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This paper presents a multi-objective optimization approach for designing
hybrid energy storage systems combining lithium batteries and
supercapacitors in electric vehicles. A desirability-based framework is
developed to integrate multiple conflicting objectives, including driving
range, system cost, lifetime, and volume occupancy. Each objective is
transformed into a normalized satisfaction index using parameterized
desirability functions derived from user preferences. These indexes are
aggregated into a global performance metric to guide the optimization
process. A genetic algorithm is employed to identify optimal configurations
that balance trade-offs among objectives. Results demonstrate that the
hybrid system significantly improves driving range and lifetime while
reducing cost and volume compared to battery-only systems. The proposed
method offers a flexible and user-centered design strategy for enhancing
electric vehicle performance and reliability.
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1. INTRODUCTION

With the increase of fossil fuel consumption and the
crisis of resource shortage, the use of electrical energy
has become a priority for major industries such as the
automotive industry[1]. Electric vehicles (EVs) and
hybrids (HEVs) are the best solutions to cope with
climate change which require storage devices like bat—
tery and supercapacitors (SC) [2]. In order to have better
energy efficiency, the association of batteries with su—
percapacitors is essential[3]. Lithium-ion batteries offer
high energy density but suffer from limited driving
range and low power density, these disadvantages can
be reduced by inserting a new, reliable energy source
capable of supplying power peaks at the right time [4].
Supercapacitors, given their long lifetime, high power
density, and strong ability to charge and discharge
quickly [5], are plausible candidates to perform this
function [6,7]. The combination of batteries and super—
capacitors as a second device leads to a significant
increase in the EV cost [8].

The primary goal of numerous research efforts is to
design and implement an advanced and efficient stra—
tegy for optimizing energy management in systems that
integrate both batteries and supercapacitors. This
involves developing intelligent control algorithms, imp—
roving energy distribution between the two storage
devices, and maximizing overall system efficiency to
enhance performance, extend lifetime, and reduce ener—
gy losses [2,6,9].

Optimizing energy consumption in electric vehicles
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(EVs) is crucial for enhancing efficiency and extending
driving range. One effective approach involves imple—
menting economy-oriented car-following control strate—
gies, which adjust the vehicle's speed in response to tra—
ffic conditions, thereby reducing energy usage [10, 11].

Additionally, integrating machine learning-based
energy optimization systems can dynamically manage
factors such as battery state of charge, driving speed,
and route characteristics, leading to more efficient
energy consumption [10,11].

Furthermore, optimizing the design and control of
EV transmissions, including the use of multi-speed
gearboxes, can significantly improve energy efficiency
by ensuring the electric motor operates within its
optimal efficiency range [12].

In addition to these technological advancements,
adopting certain driving practices can further enhance
EV energy efficiency. Practicing gentle acceleration and
maintaining moderate speeds can significantly reduce
energy consumption [13].

Utilizing regenerative braking systems allows for the
recovery of kinetic energy during deceleration, conver—
ting it back into usable energy for the vehicle [14].

By combining advanced technological strategies
with mindful driving habits, EV owners can optimize
energy usage and contribute to a more sustainable
future.

Mid-Eum Choi et al. described an optimization
approach based on the multiplicative-increase-additive-
decrease (MIAD) to minimize magnitude/fluctuation of
the battery current and the energy loss in the hybrid
energy storage system. This method results in extended
battery life and reduces the size of the battery [2].

Lahyani et al. presented a comparison of the perfor—
mance of a lead-acid battery/supercapacitors (hybrid) to
a battery alone under pulsed loads. This experience
shows that using battery/supercapacitors (hybrid) redu—
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ces 36% of power dissipated compared with battery alo—
ne, increases the number of cycles by 70%, reduces cost
by 17,6%, reduces the battery’s capacity fade by 60%
and increases of internal resistance by 83% [6].

Riadh et al. studied an optimal use of the
complementarity between supercapacitors and batteries
in electric vehicles. They integrated a high pass filter on
the side of supercapacitors in order to overcome the
peak power demands and increase battery lifetime. The
result shows that minimizing battery current affects inc—
reasing supercapacitors number which is expensive [9].

Chunchun Jia et al. proposed a novel energy mana—
gement strategy for hybrid electric buses based on
dynamic programming (DP) with the aid of an online
self-learning stochastic Markov predictor (OLSMP). This
study has given as a result a reduction of 34,8% battery
aging rate and low total operating cost (12,3%) compared
to the overheat-protection neglecting strategy [1].

