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1. INTRODUCTION

Development of a Drone-Based Rescue
Platform with Intelligent Human
Detection and Multi-Payload Delivery
Mechanism

Floods often create emergencies in which access to victims is severely
constrained by fast-moving water, deep terrain, and hazardous obstacles.
Traditional rescue operations in such conditions are typically slow,
resource-intensive, and expose rescuers to significant risks, which limits
the efficiency of emergency response. This paper presents the conceptual
design of an Al-enabled UAV platform for rapid rescue in flood conditions,
particularly in hazardous and inaccessible areas. The system integrates a
custom, reconfigurable payload mechanism comprising four articulated
arms mounted beneath the drone, each with six degrees of freedom driven
by RC servomotors. This configuration affords high adaptability, enabling
secure transport and active release of diverse rescue supplies (e.g.,
medical boxes, essential goods, life buoys). In parallel, a deep learning—
based human detection model built on YOLOvI2 is trained on aerial
images captured in flood scenarios to rapidly detect and localize victims
from the UAV perspective. The detection outputs provide immediate target
cues, allowing the drone to quickly acquire the victim’s location and
deliver the payload directly within reach, thereby reducing the cognitive
and physical burden on both the operator and the victim. Mechanical
simulations of the four-arm mechanism across multiple payload types,
together with training outcomes of the YOLOvI2 detector, indicate the
feasibility of the proposed approach and its suitability for time-critical
field conditions. Overall, the combination of Al-assisted victim localization
and a flexible, active payload mechanism reduces human intervention,
improves delivery accuracy, and supports a smart, efficient, and readily
deployable solution for disaster-response operations.

Keywords: Search and rescue, Emergency UAV system, Victim detection,

Yolovi2, Autonomous payload release.

weather conditions, poor visibility, and high winds
complicate navigation and maneuvering, heightening

Floods and storms are among the most destructive
natural disasters, often causing severe loss of life,
extensive property damage, and long-term socio-
economic disruption. Beyond their immediate impact,
these disasters create emergencies that demand rapid
and effective rescue operations. However, conducting
rescue missions under such extreme conditions poses
numerous challenges and exposes rescuers to significant
risks. In flood scenarios, strong water currents, deeply
submerged terrain, and completely inundated
infrastructure severely limit the ability of traditional
rescue methods, such as motorboats, canoes, or ground
vehicles, to reach affected individuals promptly. The
presence of hazardous obstacles such as fallen trees,
collapsed buildings, downed power lines, and floating
debris further increases the danger for both victims and
rescue teams. In particularly severe cases, adverse
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the risk of accidents or injuries to rescue personnel.
Furthermore, in many flood-affected areas, transpor—
tation infrastructure and communication networks are
damaged or destroyed, delaying the deployment of
rescue resources and equipment. For remote or
completely isolated regions, reaching victims within the
“golden time”, the critical period immediately following
the disaster, becomes especially difficult, significantly
reducing the chances of survival.

Unmanned Aerial Vehicles (UAVs), or drones, have
emerged as transformative assets in disaster response
due to their ability to operate over hazardous terrain,
bypass destroyed infrastructure, and reach otherwise
inaccessible locations within minimal time [1-5]. Their
integration into search and rescue (SAR) operations and
relief logistics has been driven by the urgent need for
rapid victim detection, situation assessment, and deli—
very of essential supplies during emergencies [6-10].

Numerous studies have demonstrated the operational
advantages of drones in locating victims across diverse
disaster environments. For maritime emergencies,
Claesson et al. [11] showed that drones reduced the
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median search time for drowning victims from 4:34
minutes to 0:47 minutes, outperforming trained life—
guard teams. In mountainous snow-covered terrain, Ka—
raca et al. [12] demonstrated that the drone—snowmobile
technique shortened the victim arrival time from 57.3
minutes to 8.9 minutes and expanded search coverage
more than twenty-fold. Forest SAR has also benefited
from drone innovations; Schedl et al. [13] employed
airborne optical sectioning and thermal imaging to
achieve 100% detection precision under dense canopy
conditions. Urban and occlusion-challenged environ—
ments have been addressed by Russell Bernal et al. [14],
who adapted detection models with psychophysical loss
functions to improve performance under high occlusion
and low target resolution. Furthermore, Mishra et al.
[15] developed a SAR-specific human action detection
dataset, achieving 0.98 mAP with a deep learning
model, while Meenakshi et al. [16] integrated reinfor—
cement learning—based navigation with LiDAR, ther—
mal, and RGB sensing to reach 95.6% victim detection
accuracy in simulated disaster zones. Complementing
visual and thermal sensing, Albanese et al. [17]
introduced SARDO, a drone-based mobile phone
localization system, locating devices within a few tens
of meters in about 3 minutes per user without
infrastructure support.

