribu–
tions of the CNN and ViT branches in our hybrid model 
for container damage classification. The SHAP analysis 
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employed Kernel SHAP, which approximates Shapley 
values to explain the model's predictions. We quanti–
tatively analyzed the contributions of CNN and ViT 
branches using mean absolute SHAP values at the final 
block level, computed across three independent runs (500 
background samples, 40 test images per run). These 
settings were chosen to balance computational efficiency 
with analysis stability, ensuring reliable SHAP value 
estimates while keeping processing costs manageable. As 
shown in Figure 6, the CNN block exhibits higher attri–
bution values (0.34±0.02) compared to ViT (0.27±0.015), 
indicating that CNN features have a stronger and more 
consistent influence on the model’s output. 

 
Figure 6. Mean absolute SHAP values for the CNN and ViT 
branches at the final block level, averaged over three runs. 
Error bars denote one standard deviation. 

In our experiments, both Figures 7 and 8 analyze the 
same two test images - a heavily scratched-dented panel 
and a localized rust spot - but at different levels of 
granularity. Figure 7 compares the CNN’s Grad-CAM 
and the ViT’s attention-rollout. On the dented panel (top 
row), Grad-CAM predominantly highlights the conta–
iner’s longitudinal ribs and only sparsely overlaps the true 
dent, whereas the ViT rollout spans the broader scratched 
region, capturing context but lacking boundary precision. 
On the rust defect (bottom row), both methods fail to 
focus on the small corrosion: Grad-CAM is misled by the 
inspector’s white chalk marks, and the ViT rollout 
produces a diffuse, unfocused heatmap. 
Table 3.  Ten-run average performance: the CNN-ViT model 
demonstrates superior stability and accuracy with 
reasonable latency. 

Model Avg. Acc 
(%) 

Avg. Loss Latency
(ms) 

Base CNN 95.82 ± 0.75 0.115 ± 0.020 58.08 
MobileNetV2 94.74 ± 1.10 0.142 ± 0.025 73.21 
Base CNN - 
ViT 

96.57 ± 0.83 0.089 ± 0.015 64.21 

MobileNetV2 - 
ViT 

95.31 ± 0.95 0.108 ± 0.018 80.05 

 
Figure 8 presents the block-level SHAP analysis 

conducted with our complete hybrid model. Input 
images for testing were segmented into 100 superpixels 
using the SLIC algorithm, and SHAP values were 
computed based on the model predictions against a 
black baseline. For visualization, we focused on the top 
20% most impactful superpixels. This figure provided 
more granular insights. 

On the heavy scratched-dented panel (left), SHAP 
accurately identified heavily impacted superpixels, 
validating CNN’s effectiveness in capturing pronounced 
local damage. In contrast, for the localized rust defect 
(right), SHAP correctly highlighted the rust spot in red, 
indicating accurate recognition of the true damage. 

  
Figure 7. Spatial visualization of model attention. Each row: 
(left) input image, (middle) CNN Grad-CAM overlay, (right) 
ViT attention-rollout (top 20%). Top row: correct damage 
detection. Bottom row: rust defect misclassified as normal. 

However, it was evident that the CNN misin–
terpreted inspector-made white markings as significant 
damage indicators as highlighted in adjacent regions. 
Simultaneously, intact regions appeared prominently in 
blue, strongly contributing to the incorrect normal 
classification. This conflict highlights the model’s 
susceptibility to false signals caused by visual artifacts. 

 
Figure 8. Block level SHAP explanations on two damage 
examples. Left: a heavy scratched-dented container panel 
with SHAP highlighting the indented superpixels in red. 
Right: a localized rust with red shading over the corroded 
area and blue shading on intact panel sections. Only the 
top 20 % most impactful superpixels are shown; blue 
regions contribute toward the “normal” class, red regions 
toward the “damage” class. 

In summary, while the CNN block significantly 
contributes to accurate classifications by effectively 
capturing local damage features, it remains susceptible 
to misinterpretations caused by non-damage markings, 
such as inspection signs. This highlights the need for 
enhanced feature disambiguation strategies, such as 
guided attention mechanisms or refined fusion logic. 

In misclassifications, CNN’s Grad-CAM activates 
on high-contrast markings (e.g., chalk) rather than the 
central rust defect, suggesting overfitting to irrelevant 
details. The ViT rollout, however, shows diffuse 
attention without clear focus on the defect, highlighting 
its difficulty in identifying subtle localized features. 
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Table 4: Comparison of recent container damage detection methods showing problem type, dataset size, model architecture, 
accuracy, number of parameters, and latency. The proposed method is included for reference.  