With the goal of minimizing the energy consumption
of the battery/supercapacitor hybrid energy storage
system, Ligiao Lia et al. proposed a new method based
on self-adaptive reinforcement learning for Electric
Tractor based on working condition identification
energy management. This method reduces energy
consumption by 15,7% [15].

Ridoy Dasa et al. present in their work optimization
method based on multi-objective-techno-economic-
environmental for electric batteries, they use energy
cost, battery degradation, grid interaction and CO2
emissions. This method reduces the energy cost,battery
degradation, CO2 emissions and grid utilisation by
88.2%, 67%, 34% and 90% respectively [16] .

Ziyou Song et al. propose a semi-active hybrid
energy storage system (HESS) that integrates a battery
with a supercapacitor (SC) using a smaller unidi—
rectional DC/DC converter. This configuration aims to
enhance system efficiency and reduce costs. The study
incorporates a quantitative model to assess battery
capacity degradation and focuses on optimizing the
sizing parameters of the HESS for an electric city bus in
order to minimize both the total cost of the HESS and
the capacity loss of a LiFePO, battery over a typical
china bus driving cycle[17].

Despite significant progress in optimizing hybrid bat—
tery/supercapacitor systems, most studies focus on tech—
nical performance - such as minimizing current fluctua—
tions or enhancing cycle life - while neglecting trade-offs
among cost, lifetime, and volume, as well as real-world
user preferences. Many approaches also rely on complex or
costly architectures that limit practical adoption.

To overcome these limitations, this study proposes a
user-centered, multi-objective optimization framework
that integrates technical metrics with consumer-driven
desirability functions. By explicitly incorporating user
preferences, the framework balances technical, eco—
nomic, and practical considerations, providing a realistic
and implementable design strategy for hybrid energy
storage systems in electric vehicles.

The remainder of this paper is organized as follows.
Section 2 presents various energy storage architectures
for electric vehicles and justifies the selection of the
chosen hybrid configuration. Section 3 details the multi-
objective optimization model, including the formulation
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of the global satisfaction index based on user prefe—
rences and desirability functions. It also describes the
modellingof key performance criteria such as driving
range, system cost, lifetime, and volume occupancy.
Section 4 outlines the optimization procedure used to
identify the best energy storage configuration. Section 5
discusses the simulation results and highlights the
benefits of the hybrid storage system compared to a
battery-only solution. Finally, Section 6 summarizes the
main conclusions and suggests directions for future
research.

2. STORAGE ENERGY ARCHITECTURE IN
ELECTRIC VEHICLE

Different storage energy architectures have been con—
sidered in the literature. The choice between these
architectures is based on the trade-offs between comp—
lexity, design cost, and performance [18,19].

Several parallel configurations exist, architecture
without converter, architecture with converter on the
supercapacitor side and architecture with two converters

Table 1 below summarizes the advantages and dis—
advantages of each architecture.

Table 1. Comparison of association architectures[19]

Simplicity of
implementation

Performance Flexibility Cost

@ 0 00
00 00

Architectures

architecture
without converter

architecture with
one converter

architecture with
two converters

Using DC/AC converters for all the architectures
(parallel or series), allows adaptation of the voltage of
the DC bus to the alternating current electrical machine
of the vehicle [19].

The architecture with two DC/DC converters linked
to each source (supercapacitors, battery) shown in
Figure 1 offers the best performance longer battery life,
efficient regenerative braking, and power flow control,
however, this configuration involves high cost and imp—
lementation complexity.

Disadvantages

(" pepe ) (" DC/AC )
Supercapacitors converter converter
S
ﬁ@ Nt
. * \ —— v
Lithium-ton (" peme (" Electric )
batteries converter motor
, -
N - |
. . /

Figure 1. Parallel architecture with two converters

In our article, we have chosen the architecture with
two converters despite its drawbacks in terms of cost
and implementation complexity. This decision was
made with the aim of fully leveraging the flexibility and
performance offered by this configuration. By
optimizing its operation, we aim to compensate for its
inherent disadvantages through improvements in the
overall "lifecycle cost" of the system.
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3. OBJECTIVE FUNCTION

In this section, the optimization problem is presented,
this global control formulation requires the specification
of an objective function in order to obtain the best
energetic and economic configuration.

In the present study, we aim to improve several
design objectives: driving range, cost, lifetime, and
volume occupancy.

These objectives are conflicting, meaning that
improving one may lead to the deterioration of another.