UAVs are equally effective in the distribution of
essential items to disaster-stricken or isolated areas,
where conventional transport is hindered. Hii et al. [18]
confirmed that drone transport preserves the quality of
sensitive medicines, such as insulin, even under varying
temperatures and vibrations. In the context of traffic
accident emergencies, Kristensen et al. [19] proposed
the Rescue Emergency Drone (RED) for rapid site
assessment and delivery of first aid, reducing response
times compared to conventional ground units. Large-
scale logistics optimization has also been explored: Liu
and You’s DroneGo system applied integer prog—
ramming and Dijkstra’s algorithm to determine the
shortest medical delivery paths post-hurricane in Puerto
Rico, significantly improving efficiency [20]; Rabta et
al. [21] developed a mixed-integer linear programming
model for last-mile relief delivery, considering payload
and energy constraints alongside recharging infra—
structure. Broader reviews, such as Patel et al. [22],
highlight UAVSs’ role in bridging access gaps for
hospitals, NGOs, and underserved communities in rural
or rugged terrains.

Recent developments in Al, communications, and
localization are expanding the operational scope of
drones in SAR [23]. Ma et al. [24] proposed OWRT-
DETR, a novel Transformer-based detection network
tailored for small-object detection in open-water envi—
ronments. By integrating modules such as cross-scale
feature pyramid interaction and small-object enhan—
cement, their method significantly improves feature
representation and suppresses background confusion,
achieving superior accuracy on public UAV datasets.
Liu et al. [25] introduced the concept of an Internet of
UAVs for smart cities, focusing on post-disaster search
and rescue. They developed a mathematical model of
UAV-based SAR missions with life-detection radars
and applied an Improved Multi-Verse Optimizer
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(IMVO) to optimize 3D path planning. Simulation
results demonstrated effective search coverage, reduced
mission time, and increased survivor discovery rates.
Similarly, Fu et al. [26] presented DLSW-YOLOv8n, a
UAV-based detection framework that enhances small
maritime target recognition. By combining deformable
large kernel convolution, SPD-Conv, and an improved
loss function, their approach boosts small target locali—
zation and robustness, improving detection accuracy by
13.1% compared to YOLOv8n. Liu et al. [27] addressed
the challenge of UAV perception under adverse weather
by proposing WRRT-DETR and introducing the large-
scale AWOD dataset. With modules that integrate local
convolution, global attention, and frequency—spatial
augmentation, their model demonstrated robustness
against fog, glare, and low-light conditions, outper—
forming state-of-the-art methods in maritime UAV
detection. Velavan et al. [28] integrated YOLOv8-based
survivor detection with onboard edge Al (Raspberry Pi
5 with Hailo Al kit) and 5G connectivity, enabling low-
latency, high-reliability real-time streaming and control.
Alnoman et al. [29] reviewed emerging Al and 6G-
enabled localization solutions, including THz commu—
nications, satellite-based non-terrestrial networks, and
reconfigurable intelligent surfaces, which promise sub-
meter victim localization in disaster contexts.

While drones have demonstrated substantial
potential in search, rescue, and relief supply delivery,
existing applications in flood and storm rescue scenarios
remain limited. Most systems still rely heavily on
manual control for navigation and payload release. In
extreme flood conditions or when operating over long
distances, human operators may struggle to maintain
precise control due to signal delays, environmental
hazards, or limited visibility. Furthermore, the payload
delivery mechanisms commonly employed in such
systems are often simple and fixed in structure,
restricting their ability to handle diverse emergency
situations. This limitation becomes particularly critical
when victims are physically weakened or mentally
distressed, making it difficult for them to retrieve the
delivered items from the drone without direct assistance.

