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Development of a Drone-Based Rescue 
Platform with Intelligent Human 
Detection and Multi-Payload Delivery 
Mechanism 
 
Floods often create emergencies in which access to victims is severely 
constrained by fast-moving water, deep terrain, and hazardous obstacles. 
Traditional rescue operations in such conditions are typically slow, 
resource-intensive, and expose rescuers to significant risks, which limits 
the efficiency of emergency response. This paper presents the conceptual 
design of an AI-enabled UAV platform for rapid rescue in flood conditions, 
particularly in hazardous and inaccessible areas. The system integrates a 
custom, reconfigurable payload mechanism comprising four articulated 
arms mounted beneath the drone, each with six degrees of freedom driven 
by RC servomotors. This configuration affords high adaptability, enabling 
secure transport and active release of diverse rescue supplies (e.g., 
medical boxes, essential goods, life buoys). In parallel, a deep learning–
based human detection model built on YOLOv12 is trained on aerial 
images captured in flood scenarios to rapidly detect and localize victims 
from the UAV perspective. The detection outputs provide immediate target 
cues, allowing the drone to quickly acquire the victim’s location and 
deliver the payload directly within reach, thereby reducing the cognitive 
and physical burden on both the operator and the victim. Mechanical 
simulations of the four-arm mechanism across multiple payload types, 
together with training outcomes of the YOLOv12 detector, indicate the 
feasibility of the proposed approach and its suitability for time-critical 
field conditions. Overall, the combination of AI-assisted victim localization 
and a flexible, active payload mechanism reduces human intervention, 
improves delivery accuracy, and supports a smart, efficient, and readily 
deployable solution for disaster-response operations. 
 
Keywords: Search and rescue, Emergency UAV system, Victim detection, 
Yolov12, Autonomous payload release. 

 
 

1. INTRODUCTION 
 

Floods and storms are among the most destructive 
natural disasters, often causing severe loss of life, 
extensive property damage, and long-term socio-
economic disruption. Beyond their immediate impact, 
these disasters create emergencies that demand rapid 
and effective rescue operations. However, conducting 
rescue missions under such extreme conditions poses 
numerous challenges and exposes rescuers to significant 
risks. In flood scenarios, strong water currents, deeply 
submerged terrain, and completely inundated 
infrastructure severely limit the ability of traditional 
rescue methods, such as motorboats, canoes, or ground 
vehicles, to reach affected individuals promptly. The 
presence of hazardous obstacles such as fallen trees, 
collapsed buildings, downed power lines, and floating 
debris further increases the danger for both victims and 
rescue teams. In particularly severe cases, adverse 

weather conditions, poor visibility, and high winds 
complicate navigation and maneuvering, heightening 
the risk of accidents or injuries to rescue personnel. 
Furthermore, in many flood-affected areas, transpor–
tation infrastructure and communication networks are 
damaged or destroyed, delaying the deployment of 
rescue resources and equipment. For remote or 
completely isolated regions, reaching victims within the 
“golden time”, the critical period immediately following 
the disaster, becomes especially difficult, significantly 
reducing the chances of survival. 

Unmanned Aerial Vehicles (UAVs), or drones, have 
emerged as transformative assets in disaster response 
due to their ability to operate over hazardous terrain, 
bypass destroyed infrastructure, and reach otherwise 
inaccessible locations within minimal time [1-5]. Their 
integration into search and rescue (SAR) operations and 
relief logistics has been driven by the urgent need for 
rapid victim detection, situation assessment, and deli–
very of essential supplies during emergencies [6-10]. 

Numerous studies have demonstrated the operational 
advantages of drones in locating victims across diverse 
disaster environments. For maritime emergencies, 
Claesson et al. [11] showed that drones reduced the 
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median search time for drowning victims from 4:34 
minutes to 0:47 minutes, outperforming trained life–
guard teams. In mountainous snow-covered terrain, Ka–
raca et al. [12] demonstrated that the drone–snowmobile 
technique shortened the victim arrival time from 57.3 
minutes to 8.9 minutes and expanded search coverage 
more than twenty-fold. Forest SAR has also benefited 
from drone innovations; Schedl et al. [13] employed 
airborne optical sectioning and thermal imaging to 
achieve 100% detection precision under dense canopy 
conditions. Urban and occlusion-challenged environ–
ments have been addressed by Russell Bernal et al. [14], 
who adapted detection models with psychophysical loss 
functions to improve performance under high occlusion 
and low target resolution. Furthermore, Mishra et al. 
[15] developed a SAR-specific human action detection 
dataset, achieving 0.98 mAP with a deep learning 
model, while Meenakshi et al. [16] integrated reinfor–
cement learning–based navigation with LiDAR, ther–
mal, and RGB sensing to reach 95.6% victim detection 
accuracy in simulated disaster zones. Complementing 
visual and thermal sensing, Albanese et al. [17] 
introduced SARDO, a drone-based mobile phone 
localization system, locating devices within a few tens 
of meters in about 3 minutes per user without 
infrastructure support. 