For example, increasing the driving range requires
additional battery cells, which in turn raises the cost. As
a result, it is difficult to optimize all objectives
simultaneously. To address this challenge, we adopted
an aggregation-based approach. Instead of optimizing
each objective individually, this method combines
multiple objectives into a single function, referred to as
the Global Satisfaction Index (GSI), which quantifies
the global satisfaction level of a design solution. The
overall methodology used to construct the GSI objective
function is illustrated in Figure 2.

Starting from a specified energy storage confi—
guration (defined by a given number of battery cells and
supercapacitor modules), calculation models are first
used to derive performance values, denoted as p;. Each
design objective is associated with a specific perfor—
mance index. For example, the objective "Improving
range" corresponds to the performance index "Range,"
expressed in kilometers. Accordingly, each performance
value (p;, p», p; and p,) is linked to a dedicated
calculation model, as detailed in the sections below.

Next, for each performance index, a desirability
index (zj, z,, z3 and z,) ranging from 0 to 10 is assigned

Given that the present case study focuses on an
urban electric vehicle, we specifically targeted urban
EV users. Respondents were asked to assess the im-—
portance and acceptability of various performance
metrics, enabling us to calibrate the shape and thres—
holds of thedesirability functions used in the opti—
mization model. Table 2 summarizes the values
obtained from the survey.

Finally, the Global Satisfaction Index (GSI) is
obtained by aggregating the satisfaction indexes (z1, z»,
73, and z4) corresponding to each design objective. As
shown in Figure 3, the aggregation function used is the
weighted product. The main reason for choosing this
function is that it satisfies the principle of annihilation
[22], one of the fundamental axioms of design-ready
aggregation models [23]. This principle states that if any
attribute reaches its worst possible value (a satisfaction
index equal to zero in our case), the overall evaluation
(GS]) is entirely determined by that attribute, regardless
of the others. This ensures that critical failures dominate
the assessment. In contrast, the weighted arithmetic
mean — one of the most commonly used aggregation
functions — does not satisfy this principle, as it can
yield a non-zero GSI even when one of the satisfaction
indexes (z1, Z2, Z3, Or z4) is zero. The four weights (w4,
W2, W3, OF W) in the aggregation function represent the
relative importance assigned to each design objective.
To ensure alignment with user preferences, these
weights were derived from the data collected through
the aforementioned survey. Table 2 summarizes the
values obtained from the survey.

Table 2. Weight values and Harrington function parameters
derived from the survey

to reflect the degree of satisfaction related to the Desi Harrington function parameters oh
corresponding design objective [20]. In our approach, olf'ség:lives Point A Point B ‘x:;'ugest
this mapping is achieved using an adjustable desirability . Pi % Di %
function originally introduced by Harrington [21]. This Im :
M > : : > proving 0.37
desirability function is easily parameterized to reflect range 200Km | 4.2 | 400 Km 8.4
the preferences of the de01s10n-maker. As shqwn in Reducing 031
Figure 3, only two reference points are required to cost 2000€ | 8.9 | 4000€ 3.1
deﬁ}le cach des}llrabﬁlty f;‘mt‘.o“‘ I refl Improving | 30000 | , o | 50000 | . | 021
0 ensure that these functions accurately retlect user lifetime hours . hours .
expectations, a structured survey was conducted among -
otential electric vehicle users Reducing 0.1
p : volume | 50litre | 6.7 | 70litre | 5.1
occupancy
Design objective 1: ~ Performance Satisfaction
Improving range indexes = mdexes
[ ( P ] . [
Energy i —= ] %1
storage Design objective 2: g Py
solution Reducing cost -
; Global
2] o 10mgs - ) Zy satisfaction
o \ Aggregation index
Design objective 3: i

Improving lifetime

NHJ
Nsc

Design objective 4:

ﬁ i [GSI ]
i=1

Reducing congestion

Figure 2. Model Used to Obtain Global Satisfaction Index
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Questionnaire submitted to 150 EV users

» Onascale of 1 to 10, how acceptable is a 200 km range (point A)
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» Onascale of 1 to 10, how acceptable i3 a 400 lon range (point B)
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Figure 3. Parametrization of Harrington desirability
functions based on consumers’ preferences (example of
driving range)

2.1 Driving range model

Driving range constitutes a key factor in the adoption
and development of electric vehicles (EVs), as it
reduces range anxiety, boosts user confidence, and
increases their competitiveness with conventional
vehicles. It also drives innovation in battery technology
and power management, contributing to improved
performance and lower costs. For these reasons, driving
range is a central design objective in our optimization
process.