To address these challenges, this paper introduces a
novel, reconfigurable four-robot arm payload carrying
and release mechanism designed to enhance the adap—
tability and effectiveness of drone-based rescue opera—
tions. Each arm features six degrees of freedom, driven
by individual RC servo motors, allowing the mechanism
to dynamically adjust its configuration to accommodate
a variety of rescue items such as medical kits, essential
supplies, and life buoys. By employing YOLOv12 for
victim detection, the drone can rapidly acquire the target
location and easily deliver the payload directly within
the victim’s reach. Unlike prior studies that mainly
focused on either UAV-based victim detection or simple
payload attachments, this research uniquely integrates
an intelligent detection framework with a flexible multi-
arm payload mechanism, thereby minimizing human
intervention, improving delivery accuracy, and incre—
asing the overall success rate of rescue missions in time-
critical and hazardous environments.

The remainder of this paper is organized as follows:
Section 2 presents the design and development of the
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proposed UAV-based rescue system, detailing both the
Al-powered victim detection module and the
reconfigurable payload delivery mechanism. Section 3
describes the experimental setup and evaluation
procedures. Section 4 discusses the results, and Section
5 concludes the paper with key findings and future
research directions

2. MECHANICAL DESIGN OF RECONFIGURABLE
PAYLOAD MECHANISM

The proposed payload delivery system is a modular unit
that can be mounted or detached from various un—
manned aerial vehicles (UAVs) without requiring
structural modification to the host platform. It is built on
a rigid square-shaped base plate, serving as the central
interface between the drone and the payload handling
mechanism. Four independent 6-DOF robotic arms are
symmetrically attached to the corners of the base plate,
with all joint axes arranged in parallel orientations to
simplify kinematics, reduce control complexity, and
enable precise planar positioning of the end segments
relative to the payload.

Each arm can operate independently to hold an item
or be coordinated with the others to firmly secure larger
or irregularly shaped objects. This configuration also
allows the arms to fold compactly when not in
operation, minimizing aerodynamic drag and serving as
stable landing legs during take-off and landing.

Hexacopter
drone

6-DOF robot
arm

Figure 1. Complete Design of the Drone-Based Rescue
Delivery System

The mechanical architecture is optimized for
lightweight construction while maintaining sufficient
rigidity to support various rescue payloads, including
medical kits, emergency supplies, and life-saving
flotation devices. The modular approach ensures
adaptability to different drone sizes and configurations,
making the system suitable for diverse rescue scenarios.
Figure 1 shows the complete Drone-Based Rescue
Delivery System, integrating a hexacopter with the four-
arm payload mechanism for rapid and precise delivery
in emergency operations. In this design, the four arms
are folded inward at the middle joints, forming the
landing legs of the drone when it touches down.
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The last link

Figure 2. Structure of a single robotic arm

Each robotic arm in the payload mechanism is
constructed with a fixed link and six serially connected
moving links, as illustrated in Figure 2. The fixed link
(highlighted in green) is rigidly attached to the base
plate of the drone. The six moving links include five
identical intermediate links (highlighted in blue) and
one terminal link (highlighted in orange) that interfaces
with the payload. All joints are actuated by RC Servo
HiWonder HPS-2027 with parallel-axis alignment,
enabling smooth, coordinated movement. The overall
length of each arm reaches 570 mm when fully
extended, providing sufficient reach to handle objects
positioned below or around the drone. This
configuration provides six degrees of freedom for each
arm, allowing independent or cooperative operation to
securely clamp rescue items.

Front view Side view

Connect with
servo motor

80mm

Bearing fixed

Perspective view

Figure 3. Design of the intermediate moving link of the 6-
DOF robotic arm

The design of the intermediate moving link is illus—
trated in Figure 3. One end features a rectangular slot
for mounting the servo motor, ensuring precise align—
ment and stable attachment. The opposite end is equi—
pped with multiple holes for connecting to the servo
horn of the subsequent link, allowing for secure trans—
mission of motion between segments. The link incor—
porates a bearing shaft on one side and a fixed bearing
slot on the other, enabling smooth rotational movement
while reducing mechanical wear. Each intermediate link
has a total length of 80 mm, contributing to the overall
reach and flexibility of the robotic arm.
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90mm

Front view Side view

Bearing fixed

Perspective view '