UAVs are equally effective in the distribution of 
essential items to disaster-stricken or isolated areas, 
where conventional transport is hindered. Hii et al. [18] 
confirmed that drone transport preserves the quality of 
sensitive medicines, such as insulin, even under varying 
temperatures and vibrations. In the context of traffic 
accident emergencies, Kristensen et al. [19] proposed 
the Rescue Emergency Drone (RED) for rapid site 
assessment and delivery of first aid, reducing response 
times compared to conventional ground units. Large-
scale logistics optimization has also been explored: Liu 
and You’s DroneGo system applied integer prog–
ramming and Dijkstra’s algorithm to determine the 
shortest medical delivery paths post-hurricane in Puerto 
Rico, significantly improving efficiency [20]; Rabta et 
al. [21] developed a mixed-integer linear programming 
model for last-mile relief delivery, considering payload 
and energy constraints alongside recharging infra–
structure. Broader reviews, such as Patel et al. [22], 
highlight UAVs’ role in bridging access gaps for 
hospitals, NGOs, and underserved communities in rural 
or rugged terrains. 

Recent developments in AI, communications, and 
localization are expanding the operational scope of 
drones in SAR [23]. Ma et al. [24] proposed OWRT-
DETR, a novel Transformer-based detection network 
tailored for small-object detection in open-water envi–
ronments. By integrating modules such as cross-scale 
feature pyramid interaction and small-object enhan–
cement, their method significantly improves feature 
representation and suppresses background confusion, 
achieving superior accuracy on public UAV datasets. 
Liu et al. [25] introduced the concept of an Internet of 
UAVs for smart cities, focusing on post-disaster search 
and rescue. They developed a mathematical model of 
UAV-based SAR missions with life-detection radars 
and applied an Improved Multi-Verse Optimizer 

(IMVO) to optimize 3D path planning. Simulation 
results demonstrated effective search coverage, reduced 
mission time, and increased survivor discovery rates. 
Similarly, Fu et al. [26] presented DLSW-YOLOv8n, a 
UAV-based detection framework that enhances small 
maritime target recognition. By combining deformable 
large kernel convolution, SPD-Conv, and an improved 
loss function, their approach boosts small target locali–
zation and robustness, improving detection accuracy by 
13.1% compared to YOLOv8n. Liu et al. [27] addressed 
the challenge of UAV perception under adverse weather 
by proposing WRRT-DETR and introducing the large-
scale AWOD dataset. With modules that integrate local 
convolution, global attention, and frequency–spatial 
augmentation, their model demonstrated robustness 
against fog, glare, and low-light conditions, outper–
forming state-of-the-art methods in maritime UAV 
detection. Velavan et al. [28] integrated YOLOv8-based 
survivor detection with onboard edge AI (Raspberry Pi 
5 with Hailo AI kit) and 5G connectivity, enabling low-
latency, high-reliability real-time streaming and control. 
Alnoman et al. [29] reviewed emerging AI and 6G-
enabled localization solutions, including THz commu–
nications, satellite-based non-terrestrial networks, and 
reconfigurable intelligent surfaces, which promise sub-
meter victim localization in disaster contexts. 

While drones have demonstrated substantial 
potential in search, rescue, and relief supply delivery, 
existing applications in flood and storm rescue scenarios 
remain limited. Most systems still rely heavily on 
manual control for navigation and payload release. In 
extreme flood conditions or when operating over long 
distances, human operators may struggle to maintain 
precise control due to signal delays, environmental 
hazards, or limited visibility. Furthermore, the payload 
delivery mechanisms commonly employed in such 
systems are often simple and fixed in structure, 
restricting their ability to handle diverse emergency 
situations. This limitation becomes particularly critical 
when victims are physically weakened or mentally 
distressed, making it difficult for them to retrieve the 
delivered items from the drone without direct assistance. 

To address these challenges, this paper introduces a 
novel, reconfigurable four-robot arm payload carrying 
and release mechanism designed to enhance the adap–
tability and effectiveness of drone-based rescue opera–
tions. Each arm features six degrees of freedom, driven 
by individual RC servo motors, allowing the mechanism 
to dynamically adjust its configuration to accommodate 
a variety of rescue items such as medical kits, essential 
supplies, and life buoys. By employing YOLOv12 for 
victim detection, the drone can rapidly acquire the target 
location and easily deliver the payload directly within 
the victim’s reach. Unlike prior studies that mainly 
focused on either UAV-based victim detection or simple 
payload attachments, this research uniquely integrates 
an intelligent detection framework with a flexible multi-
arm payload mechanism, thereby minimizing human 
intervention, improving delivery accuracy, and incre–
asing the overall success rate of rescue missions in time-
critical and hazardous environments. 

The remainder of this paper is organized as follows: 
Section 2 presents the design and development of the 
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proposed UAV-based rescue system, detailing both the 
AI-powered victim detection module and the 
reconfigurable payload delivery mechanism. Section 3 
describes the experimental setup and evaluation 
procedures. Section 4 discusses the results, and Section 
5 concludes the paper with key findings and future 
research directions 

 
2. MECHANICAL DESIGN OF RECONFIGURABLE 

PAYLOAD MECHANISM 
 

The proposed payload delivery system is a modular unit 
that can be mounted or detached from various un–
manned aerial vehicles (UAVs) without requiring 
structural modification to the host platform. It is built on 
a rigid square-shaped base plate, serving as the central 
interface between the drone and the payload handling 
mechanism. Four independent 6-DOF robotic arms are 
symmetrically attached to the corners of the base plate, 
with all joint axes arranged in parallel orientations to 
simplify kinematics, reduce control complexity, and 
enable precise planar positioning of the end segments 
relative to the payload. 