Aspect [10] [11] [12] [13] [14] Our work 
Domain 
Problem 

Multi-Class 
Classification 

Object Detection Multi-Class 
Classification 

Object Detection Multi-Class 
Classification 

Binary 
Classification 

Dataset 3,000 images, 
3 classes 

Not explicitly 
detailed 

1,543 images; 9 
classes 

Not explicitly 
detailed 

16,000 images; 
8 classes 

2,116 images; 
2 classes 

Models Vision 
Transformer 

(ViT) 

RP-FCN 
(ResNeXt50) 

MobileNetV2 Faster R-CNN, 
MobileNet, 
InceptionV2 

optimized with 
box anchor 

Cad-transformer CNN–ViT 

Results 
(Accuracy) 

80.6% 85% 95.32% (train), 
97.99% (validation) 

66% ~85% accuracy 
(averaged) 

97.2% 

Key 
Techniques 

Transformer-
based self-
attention 

Fusion 
Upsampling, 

Pyramid Pooling, 
ResNeXt50, FCN 

structure 

Transfer Learning, 
Image 

Augmentation, 
Weak Supervision 

(WESPE 
enhancement) 

Anchor Box 
Optimization 

CNN + 
Transformer 

MAE with CFE-
VP module 

Compact 
CNN–ViT 
integration 

Class 
Detected 

Rust, 
Distortion, 

Dent 

Door damage, 
deformation, 

distortion, 
concave, convex, 

hole, scratch, 
number losses 

Surrounding, 
damage, hole, rusty, 

bent, dent, open, 
collapse, normal 

Corrosion Broken, Cut, 
Dent, Hole, 

Rust, Distorted, 
Normal, Others 

Damage, 
Normal 

 
This behavior highlights the complementary roles of 

both models: while CNN excels in precise localization 
though prone to misinterpreting irrelevant details), ViT 
provides contextual insights but struggles with subtle 
defects. 

These observations emphasize the advantage of 
integrating CNN’s detailed spatial sensitivity with ViT’s 
broader contextual understanding, particularly useful in 
scenarios with ambiguous visual cues. Future enhan–
cements might explore methods to better harmonize 
these complementary strengths. A summary of this work 
alongside related studies is presented in Table 4. 

 
5. CONCLUSIONS 
 
This work proposes a compact hybrid architecture that 
integrates a lightweight convolutional stem with a 
vision ViT head to effectively capture both local and 
global features for container damage classification. 

Our primary contribution to the state-of-the-art is the 
demonstration that a minimalist hybrid model can 
outperform more complex architectures on a specialized 
industrial vision task, particularly under the common 
constraint of a small dataset. Through extensive 
experiments on a small, real-world dataset, the model 
achieved high accuracy (up to 97.2%) while maintaining 
low computational cost with only 1M parameters and 62 
ms inference time. Our lightweight CNN-ViT hybrid 
demonstrates effectiveness as a practical, and scalable 
solution for real-time inspections. Specifically, this 
performance perfectly suited for deployment at the 
automated gates of a port or depot. It can function as an 
efficient screening tool, performing a quick “yes-or-no” 
damage assessment as containers pass through. This 
allows operators to immediately pull aside only 
containers that need a more detail secondary inspection, 
keeping traffic moving smoothly. 

Despite its promising results, our study is 
constrained by the limited dataset and diversity, 
potential annotation inconsistencies due to single-
annotator labeling, and the model’s limitation to binary 
damage detection. Future work aims to address these 
limitations by expanding and diversifying the image 
collection, incorporating multi-annotator consensus for 
more reliable labels, and extending the framework to 
multiclass damage typologies. 
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ЛАГАНИ ХИБРИДНИ CNN-VISION 
ТРАНСФОРМАТОР ЗА АУТОМАТИЗОВАНО 
ОТКРИВАЊЕ ОШТЕЋЕЊА КОНТЕЈНЕРА У 

РЕАЛНОМ ВРЕМЕНУ 
 

А. Курниаван, М.А. Мохандес, Н. Икбал,  
С. Рехман, Х.Х. Нуха 

 
Ручне инспекције контејнера често доводе до недос–
ледности и неефикасности, што може пореметити 
ланце снабдевања и повећати оперативне трошкове. 
Временски захтевна природа ручних провера чини 
аутоматизацију привлачном алтернативом. Овај рад 
представља лаган хибридни модел који комбинује 
конволуционе неуронске мреже (CNN) и визуелне 
трансформаторе (ViT), посебно дизајниране за 
аутоматизовану класификацију оштећења контеј–
нера. CNN издваја фино зрнасте локалне карак–
теристике, док ViT моделира глобалне структурне 
обрасце, превазилазећи ограничења чисто конво–
луционих архитектура. Процењујемо четири вари–
јанте модела на скупу података од 2.116 слика, 
прикупљених из контејнерских депоа у близини 
луке Џакарта. Наш предложени CNN-ViT хибридни 
модел добро се генерализовао са овим скупом пода–
така и постиже тачност од 96,57% ± 0,83, губитак 
бинарне унакрсне ентропије од 0,089 ± 0,015 и 
латенцију инференције од 64,21 ± 1,47 ms, дости–
жући врхунац од 97,2% тачности и латенције од 62 
ms у најбољем испитивању са само 1 милион 
параметара. У поређењу са MobileNetV2, наш прис–
туп побољшава тачност класификације за око 1% уз 
истовремено смањење времена закључивања за при–
ближно 9 ms, демонстрирајући његову ефикасност 
за аутоматизовану инспекцију контејнера у реалном 
времену у окружењима са ограниченим ресурсима. 

 