Figure 4. Design of the last link in the 6-DOF robotic arm

Connect to
servo motor

100mm

Bearing shaft

Figure 5. Design of the first link in the 6-DOF robotic arm

Figures 4 and 5 illustrate the designs of the first and
last links of the 6-DOF robotic arm, respectively. The
first link (Figure 5) has a total length of 100 mm and
features four mounting holes at one end for securing it
to the base plate, while the opposite end is designed to

Input:
(640,640)

Initial Conv
(Conv [B4, 3.2])
P12 » Conv (512, 3, 2)
P46

pd LB A2C21 [512, True]
(Area Attention + Conv)
l (Stage P4)
C3K2 [256] l
- | RELAN[S1Z)
R-ELAN [256] Conv [1024, 3, 2] —
—]— PS32
. }
Conv [256, 3, 2]
Y8 A2C21 [1024, True]
{Avea Atiention + Conv)
l (Stage P5)
C3K2 [512) l
(Stage P3) —_—
[ R-ELAN [1024]
RELAN(512]
Backbone

Figure 3. Fig. 6. The network architecture of YOLOv12
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connect with the intermediate moving link via a servo
motor interface.

The last link (Figure 4) measures 90 mm in length,
with one end connected to the intermediate moving link
through a servo horn, and the other end left free to
directly interact with the payload or clamp in
coordination with other arms. Both link types are
equipped with bearing housings to ensure smooth joint
rotation and to withstand operational loads during
payload handling.

3. HUMAN DETECTION FROM AERIAL VIEW
2.1 Yolov12 Architecture

The YOLOVI12 architecture is designed to achieve high
detection accuracy while maintaining real-time
inference speed, making it suitable for computationally
constrained platforms such as drones. As shown in

Figure 6, the network is composed of three main

modules: Backbone, Neck, and Head.

a) Backbone
The backbone is responsible for feature extraction
from the input image (640x640 in this configuration).

YOLOvVI2 employs an enhanced version of the R-

ELAN (Re-parameterized Efficient Layer Aggregation

Network) structure, which improves feature repre—

sentation by aggregating information from multiple

receptive fields without significantly increasing compu—
tational cost. Two key innovations in the backbone are:

*  A2C2f module (Area Attention + Convolution):
Introduces spatial area attention to emphasize
informative regions while suppressing background
noise, particularly useful for aerial-view human
detection where targets are small and partially
occluded.

Upsample
(Nearest)

+
Concat [P4]

:

A2C2f [512, False]
(Area Attention + Conv)

+

Upsample Detection Segment Class
- Head Head Head
IS (Boxes + (Masks+ (Labels
Concat [P3] i Scores) Pixels) Scores)
A2C2f [256, False] {
(Area Attention + Conv) : Head

+

Upsample

Concat [P4]

Neck
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o Stage-wise feature scaling: The backbone prog—
ressively increases the number of channels (from 64
to 1024) through convolution and C3k2 blocks,
enabling multi-scale feature learning
b) Neck
The neck performs multi-scale feature fusion,

combining high-resolution spatial features from earlier

stages with semantically rich features from deeper
layers. YOLOV12 integrates A2C2f modules with False
attention mode in the neck, focusing on context
refinement rather than re-weighting spatial regions.

Feature maps from different pyramid levels (P3, P4, P5)

are merged using up-sampling and concatenation,

enhancing the detection of small objects.

¢) Head
The head is a unified multi-task output layer comp—
rising:

* Detection head: Predicts bounding box coordinates,
objectness scores, and class probabilities.

» Segmentation head: Generates pixel-level masks for
instance segmentation tasks (optional).

* Classification head: Outputs class scores for image-
level classification.

This multi-head design allows YOLOvVI2 to be
adapted for different vision tasks without retraining the
entire backbone and neck.

Compared to YOLOv8 and YOLOvV9, YOLOv12
introduces the Area Attention mechanism (A2C2f) and
enhanced R-ELAN modules, which:

* Improve the detection of small and partially
occluded objects.

* Provide better feature aggregation with minimal
latency increase.

* Maintain high accuracy on complex backgrounds, as
encountered in aerial rescue scenarios.

These architectural improvements make YOLOv12
well-suited for human detection from aerial views,
where real-time performance and robustness against
background clutter are critical.

2.2 Training Strategy

In this study, the YOLOv12 model is trained for the task
of human detection from aerial imagery captured by
drone-mounted cameras. The objective is to enable
rapid victim localization during search and rescue
operations, particularly in disaster scenarios such as
floods and storms.