Each arm can operate independently to hold an item 
or be coordinated with the others to firmly secure larger 
or irregularly shaped objects. This configuration also 
allows the arms to fold compactly when not in 
operation, minimizing aerodynamic drag and serving as 
stable landing legs during take-off and landing. 

 
Figure 1. Complete Design of the Drone-Based Rescue 
Delivery System 

The mechanical architecture is optimized for 
lightweight construction while maintaining sufficient 
rigidity to support various rescue payloads, including 
medical kits, emergency supplies, and life-saving 
flotation devices. The modular approach ensures 
adaptability to different drone sizes and configurations, 
making the system suitable for diverse rescue scenarios. 
Figure 1 shows the complete Drone-Based Rescue 
Delivery System, integrating a hexacopter with the four-
arm payload mechanism for rapid and precise delivery 
in emergency operations. In this design, the four arms 
are folded inward at the middle joints, forming the 
landing legs of the drone when it touches down. 

 
Figure 2. Structure of a single robotic arm 

Each robotic arm in the payload mechanism is 
constructed with a fixed link and six serially connected 
moving links, as illustrated in Figure 2. The fixed link 
(highlighted in green) is rigidly attached to the base 
plate of the drone. The six moving links include five 
identical intermediate links (highlighted in blue) and 
one terminal link (highlighted in orange) that interfaces 
with the payload. All joints are actuated by RC Servo 
HiWonder HPS-2027 with parallel-axis alignment, 
enabling smooth, coordinated movement. The overall 
length of each arm reaches 570 mm when fully 
extended, providing sufficient reach to handle objects 
positioned below or around the drone. This 
configuration provides six degrees of freedom for each 
arm, allowing independent or cooperative operation to 
securely clamp rescue items. 

 
Figure 3. Design of the intermediate moving link of the 6-
DOF robotic arm 

The design of the intermediate moving link is illus–
trated in Figure 3. One end features a rectangular slot 
for mounting the servo motor, ensuring precise align–
ment and stable attachment. The opposite end is equi–
pped with multiple holes for connecting to the servo 
horn of the subsequent link, allowing for secure trans–
mission of motion between segments. The link incor–
porates a bearing shaft on one side and a fixed bearing 
slot on the other, enabling smooth rotational movement 
while reducing mechanical wear. Each intermediate link 
has a total length of 80 mm, contributing to the overall 
reach and flexibility of the robotic arm. 
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Figure 4. Design of the last link in the 6-DOF robotic arm 

 
Figure 5. Design of the first link in the 6-DOF robotic arm 

Figures 4 and 5 illustrate the designs of the first and 
last links of the 6-DOF robotic arm, respectively. The 
first link (Figure 5) has a total length of 100 mm and 
features four mounting holes at one end for securing it 
to the base plate, while the opposite end is designed to 

connect with the intermediate moving link via a servo 
motor interface. 

The last link (Figure 4) measures 90 mm in length, 
with one end connected to the intermediate moving link 
through a servo horn, and the other end left free to 
directly interact with the payload or clamp in 
coordination with other arms. Both link types are 
equipped with bearing housings to ensure smooth joint 
rotation and to withstand operational loads during 
payload handling. 

 
3. HUMAN DETECTION FROM AERIAL VIEW 

 
2.1 Yolov12 Architecture 

 
The YOLOv12 architecture is designed to achieve high 
detection accuracy while maintaining real-time 
inference speed, making it suitable for computationally 
constrained platforms such as drones. As shown in 
Figure 6, the network is composed of three main 
modules: Backbone, Neck, and Head. 

a) Backbone 
The backbone is responsible for feature extraction 

from the input image (640×640 in this configuration). 
YOLOv12 employs an enhanced version of the R-
ELAN (Re-parameterized Efficient Layer Aggregation 
Network) structure, which improves feature repre–
sentation by aggregating information from multiple 
receptive fields without significantly increasing compu–
tational cost. Two key innovations in the backbone are: 
• A2C2f module (Area Attention + Convolution): 

Introduces spatial area attention to emphasize 
informative regions while suppressing background 
noise, particularly useful for aerial-view human 
detection where targets are small and partially 
occluded. 

 
Figure 3. Fig. 6. The network architecture of YOLOv12 
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• Stage-wise feature scaling: The backbone prog–
ressively increases the number of channels (from 64 
to 1024) through convolution and C3k2 blocks, 
enabling multi-scale feature learning 
b) Neck 
The neck performs multi-scale feature fusion, 

combining high-resolution spatial features from earlier 
stages with semantically rich features from deeper 
layers. YOLOv12 integrates A2C2f modules with False 
attention mode in the neck, focusing on context 
refinement rather than re-weighting spatial regions. 
Feature maps from different pyramid levels (P3, P4, P5) 
are merged using up-sampling and concatenation, 
enhancing the detection of small objects. 

c) Head 
The head is a unified multi-task output layer comp–

rising: 
• Detection head: Predicts bounding box coordinates, 

objectness scores, and class probabilities. 
• Segmentation head: Generates pixel-level masks for 

instance segmentation tasks (optional). 
• Classification head: Outputs class scores for image-

level classification. 
This multi-head design allows YOLOv12 to be 

adapted for different vision tasks without retraining the 
entire backbone and neck. 