In this section, we detail the procedure used to esti—
mate the driving range for a given energy storage
system. The method is based on a simulation of energy
exchanges between the powertrain and the storage
components. Starting from a fully charged storage
system, the aim is to determinethe maximum driving
time (in hours) before the storage system is depleted.
Figure 4 presents a flowchart of the procedure used to
calculate the driving range of electric vehicles. Initially,
the driving time (denoted Td) is set to zero, and the
battery is considered fully charged. Then, Td is incre—
mented by a time step (denoted AT) of 1 second at each
iteration. At each step, the state of charge of the storage
system is updated by computing the energy flux
between the battery, the supercapacitors, and the motor.
The energy flux is determined based on the instan—
taneous power demand, the state of charge, and the
energy management strategy (as described in Figure 5).
The iterations continue until the battery is fully dis—
charged. At that point, the driving range is defined as
the final value of Td reached before the storage system
is depleted.

As mentioned in Figured4, at each iteration, the
energy flux between batteries, SCs and engine is
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assessed based on the energy management strategy
presented in Figure 5. This allows the actualization of
storage system state.

Start

» Initialize driving time (T4 < 0)
# LBs fully charged
# Loading input data

Y

Determination of demanded power
(P4) based on WLTP

7 }. "
4 T ﬂh.whj
-200 . T T T

\ i Time (s) /

Y

Based on energy management strategy (figure 5),
state of charge of the storage system is updated by
simulating energy flux between LBs, SCs and
engine

Is storage
system
empty ?

Ty« Ty +IT

Calculate range in hours:
Drivinrange =Ty

Figure 4. Flowchart of the driving range calculation
procedure

At each time step i, the state of charge (SoC) of the
hybrid storage system—composed of lithium batteries
(LBs) and super-capacitors (SCs)—is updated based on
an energy management strategy that distinguishes
between traction and braking modes. The demanded
power is determined according to a predefined driving
cycle (WLTP in our case), and the system identifies
whether the vehicle is in braking or traction mode.
During braking, the recovered energy is used to
recharge the storage devices. In traction mode, the
system compares the demanded power P, with the
maximum deliverable power by the lithium batteries Py,
If P,<P), only the batteries are used. Otherwise, the SCs
are activated to supplement the LBs. The energy contri—
butions and extractions from each component are com—
puted every second, taking into account inverter effi—
ciency 1, and the SoC of each storage unit is updated
accordingly. This real-time control allows the system to
balance performance and efficiency while preserving
battery health. Figure 6 shows the instantaneous traction
and regenerative braking power profiles derived from
the Worldwide Harmonized Light Vehicles Test
Procedure (WLTP), based on the time-dependent speed
nput.
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Figure 5. Energy management strategy for updating the state of charge of the storage system at time i

48 Traction power (needed)

38 Braking power (Recoverable)

28
T 18
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-12

-22
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Time (s)

Figure 6. Instantaneous traction and regenerative braking
power profiles during the WLTP driving cycle

2.2 Cost model

The first and fundamental objective that we need to mini—
mize is the energy cost, the net present cost (NPC) which
includes the capital cost (CC), maintenance cost (MC)
and replacement cost (RC) of the storage system [24].

NPC=N,.-P, ~(CCS +PWA;-MCy + K -RCy )+ O
where

K, and K, are coefficients used to convert the
replacement cost of LB and SC at the end of its life into

current costit’s calculated as[25]:
il |
K= —% ?
n=1 (1 1 )

PWA,, PWApare coefficients used to estimate the
current maintenance cost of (LB and SC), it’s calculated
as:

(1+,)% -1

PWA =
i, (1+ir)R

3
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I, b, i,, R are respectively the number of replacement
times, component lifetime, the interest rate and project
lifetime.

2.3 Lifetime model

In this work, the Ilithium-ion battery lifetime is
estimated based solely on cycle aging, which is the
dominant degradation mechanism in electric vehicle
applications [26-28]. The cycle aging is quantified
through the concept of equivalent full cycles (EFC),
computed from the depth of discharge (DoD) and the
charge throughput [29]. At each time step, the current
drawn from the battery is estimated using the instan—
taneous power and voltage:

— Pbat (t)
Voar (t)

The exchanged charge over a time step 4t is given
by:

AO(1) = Iyt (1) ®)

The total number of equivalent full cycles is accu—
mulated by summing the charge exchanged over time
and normalizing by twice the nominal capacity:

A0 ()

Neq ) Z 2 Onom ©

Finally, the end-of-life (EoL) is defined when the
accumulated number of cycles reaches the manu—
facturer-specified limit N,,,, corresponding to a rema—
ining capacity of 80%:

Neg 2 Ninax (7

Ipg (1) )

This approach enables battery degradation prediction
under real driving profiles using simulation data, and
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can be easily extended to include temperature and DoD-
dependent degradation models.