A custom dataset was developed, consisting of over
7,00 high-resolution aerial images collected from
diverse environments, including urban areas, rural
landscapes, and disaster-affected regions. This dataset
contains numerous instances of humans in varying
postures, scales, and occlusion conditions, with a
significant subset depicting flood and storm victims.
The diversity in background scenes and lighting
conditions ensures that the model learns robust feature
representations, making it applicable to real-world
rescue missions where environmental variability is high.

All images were manually annotated using the
Roboflow platform, with bounding boxes precisely
drawn around each human instance visible from the
aerial perspective. The annotated dataset was then
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randomly split into 75% for training and 25% for
validation to ensure reliable performance evaluation
while preventing overfitting.

kil w0

Figure 7. Example of a flood rescue scenario included in
the custom aerial-view dataset

To accelerate convergence and leverage prior
knowledge, transfer learning was applied by initializing
the YOLOv12 model with pre-trained weights from the
MS COCO dataset. This allowed the network to retain
general object detection capabilities while fine-tuning
on the custom aerial-view dataset, improving perfor—
mance on small and partially occluded human targets.
Training was conducted on Google Colab with GPU
acceleration to achieve a balance between computa—
tional efficiency and accuracy.

The YOLOv12 model retained its default archi—
tecture without altering the core layers. The pre-trained
weights from the COCO dataset were loaded before
fine-tuning on the custom dataset. The initial learning
rate was set to 0.01, with a cosine decay scheduler
applied to gradually reduce the rate, ensuring stable
convergence. The SGD optimizer was used with a
momentum of 0.937 and a weight decay of 0.0005 to
minimize overfitting.

Training was performed for 100 epochs with a batch
size of 16 and an input image size resized to 640 x 640
pixels. Data augmentation techniques, including random
scaling, horizontal flipping, mosaic augmentation, and
color jitter, were applied to enhance model robustness in
diverse aerial-view conditions. The loss function
combined bounding box regression loss, objectness loss,
and classification loss for end-to-end optimization.

After training, the optimized model can be deployed
on embedded platforms such as Raspberry Pi via an Al
edge computing framework for real-time inference in
field operations. The on-board camera streams video to
the Al edge server, where OpenCV handles image pre-
processing before feeding the frames into the YOLOv12
model for detection. The inference results are validated
and evaluated using predefined performance metrics,
ensuring that the deployed system maintains both
accuracy and speed in real rescue missions.

4. RESULTS AND DISCUSSION
Simulation of the Payload-Carrying Mechanism
The proposed rescue payload delivery mechanism was

simulated to evaluate its capability in carrying and
releasing various types of emergency supplies. As
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illustrated in Figure 8, the system is designed to
transport multiple items, including an instant noodle
carton, a medical supply box, and life buoys of different
sizes. The instant noodle carton measures 40.7 x 31 X
24 c¢m, while the medical box has dimensions of 38 x 27
x 22 cm. The life buoys come in multiple sizes, with the
largest one having an outer diameter of 760 mm and an
inner diameter of 460 mm, weighing approximately 4.3
kg. The mechanism’s arms can adjust their grip to
secure these payloads during flight and release them
accurately at the target location. This simulation phase
focused on verifying that the mechanical design can
accommodate payloads of varying shapes and sizes
while maintaining stability for drone operations in real-
world rescue scenarios.

QU

58cm Tlem 76cm

1.5KG 2.5KG 4.3KG

Figure 8. Various Payloads for Drone-Based Rescue
Missions: Food Supply Box, Medical Kit, and Different
Sizes of Life Buoys

In the case of carrying instant noodle boxes or medi—
cal kit boxes, the four arms operate in a coordinated
manner to securely hold the payload. The terminal link
(Joint 7) is positioned parallel to the base of the carried
object, providing vertical support. One or two of the
subsequent links (e.g., Joint 5 and Joint 6) are pressed
against the object’s sides to ensure a firm grip. The
remaining joints are adjusted to keep the payload at the
geometric center beneath the drone, thereby main—taining
balance and preventing asymmetric load distri—bution.