Compared to YOLOv8 and YOLOv9, YOLOv12 
introduces the Area Attention mechanism (A2C2f) and 
enhanced R-ELAN modules, which: 
• Improve the detection of small and partially 

occluded objects. 
• Provide better feature aggregation with minimal 

latency increase. 
• Maintain high accuracy on complex backgrounds, as 

encountered in aerial rescue scenarios. 
These architectural improvements make YOLOv12 

well-suited for human detection from aerial views, 
where real-time performance and robustness against 
background clutter are critical. 

 
2.2 Training Strategy 

 
In this study, the YOLOv12 model is trained for the task 
of human detection from aerial imagery captured by 
drone-mounted cameras. The objective is to enable 
rapid victim localization during search and rescue 
operations, particularly in disaster scenarios such as 
floods and storms. 

A custom dataset was developed, consisting of over 
7,00 high-resolution aerial images collected from 
diverse environments, including urban areas, rural 
landscapes, and disaster-affected regions. This dataset 
contains numerous instances of humans in varying 
postures, scales, and occlusion conditions, with a 
significant subset depicting flood and storm victims. 
The diversity in background scenes and lighting 
conditions ensures that the model learns robust feature 
representations, making it applicable to real-world 
rescue missions where environmental variability is high. 

All images were manually annotated using the 
Roboflow platform, with bounding boxes precisely 
drawn around each human instance visible from the 
aerial perspective. The annotated dataset was then 

randomly split into 75% for training and 25% for 
validation to ensure reliable performance evaluation 
while preventing overfitting. 

 
Figure 7. Example of a flood rescue scenario included in 
the custom aerial-view dataset 

To accelerate convergence and leverage prior 
knowledge, transfer learning was applied by initializing 
the YOLOv12 model with pre-trained weights from the 
MS COCO dataset. This allowed the network to retain 
general object detection capabilities while fine-tuning 
on the custom aerial-view dataset, improving perfor–
mance on small and partially occluded human targets. 
Training was conducted on Google Colab with GPU 
acceleration to achieve a balance between computa–
tional efficiency and accuracy. 

The YOLOv12 model retained its default archi–
tecture without altering the core layers. The pre-trained 
weights from the COCO dataset were loaded before 
fine-tuning on the custom dataset. The initial learning 
rate was set to 0.01, with a cosine decay scheduler 
applied to gradually reduce the rate, ensuring stable 
convergence. The SGD optimizer was used with a 
momentum of 0.937 and a weight decay of 0.0005 to 
minimize overfitting. 

Training was performed for 100 epochs with a batch 
size of 16 and an input image size resized to 640 × 640 
pixels. Data augmentation techniques, including random 
scaling, horizontal flipping, mosaic augmentation, and 
color jitter, were applied to enhance model robustness in 
diverse aerial-view conditions. The loss function 
combined bounding box regression loss, objectness loss, 
and classification loss for end-to-end optimization. 

After training, the optimized model can be deployed 
on embedded platforms such as Raspberry Pi via an AI 
edge computing framework for real-time inference in 
field operations. The on-board camera streams video to 
the AI edge server, where OpenCV handles image pre-
processing before feeding the frames into the YOLOv12 
model for detection. The inference results are validated 
and evaluated using predefined performance metrics, 
ensuring that the deployed system maintains both 
accuracy and speed in real rescue missions. 

 
4. RESULTS AND DISCUSSION  

 
 Simulation of the Payload-Carrying Mechanism 
 
The proposed rescue payload delivery mechanism was 
simulated to evaluate its capability in carrying and 
releasing various types of emergency supplies. As 
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illustrated in Figure 8, the system is designed to 
transport multiple items, including an instant noodle 
carton, a medical supply box, and life buoys of different 
sizes. The instant noodle carton measures 40.7 × 31 × 
24 cm, while the medical box has dimensions of 38 × 27 
× 22 cm. The life buoys come in multiple sizes, with the 
largest one having an outer diameter of 760 mm and an 
inner diameter of 460 mm, weighing approximately 4.3 
kg. The mechanism’s arms can adjust their grip to 
secure these payloads during flight and release them 
accurately at the target location. This simulation phase 
focused on verifying that the mechanical design can 
accommodate payloads of varying shapes and sizes 
while maintaining stability for drone operations in real-
world rescue scenarios. 

 
Figure 8. Various Payloads for Drone-Based Rescue 
Missions: Food Supply Box, Medical Kit, and Different 
Sizes of Life Buoys 

In the case of carrying instant noodle boxes or medi–
cal kit boxes, the four arms operate in a coordinated 
manner to securely hold the payload. The terminal link 
(Joint 7) is positioned parallel to the base of the carried 
object, providing vertical support. One or two of the 
subsequent links (e.g., Joint 5 and Joint 6) are pressed 
against the object’s sides to ensure a firm grip. The 
remaining joints are adjusted to keep the payload at the 
geometric center beneath the drone, thereby main–taining 
balance and preventing asymmetric load distri–bution. 