Although the same mathematical expression for
equivalent full cycles is used for both lithium-ion
batteries and supercapacitors, the underlying aging
mechanisms differ significantly. Battery degradation is
highly dependent on depth of discharge, C-rate, and
temperature, often requiring non-linear modeling. In
contrast, supercapacitor aging is primarily driven by the
total number of cycles and the maximum voltage
applied, which allows for a more linear approximation.
Therefore, while the same cycle-counting formula
facilitates unified simulation, it should be interpreted
differently for each storage technology.

2.4 Volume occupancy model

The Volume Occupancy in electric vehicles represents
the relationship between energy density (p), power
density (E), and occupied volume (V).

E
V= —pfof : ®)
E

Lithium-ion (Li-ion) batteries are widely used due to
their high energy density, they can store a large amount
of energy in a small volume.

Supercapacitors provide high power density but
have a lower energy density than Li-ion batteries.

4. OPTIMIZATION PROCEDURE

In this study, we adopted a structured and exhaustive
optimization strategy based on a Design of Experiments
(DoE) approach to determine the optimal configuration of
the hybrid energy storage system. Given the limited and
discrete nature of the decision variables - namely, the
number of lithium-ion battery and supercapacitor units - a
full-factorial experimental design was feasible and
implemented.

Generate all possible
combinations (full DoE)

o

Evaluate each configuration
(calculation of GSI)

>

Rank configurations
based on GSI

-

Select optimal configuration
(highest GSI)

J

Figure 7. Optimization procedure of energy storage system
using genetic algorithm
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This allowed us to systematically evaluate all pos—
sible configurations within the design space. Although
no filtering was applied to eliminate suboptimal
solutions a priori, the method remained computationally
tractable due to the manageable number of combi—
nations. The transparency, reproducibility, and exhaus—
tive nature of the approach make it particularly well
suited to engineering design problems, where global
optimality and interpretability are essential.

5. DISCUSSION OF OBTAINED RESULTS

This section presents the results obtained from the
simulation using the Maxwell supercapacitor model and
LG Chem E63 lithium-ion batteries. Both components
were modelled based on their respective technical
specifications, enabling a detailed evaluation of the
dynamic performance of the hybrid energy storage
system. The analysis focuses on the impact of the
selected architecture on power profiles and the energy
distribution between the two sources.

The optimization results confirm the effectiveness of
the proposed desirability-based multi-objective frame—
work in identifying [30] well-balanced energy storage
configurations for electric vehicles (EVs). By integrating
four conflicting design objectives - driving range, system
cost, lifetime, and volume occupancy - into a single Global
Satisfaction Index (GSI), the methodology enabled a
comprehensive exploration of trade-offs and led to optimal
configurations aligned with user preferences.

Table 3. Characteristics of optimal storage system

Battery- Optimized Improve-
Criterion only S sifem Hybrid meg t (%)
¥y System ’
Driving o
Range(km) 180 240 +33.3%
Total Cost (€) 4200 3600 —14.3%
Lifetime (hours) 28 000 41 000 +46.4%
Volume 11 10
Occupancy(l) 62 55 11.3%
GSI Score 0.58 0.82 +41.4%

The Pareto-optimal configurations identified using
the genetic algorithm provide valuable insights into the
interactions between thedesign objectives. For instance,
configurations optimized for extended driving range
tend to include more battery cells, which raises both
cost and volume. In contrast, configurations favoring
extended system lifetime typically rely more on
supercapacitors (SCs), which efficiently manage peak
power demands and reduce battery stress. However, this
increase in SCs leads to higher volume occupancy,
slightly impacting the volume occupancyindex.