Figure 9 illustrates the simulation of carrying a
single box. In this configuration, all four arms coor—
dinate to clamp and support the box at its bottom and
sides, ensuring stability during aerial transport. The
corresponding joint configurations for this case are
presented in Table 1. Figure 10 shows the simulation
scenario for carrying two boxes stacked horizontally.
The arms are adjusted to simultaneously grip and
stabilize both boxes, ensuring that the load is securely
held without slipping or tilting. The joint angles for this
configuration are provided in Table 2.

Table 1. Joint angles of the four arms for the single-box
carrying case

No. Joint 1 | Joint 2 | Joint 3 | Joint 4 | Joint 5 | Joint 6

Arm 1| 34.87°| 0° 0° 0 |-34.87° 90°
Arm2| 9.58° | 39.69° | 0° |-4927°| 0° 90°
Arm 3| 34.87° | 0° 0° 0% |-34.87°| 90°

Arm 4| 9.58° |39.69° | 0° |-4927°| o0° 90°

570 = VOL. 53, No 4, 2025

Front view Side view

Perspective view

Figure 9. Simulation of the drone arm mechanism carrying
one box.

Front view Side view

Perspective view

Figure 10. Simulation of the drone arm mechanism carrying
two boxes.

Table 2. Joint angles of the four arms for the dual-box
carrying case

No. Joint 1 | Joint 2 | Joint 3 | Joint 4 | Joint 5 | Joint 6

Arm 1|-27.06° | 82.35° | 55.29° | ¢° 0° 90°
Arm2| 9.58° |39.69° | 0° |-4927°| 0° 90°
Arm 3|-27.06° | 82.35° | 55.29° | 0° 0° 90°

Arm 4| 9.58° | 39.69° | 0° |-4927°| 0° 90°

For carrying lifebuoys, the arms operate indepen—
dently rather than in coordination. Each arm is bent into
a hook-shaped configuration that wraps tightly around
the lifebuoy, preventing it from swaying or shifting
during flight (Figure 11). This secure grip ensures
stability even in windy or turbulent conditions. The
specific joint angles for forming the hook shape are
provided in Table 3.
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An important advantage of the proposed mechanism
is that once the drone approaches the target location, the
arms can actively release the rescue items directly into
the hands of the victim. This capability is particularly
valuable when the victim is physically and mentally
exhausted and may not be able to detach the payload if
conventional passive delivery methods were used.

Figure 11. Simulation of the drone arm mechanism carrying
a lifebuoy in a hook-shaped configuration.

Table 3. Joint angles of the four arms for the hook-shaped
configuration

and 1.000, respectively. The mean Average Precision at
IoU threshold 0.5 (mAP@50) achieved 0.995, reflecting
the model’s excellent capability to localize and classify
human instances in challenging flood scenarios.
Meanwhile, the stricter metric mAP@50-95 attained a
value of 0.652, which indicates reasonable gene—
ralization across multiple IoU thresholds but also
suggests potential improvement when detecting under
high-precision bounding box alignment.

The quantitative results on the validation set are
summarized in Table 4. The YOLOvV12 model achieved
near-perfect performance on the test dataset, surpassing
conventional baselines in both accuracy and reliability.

Table 4. Performance of yolov12 on human detection

dataset
Precision (P) | Recall (R) mAP@50 | mAP@50-95
0.984 1.00 0.995 0.652

Additionally, the average inference speed was ~5.7
ms per image, including preprocessing, model infe—
rence, and post-processing. This indicates that the
trained YOLOV12 detector can be deployed on-board a

UAV in real-time conditions, which is crucial for time-
sensitive flood rescue operations.

Lifebuoys | Joint 1 | Joint 2 | Joint 3 | Joint 4 | Joint 5 |Joint 6
Big 0° 0° 56" | 37° | 56° | 37°
Small 0° 0° | 66.3° | 44.68° | 66.3° |44.68°

The results of the YOLOv12 detection model

The training and validation curves are illustrated in
Figure 12. The box regression loss, classification loss,
and distribution focal loss (DFL) all steadily decreased
and converged after approximately 100 epochs, indi—
cating stable learning. The validation losses followed a
similar trend, demonstrating that the model was not
overfitting.

In terms of detection metrics, both precision and
recall reached near-optimal levels, with values of 0.984

The proposed human detection model was evaluated
under various real-world flood scenarios, including
close-range, far-range, and crowded conditions. The
results demonstrate that the model consistently achieved
accurate detections across different contexts.