Figure 9 illustrates the simulation of carrying a 
single box. In this configuration, all four arms coor–
dinate to clamp and support the box at its bottom and 
sides, ensuring stability during aerial transport. The 
corresponding joint configurations for this case are 
presented in Table 1. Figure 10 shows the simulation 
scenario for carrying two boxes stacked horizontally. 
The arms are adjusted to simultaneously grip and 
stabilize both boxes, ensuring that the load is securely 
held without slipping or tilting. The joint angles for this 
configuration are provided in Table 2. 
Table 1. Joint angles of the four arms for the single-box 
carrying case 

No. Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
Arm 1 34.870 00 00 00 -34.870 900

Arm 2 9.580 39.690 00 -49.270 00 900

Arm 3 34.870 00 00 00 -34.870 900

Arm 4 9.580 39.690 00 -49.270 00 900

 
Figure 9. Simulation of the drone arm mechanism carrying 
one box. 

 
Figure 10. Simulation of the drone arm mechanism carrying 
two boxes. 

Table 2. Joint angles of the four arms for the dual-box 
carrying case 

No. Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
Arm 1 -27.060 82.350 55.290 00 00 900

Arm 2 9.580 39.690 00 -49.270 00 900

Arm 3 -27.060 82.350 55.290 00 00 900

Arm 4 9.580 39.690 00 -49.270 00 900

 
For carrying lifebuoys, the arms operate indepen–

dently rather than in coordination. Each arm is bent into 
a hook-shaped configuration that wraps tightly around 
the lifebuoy, preventing it from swaying or shifting 
during flight (Figure 11). This secure grip ensures 
stability even in windy or turbulent conditions. The 
specific joint angles for forming the hook shape are 
provided in Table 3. 
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An important advantage of the proposed mechanism 
is that once the drone approaches the target location, the 
arms can actively release the rescue items directly into 
the hands of the victim. This capability is particularly 
valuable when the victim is physically and mentally 
exhausted and may not be able to detach the payload if 
conventional passive delivery methods were used. 

 
Figure 11. Simulation of the drone arm mechanism carrying 
a lifebuoy in a hook-shaped configuration. 

Table 3. Joint angles of the four arms for the hook-shaped 
configuration 

Lifebuoys Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
Big  00 00 560 370 560 370

Small  00 00 66.30 44.680 66.30 44.680

 
 The results of the YOLOv12 detection model 

 
The training and validation curves are illustrated in 
Figure 12. The box regression loss, classification loss, 
and distribution focal loss (DFL) all steadily decreased 
and converged after approximately 100 epochs, indi–
cating stable learning. The validation losses followed a 
similar trend, demonstrating that the model was not 
overfitting. 

In terms of detection metrics, both precision and 
recall reached near-optimal levels, with values of 0.984 

and 1.000, respectively. The mean Average Precision at 
IoU threshold 0.5 (mAP@50) achieved 0.995, reflecting 
the model’s excellent capability to localize and classify 
human instances in challenging flood scenarios. 
Meanwhile, the stricter metric mAP@50–95 attained a 
value of 0.652, which indicates reasonable gene–
ralization across multiple IoU thresholds but also 
suggests potential improvement when detecting under 
high-precision bounding box alignment. 

The quantitative results on the validation set are 
summarized in Table 4. The YOLOv12 model achieved 
near-perfect performance on the test dataset, surpassing 
conventional baselines in both accuracy and reliability. 

Table 4. Performance of yolov12 on human detection 
dataset 

Precision (P) Recall (R) mAP@50 mAP@50–95
0.984 1.00 0.995 0.652

 
Additionally, the average inference speed was ~5.7 

ms per image, including preprocessing, model infe–
rence, and post-processing. This indicates that the 
trained YOLOv12 detector can be deployed on-board a 
UAV in real-time conditions, which is crucial for time-
sensitive flood rescue operations. 

The proposed human detection model was evaluated 
under various real-world flood scenarios, including 
close-range, far-range, and crowded conditions. The 
results demonstrate that the model consistently achieved 
accurate detections across different contexts. 

For close-range detection, as illustrated in Fig. 13, 
individuals located on rooftops or partially submerged 
in floodwater were successfully detected with high 
confidence. The bounding boxes tightly aligned with the 
human contours, proving the model’s robustness against 
variations in posture and partial occlusion caused by 
water or surrounding objects. 

 
Figure 12. Training and validation curves results. 
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Figure 13. Close-range detection: accurate identification of 
individuals in proximity under flood conditions. 

In far-range scenarios, shown in Fig. 14, the model 
was able to detect both single individuals and groups of 
people at a distance. Even in challenging conditions 
where people appeared relatively small in the image, the 
detection performance remained reliable. However, in 
cases where individuals were standing close to each 
other, the model occasionally grouped them into a 
single bounding box, which suggests a limitation when 
distinguishing between closely spaced targets in low-
resolution regions. 

 
a. Far-range detection with multi-person. 

 
b. Far-range detection with one-person. 

Figure 14. Far-range detection results in flood scenarios. 

 
Figure 15. Crowded Scenario: Multi-Person Detection in a 
Flooded Environment. 

For crowded environments, as seen in Fig. 15, the 
model maintained its ability to localize multiple persons 
simultaneously, even in complex backgrounds with 
rescue boats and trees. This indicates that the trained 
model generalizes well to high-density situations and is 
capable of supporting rescue operations where rapid 
detection of multiple people is critical. 

Overall, these results confirm that the developed 
model is effective in handling diverse real-world 
scenarios. While minor challenges remain in distingui–
shing individuals in very close proximity, the detection 
accuracy is sufficiently high to ensure reliable operation 
in emergency flood-rescue missions. 

The integration of the YOLOv12-based detection 
model with the flexible multi-payload delivery mecha–
nism creates a synergistic rescue platform: YOLOv12 
enables rapid and accurate victim detection, ensuring 
the drone approaches the target quickly, while the 
delivery mechanism allows the system to transport 
essential supplies and release them precisely at the 
victim’s location. Although this study has not yet been 
validated through real-world experiments, the integ–
ration of YOLOv12-based human detection and the 
proposed multi-payload delivery mechanism demon–
strates strong feasibility. The experimental results of 
YOLOv12 on diverse flood scenarios confirm its robus–
tness in detecting victims under different conditions, 
while the structural design of the flexible carrying arms 
shows the potential to securely transport and release 
various rescue supplies. Therefore, this initial research 
provides a solid foundation for future implementation 
and real-world testing, where the system can be further 
optimized to meet practical rescue requirements. 

 
5. CONCLUSION 

 
This study presented the development of a novel drone-
based rescue platform that integrates an intelligent hu–
man detection model (YOLOv12) with a flexible multi-
payload delivery mechanism. The proposed system 
addresses two key challenges in flood rescue scenarios: 
(1) the rapid and reliable detection of victims in 
complex environments, and (2) the secure transportation 
and release of essential supplies, including life buoys, 
food packages, and medical kits. 

Through simulation, the flexible arm mechanism 
demonstrated the ability to adapt to different payload 
shapes and sizes, ensuring stable transportation. The 
arms could operate cooperatively to grasp rigid boxes or 
independently to hook and secure circular life buoys, 
preventing oscillations during flight. Additionally, 
YOLOv12 achieved high detection accuracy with a 
mean Average Precision (mAP50) of 99.5%, proving 
effective across near-range, far-range, and crowded sce–
narios. This ensures that victims can be quickly 
identified and rescue operations can be executed with 
minimal delays. 

Although this work remains at a preliminary stage 
without real-world testing, the combination of robust 
computer vision with an adaptive mechanical design 
highlights the strong feasibility of the proposed app–
roach. The research establishes a foundation for future 
implementation, where hardware integration and field 



FME Transactions VOL. 53, No 4, 2025 ▪ 573
 

experiments will be conducted to validate system 
performance under practical conditions. Furthermore, 
future work will focus on optimizing the arm’s control 
algorithms, improving payload stability under turbulent 
environments, and enhancing the robustness of the 
detection model in adverse weather conditions. 

ACKNOWLEDGMENT  

We acknowledge Ho Chi Minh City University of 
Technology (HCMUT), VNU-HCM for supporting this 
study. 

REFERENCES  

[1] S. Yeom, “Thermal Image Tracking for Search and 
Rescue Missions with a Drone,” Drones, Vol. 8, 
No. 2, 2024. https://doi.org/10.3390/drones8020053 

[2] C.K. Long U and N. K. Toan, “Emergency UAV 
Delivery Framework: A Hybrid Approach to GPS 
Navigation and Visual Landmark Detection,” 
International Journal of Mechanical Engineering 
and Robotics Research, Vol. 14, No. 4, pp. 374-
383, 2025. doi: 10.18178/ijmerr.14.4.374-383 

[3] V. Garg et al., “Drones in last-mile delivery: A 
systematic review on efficiency, accessibility, and 
sustainability,” Transportation Research Part D: 
Transport and Environment, vol. 123, 103831, 
2023. doi: 10.1016/j.trd.2023.103831 

[4] K. M, O. M, P. B, R. K V and S. K. S, "Unmanned 
Aerial Systems in Search and Rescue: A 
Comprehensive Review and Future Directions," 
2024 5th International Conference on Mobile 
Computing and Sustainable Informatics (ICMCSI), 
Lalitpur, Nepal, 2024, pp. 15-18, doi: 
10.1109/ICMCSI61536.2024.00008. 

[5] M.D. Milenković-Babić, V.D. Stefanović-Gobeljić, 
B.G. Ostojić, B.Z. Dovatov, B.B. Ostić, M.B. 
Gligorijević, “The Rescue System Implemetation in 
the Medium Range UAV,” FME Transactions, Vol. 
53, pp. 482-489, 2025. 

[6] P.R. Harris, S.E. Miller & J.D. Telford, “Drones in 
disaster management: A review of applications and 
recommendations for future research,” International 
Journal of Disaster Risk Reduction, Vol. 50, 
101682, 2020. 

[7] S.A. Ghauri, M. Sarfraz, R.A. Qamar, M.F. Sohail, 
S.A. Khan, “A Review of Multi-UAV Task 
Allocation Algorithms for a Search and Rescue 
Scenario,” Journal of Sensor and Actuator 
Networks, Vol. 13, No. 5, 47. 
https://doi.org/10.3390/jsan13050047 

[8] J. Xu et al., "YoloOW: A Spatial Scale Adaptive 
Real-Time Object Detection Neural Network for 
Open Water Search and Rescue From UAV Aerial 
Imagery," in IEEE Transactions on Geoscience and 
Remote Sensing, vol. 62, pp. 1-15, 2024, Art no. 
5623115, doi: 10.1109/TGRS.2024.3395483. 