For close-range detection, as illustrated in Fig. 13,
individuals located on rooftops or partially submerged
in floodwater were successfully detected with high
confidence. The bounding boxes tightly aligned with the
human contours, proving the model’s robustness against
variations in posture and partial occlusion caused by
water or surrounding objects.

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
16+ —— results 1357 1.01 1.0 1
2041 e smooth
1.5 1.30 A 0.8 0.9 1
4
1al 1.251 061 0.8
0.4 4
1.34 1.20 A 0.7
0.21
1.2 4 1.15 0.6
0.0 1¢
0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
4 1.04
174 154 0.6
3] 0.8
161 1.4 4 0.6 1 0.4 4
2 -
151 131 0.4 1
0.21
1.4 4 14 124 0.2 1
0.01¢ 0.0
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure 12. Training and validation curves results.
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Figure 13. Close-range detection: accurate identification of
individuals in proximity under flood conditions.

In far-range scenarios, shown in Fig. 14, the model
was able to detect both single individuals and groups of
people at a distance. Even in challenging conditions
where people appeared relatively small in the image, the
detection performance remained reliable. However, in
cases where individuals were standing close to each
other, the model occasionally grouped them into a
single bounding box, which suggests a limitation when
distinguishing between closely spaced targets in low-
resolution regions.

b. Far-range detection with one-person.

Figure 14. Far-range detection results in flood scenarios.

Figure 15. Crowded Scenario: Multi-Person Detection in a
Flooded Environment.

572 = VOL. 53, No 4, 2025

For crowded environments, as seen in Fig. 15, the
model maintained its ability to localize multiple persons
simultaneously, even in complex backgrounds with
rescue boats and trees. This indicates that the trained
model generalizes well to high-density situations and is
capable of supporting rescue operations where rapid
detection of multiple people is critical.

Overall, these results confirm that the developed
model is effective in handling diverse real-world
scenarios. While minor challenges remain in distingui—
shing individuals in very close proximity, the detection
accuracy is sufficiently high to ensure reliable operation
in emergency flood-rescue missions.

The integration of the YOLOvI12-based detection
model with the flexible multi-payload delivery mecha—
nism creates a synergistic rescue platform: YOLOv12
enables rapid and accurate victim detection, ensuring
the drone approaches the target quickly, while the
delivery mechanism allows the system to transport
essential supplies and release them precisely at the
victim’s location. Although this study has not yet been
validated through real-world experiments, the integ—
ration of YOLOv12-based human detection and the
proposed multi-payload delivery mechanism demon—
strates strong feasibility. The experimental results of
YOLOVI2 on diverse flood scenarios confirm its robus—
tness in detecting victims under different conditions,
while the structural design of the flexible carrying arms
shows the potential to securely transport and release
various rescue supplies. Therefore, this initial research
provides a solid foundation for future implementation
and real-world testing, where the system can be further
optimized to meet practical rescue requirements.

5. CONCLUSION

This study presented the development of a novel drone-
based rescue platform that integrates an intelligent hu—
man detection model (YOLOvV12) with a flexible multi-
payload delivery mechanism. The proposed system
addresses two key challenges in flood rescue scenarios:
(1) the rapid and reliable detection of victims in
complex environments, and (2) the secure transportation
and release of essential supplies, including life buoys,
food packages, and medical kits.

Through simulation, the flexible arm mechanism
demonstrated the ability to adapt to different payload
shapes and sizes, ensuring stable transportation. The
arms could operate cooperatively to grasp rigid boxes or
independently to hook and secure circular life buoys,
preventing oscillations during flight. Additionally,
YOLOvVI2 achieved high detection accuracy with a
mean Average Precision (mAP50) of 99.5%, proving
effective across near-range, far-range, and crowded sce—
narios. This ensures that victims can be quickly
identified and rescue operations can be executed with
minimal delays.