[9] S. Qi, B. Lin, Y. Deng, X. Chen, Y. Fang, "Mini–
mizing Maximum Latency of Task Offloading for 
Multi-UAV-Assisted Maritime Search and Rescue," 
in IEEE Transactions on Vehicular Technology, 

vol. 73, no. 9, pp. 13625-13638, Sept. 2024, doi: 
10.1109/TVT.2024.3384570. 

[10] M. Marin, P. Mirosavljević, “Analysis of the per–
formance and kinematics of the movement of 
UAV,” FME Transaction, Vol. 51, No 4, pp. 627-
636, 2023 

[11] A. Claesson, L. Svensson, P. Nordberg, M. Ringh, 
M. Rosenqvist, T. Djarv, J. Samuelsson, O. 
Hernborg, P. Dahlbom, A. Jansson, J. Hollenberg, 
“Drones may be used to save lives in out of hospital 
cardiac arrest due to drowning,” Resuscitation, Vol. 
114, pp. 152–156, 2017. https://doi.org/10.1016/ 
j.resuscitation.2017.01.003 

[12] Y. Karaca, M. Cicek, O. Tatli, A. Sahin, S. Pasli, 
M.F. Beser & S. Turedi, “The potential use of 
unmanned aircraft systems (drones) in mountain 
search and rescue operations,” The American Jour–
nal of Emergency Medicine, Vol. 36, No. 4, pp. 583 
–588, 2018. https://doi.org/10.1016/j.ajem. 2017. 
09.025 

[13] D.C. Schedl, I. Kurmi, O. Bimber, “An autonomous 
drone for search and rescue in forests using 
airborne optical sectioning,” Science Robotics, 
2021. https://doi.org/10.1126/scirobotics.abg1188. 

[14] A.M. Russell Bernal, J. Cleland-Huang & W. 
Scheirer, “Psych-Occlusion: Using Visual Psycho–
physics for Aerial Detection of Occluded Persons 
During Search and Rescue,” 2025 IEEE/CVF 
Winter Conference on Applications of Computer 
Vision (WACV), pp. 3383–3395, 2025. https:// 
doi.org/10.1109/WACV51458.2025.00344 

[15] B. Mishra, D. Garg, P. Narang, V. Mishra, “Drone-
surveillance for search and rescue in natural dis–
aster,” Computer Communications, Vol. 156, pp. 1–
10, 2020. https://doi.org/10.1016/j.comcom.2020. 
03.012  

[16] S. Meenakshi, R.K.P.K.P Pavaimalar, S. Ravi, N. 
Kumaran & S.B. Priya, “AI-Driven Autonomous 
Robots for Search and Rescue Operations in 
Disaster Zones,” 2025 International Conference on 
Data Science, Agents & Artificial Intelligence 
(ICDSAAI), pp. 1–6, 2025. https://doi.org/10. 
1109/ICDSAAI65575.2025.11011570 

[17] A. Albanese, V. Sciancalepore,  X. Costa-Pérez, 
“SARDO: An Automated Search-and-Rescue Dro–
ne-Based Solution for Victims Localization,” IEEE 
Transactions on Mobile Computing, Vol. 21, No. 9, 
pp. 3312–3325, 2022. https://doi.org/10.1109/ 
TMC.2021.3051273 

[18] M.S. Hii, P. Courtney, P.G. Royall, “An Evaluation 
of the Delivery of Medicines Using Drones,” 
Drones, Vol. 3, No. 3, 52, 2019. 
https://doi.org/10.3390/drones3030052 

[19] A.S. Kristensen, D. Ahsan, S. Mehmood, S. 
Ahmed, “Rescue Emergency Drone for Fast Res–
ponse to Medical Emergencies Due to Traffic 
Accidents,” International Journal of Health and 
Medical Engineering, Vol. 11, No. 11, pp. 637–641, 
2017.  



 

574 ▪ VOL. 53, No 4, 2025 FME Transactions
 

[20] L. Liu & Z. You, “Drone transports medical 
supplies to Puerto Rico based on shortest path,” 
IOP Conference Series: Earth and Environmental 
Science, Vol. 512, No. 1, 012140, 2020. https:// 
doi.org/10.1088/1755-1315/512/1/012140 

[21] B. Rabta, C. Wankmüller & G. Reiner, “A drone 
fleet model for last-mile distribution in disaster 
relief operations. International Journal of Disaster 
Risk Reduction, Vol. 28, pp. 107–112, 2018. 
https://doi.org/10.1016/j.ijdrr.2018.02.020 

[22] R. R. Patel, P.J. Parmar, M.J. Sutariya, “MedDrone 
Rescue: A Survey on Drones for Medical Supplies 
in Rural, Terrained Areas and Search & Rescue 
Operations,” 2025 International Conference on 
Machine Learning and Autonomous Systems 
(ICMLAS), pp. 1682–1689, 2025.  

[23] A. A. Bany Abdelnabi, G. Rabadi, “Human 
Detection from Unmanned Aerial Vehicles’ Images 
for Search and Rescue Missions: A State-of-the-Art 
Review,” in IEEE Access, vol. 12, pp. 152009-
152035, 2024, doi: 10.1109/ACCESS.2024. 
3479988. 

[24] S. Ma, Y. Zhang, L. Peng, C. Sun, B. Ding, Y. Zhu, 
"OWRT-DETR: A Novel Real-Time Transformer 
Network for Small-Object Detection in Open-Water 
Search and Rescue from UAV Aerial Imagery," in 
IEEE Transactions on Geoscience and Remote 
Sensing, vol. 63, pp. 1-13, 2025, Art no. 4205313, 
doi: 10.1109/TGRS.2025.3560928. 

[25] H. Liu, Y. P. Tsang, C. K. M. Lee, Y. Wang, F. -Y. 
Wang, "Internet of UAVs to Automate Search and 
Rescue Missions in Post-Disaster for Smart Cities," 
2024 IEEE Intelligent Vehicles Symposium (IV), 
Jeju Island, Korea, Republic of, 2024, pp. 614-619, 
doi: 10.1109/IV55156.2024.10588641. 

[26] Z. Fu, Y. Xiao, F. Tao, P. Si & L. Zhu, “DLSW-
YOLOv8n: A Novel Small Maritime Search and 
Rescue Object Detection Framework for UAV 
Images with Deformable Large Kernel Net,” 
Drones, Vol. 8, No. 7, 310, 2024. https://doi.org/10 
.3390/drones8070310 

[27] Bei Liu, Jiangliang Jin, Yihong Zhang, Chen Sun, 
"WRRT-DETR: Weather-Robust RT-DETR for 
Drone-View Object Detection in Adverse 
Weather", Drones, vol.9, no.5, pp.369, 2025. 

[28] C. Velavan, A. Balamurugan, L. Murugasamy, “5G 
and Edge Computing Enabled Search and Rescue 
Drones,” 2025 8th International Conference on 
Trends in Electronics and Informatics (ICOEI), pp. 
579–586, 2025. https://doi.org/10.1109/ICOEI659 
86.2025.11013465 

[29] A. Alnoman, A.S. Khwaja, A. Anpalagan, & I. 
Woungang, “Emerging AI and 6G-Based User 

Localization Technologies for Emergencies and 
Disasters,” IEEE Access, Vol. 12, pp. 197877–
197906, 2024. https://doi.org/10.1109/ACCESS. 20 
24.3399446S.  

 
 
РАЗВОЈ ПЛАТФОРМЕ ЗА СПАСАВАЊЕ 
ЗАСНОВАНЕ НА ДРОНУ СА ИНТЕ–
ЛИГЕНТНИМ МЕХАНИЗМОМ ЗА 
ДЕТЕКЦИЈУ ЉУДИ И ИСПОРУКУ 

ВИШЕСТРУКОГ ТЕРЕТА 
 

Т.К. Туан, В.Т.Н. Хан, Т. Кујен, Д.Ф. Тин, 
Ф.Т. Дат,  Д.А. Дуј 

 
Поплаве често стварају ванредне ситуације у којима 
је приступ жртвама озбиљно ограничен брзим 
покретом воде, дубоким тереном и опасним преп–
рекама. Традиционалне операције спасавања у так–
вим условима су обично споре, захтевају много 
ресурса и излажу спасиоце значајним ризицима, што 
ограничава ефикасност реаговања у ванредним 
ситуацијама. Овај рад представља концептуални 
дизајн платформе беспилотне летелице са веш–
тачком интелигенцијом за брзо спасавање у 
условима поплава, посебно у опасним и непри–
ступачним подручјима. Систем интегрише прила–
гођени, реконфигурабилни механизам терета који се 
састоји од четири зглобна крака постављена испод 
дрона, свака са шест степени слободе покретана RC 
сервомоторима. Ова конфигурација пружа високу 
прилагодљивост, омогућавајући безбедан транспорт 
и активно ослобађање разноврсних залиха за спаса–
вање (нпр. медицинске кутије, неопходне робе, бове 
за спасавање). Паралелно, модел за детекцију људи 
заснован на дубоком учењу, изграђен на YOLOv12, 
тренира се на снимцима из ваздуха снимљеним у 
сценаријима поплава како би се брзо откриле и 
локализовале жртве из перспективе беспилотне 
летелице. Излази детекције пружају тренутне сиг–
нале за циљ, омогућавајући дрону да брзо одреди 
локацију жртве и испоручи терет директно у досег, 
чиме се смањује когнитивни и физички терет и за 
оператера и за жртву. Механичке симулације четво–
рокраког механизма за више типова корисних 
теретова, заједно са резултатима обуке YOLOv12 
детектора, указују на изводљивост предложеног 
приступа и његову погодност за временски кри–
тичне услове на терену. Генерално, комбинација 
локализације жртве уз помоћ вештачке интели–
генције и флексибилног, активног механизма корис–
них теретова смањује људску интервенцију, побољ–
шава тачност испоруке и подржава паметно, ефи–
касно и лако распоредиво решење за операције 
реаговања на катастрофе. 

 