Although this work remains at a preliminary stage
without real-world testing, the combination of robust
computer vision with an adaptive mechanical design
highlights the strong feasibility of the proposed app-—
roach. The research establishes a foundation for future
implementation, where hardware integration and field

FME Transactions



experiments will be conducted to validate system
performance under practical conditions. Furthermore,
future work will focus on optimizing the arm’s control
algorithms, improving payload stability under turbulent
environments, and enhancing the robustness of the
detection model in adverse weather conditions.
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PA3BOJ IVIAT®OPME 3A CITACABAIBE
3ACHOBAHE HA IPOHY CA UHTE-
JIMTEHTHUM MEXAHH3MOM 3A
JETEKIIAJY JbYJIN U UCIIOPYKY
BHUIIECTPYKOI TEPETA

T.K. Tyan, B.T.H. Xan, T. Kyjen, I.®. Tun,
®.T. dar, JT.A. dyj

[NorutaBe 4yecTo cTBapajy BaHPEAHE CUTyallje y KojuMa
je TpHUCTYN JXpTBamMa O30WJBHO OrpaHH4YeH Op3uMm
MIOKPETOM BOAE, TyOOKUM TEPEHOM M OIIACHHUM IIper—
pexama. TpaauuuoHaiHe onepanyje cracaBama y TaK—
BUM YCJIOBUMA Cy OOHMYHO CIIOpE, 3aXTeBajy MHOIO
pecypca u H3Jaxy CIacHolle 3HauajHUM PU3HLUMA, IITO
orpaHiyaBa e(QUKACHOCT pearoBamba Yy BaHPCIHUM
curyauujama. OBaj paj mpelcTaB/ba KOHIENTYalHH
Ju3ajH 1miardopMe OECIMIIOTHE JIETENHIE ca Bell—
TAYKOM HWHTCIUTEHIMjOM 3a Op30 clacaBame y
yCJIOBMMa TIOIUIaBa, IIOCEOHO y ONAcCHHUM M HEIpH—
CTymayHuM nozapydjuma. CHcTeM HHTerpulle IpHiIa—
roljeHu, pekoH(UrypabHiIHE MeXaHU3aM TepeTa Koju ce
CacToju Ol YeTHPH 3rII0OHA Kpaka IOCTaBJbEHA HCIION
JpOHa, CBaKa ca IIeCT cTerneHu ciobozae mokperana RC
cepomoropuma. OBa KOH(Urypauuja Ipyxka BHCOKY
NPUIAroJbUBOCT, oMoryhasajyhu 6e30eman TpaHCIOPT
1 aKTHBHO ociobaljambe pa3sHOBPCHHX 3ainxa 3a criaca—
Bame (HIP. MEIUIIMHCKE KYTHje, HEOMXOoqHe pode, OoBe
3a crniacaBame). [lapanenHo, Mozen 3a JEeTeKUH]y JbYIH
3acHOBaH Ha IyOokoM yuemy, m3rpaher Ha YOLOvVI2,
TPEHUpA CE€ Ha CHHMIMMa U3 Ba3lyXa CHUMJbCHUM Yy
CIICHapHjuMa TIOIUIaBa Kako O ce Op30 OTKpwie u
JIOKaJIM30Baje JKPTBE M3 IEpCIEeKTUBE OECIUIOTHE
nerenuue. M3nasu peTexuuje mpyxajy TPEHyTHE CHI—
Halle 3a umJb, omoryhasajyhu nponHy na Op3o oapenu
JIOKAIMjy JKPTBE U MCIIOPYYH TEPET ITUPEKTHO Y JIOCET,
YUMe Ce CMamyje KOTHUTUBHH M (DU3UUKU TEpeT U 3a
orepaTepa U 3a )XpTBY. MeXxaHW4Ke CUMYJIalllje YeTBO—
POKpakor MexaHH3Ma 3a BHILIE THIIOBA KOPUCHHUX
TepeToBa, 3ajeHO ca pe3ynraruma obyke YOLOvI2
JETEeKTOpa, YKasyjy Ha H3BOJJBMBOCT IIPEAJIOKEHOT
NPUCTYIIa U HHErOBY IOTOJHOCT 32 BPEMEHCKH KpH—
TUYHE YCJIOBE Ha TepeHy. | eHepamHo, KOMOMHAaIHWja
JOKaJM3annje JKPTBE y3 IIOMON BemTauyke WHTEIH—
reHuuje u GpaekcnOuIHOT, aKTHBHOT MEXaHU3Ma KOpUC—
HUX TEPETOBA CMambyje JbYACKY HHTEPBEHLH]Y, 000Ib—
1aBa Ta4HOCT MCHOPYKE M HOAp)KaBa MaMeTHO, edu—
KacHO M JIaKO paclopeIrBO pEIIeHE 3a OIlepaluje
pearoBama Ha KatacTpode.
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