The desirability functions, calibrated using feedback
from 150 urban EV users, played a pivotal role in
shaping the optimization outcomes. The weights derived
from survey responses indicate that users prioritize
driving range (0.37) and cost (0.31) over lifetime (0.21)
(0.11). This preference structure explains why the
optimal configurations slightly favor longer range and
lower cost, even when lifetime or compactness could be
marginally improved.
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Figure 7. Comparison of power distribution in two optimal
energy storage systems during a driving cycle: (a) Hybrid
system with lithium batteries (LBs) and supercapacitors
(SCs); (b) System with lithium batteries only.

Figure 7 compares power distribution during a

sustained portions of the recovered energy. This comp—
lementary behavior between LBs and SCs leads to a
higher energy recovery efficiency and alleviates stress
on the LBs by reducing their exposure to high-power
fluctuations. Consequently, the hybrid configuration de—
monstrates superior performance compared to a battery-
only solution, highlighting the advantage of integrating
SCs into regenerative braking energy recovery systems.
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standard driving cycle. In the hybrid configuration
(Figure 7a), SCs absorb and deliver high peak power
during acceleration and braking events, thereby
reducing power transients handled by the lithium
batteries. This buffering effect stabilizes battery load,
leading to improved lifetime and reduced thermal stress.
In contrast, the battery-only system (Figure 7b) handles
all power wvariations directly, which increases
electrochemical stress and accelerates battery aging
mechanisms such as capacity fade or lithium plating.

From an energy management perspective, the hybrid
system enhances round-trip efficiency by leveraging the
fast charge-discharge capabilities of SCs. It also reduces
the depth and rate of discharge of batteries, which
positively impacts battery life and system reliability—
key metrics in EV design.

Figure 8 (a) illustrates the comparison between the
recoverable braking power and the actual power
absorbed by lithium batteries (LBs). The results show
that although the recoverable braking power exhibits
several peaks of high intensity, the power recovered by
the LBs remains limited. This limitation is mainly due
to the intrinsic characteristics of LBs, such as their
relatively low power density and restricted charge
acceptance capability during rapid transient events. As a
result, a significant portion of the available braking
energy cannot be effectively captured, particularly
during short-duration, high-power peaks.

In contrast, Figure 8 (b) presents the case of a hybrid
storage system combining LBs and supercapacitors
(SCs). The addition of SCs, represented by the red
curve, ecnables the system to better follow the
recoverable braking power profile. SCs absorb the sharp
and high-power transients that exceed the capacity of
the LBs, while the LBs handle the lower and more
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Figure 8. Comparison of regenerative braking power
distribution for two optimal energy storage systems: (a)
Hybrid system with lithium batteries (LBs) only; (b) System
with lithium batteries (LBs) only and supercapacitors
(SCs).

It is also important to note that part of the gap bet—
ween recoverable and actually recovered braking energy
is due to conversion losses and storage inefficiencies,
which are inherent to lithium battery chemistry and
associated power electronics.

From a technological standpoint, the optimized
hybrid configuration demonstrates significant advan—
tages over traditional designs:

» Lower lifecycle cost due to better sizing and reduced
replacements.

» Increased operational lifetime thanks to smoother
battery loads.

» More efficient space utilization, though volume
remains a secondary objective.

The weighted product aggregation function used in
the GSI ensures that critical shortcomings (e.g.,
excessively low range or high cost) are not compensated
by strong performance in other metrics. This strictness
enhances the robustness and practicality of the
optimization outcomes for real-world deployment.

Finally, although the current results are promising,
their relevance depends on the driving context. For
more aggressive profiles, the role of SCs could become
more prominent, especially regarding regenerative
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braking and high-power transients. This highlights the
importance of adapting the optimization framework to a
variety of use cases and real driving patterns.

Overall, the proposed framework offers a robust,
user-centred, and computationally efficient tool for
hybrid energy storage system design, with potential for
extension to electric buses, delivery vehicles, and other
smart mobility applications. Beyond the context of
urban electric vehicles, this framework can be extended
to a wide range of applications, including electric buses,
delivery vans, and stationary energy storage systems
such as microgrids and renewable energy integration.
By explicitly aligning technical design with consumer
expectations, the methodology supports faster industrial
adoption and market acceptance.

6. CONCLUSION

This study presented a user-centered, multi-objective
optimization approach for the design of hybrid energy
storage systems that combine lithium-ion batteries and
supercapacitors in electric vehicles. By incorporating
both technical and user-related aspects, the proposed
framework offers a more holistic and practical design
methodology. Unlike traditional approaches that focus
solely on technical performance metrics, our method
integrates consumer preferences into the optimization
process through parameterized desirability functions.
This allows for a more realistic evaluation of trade-offs
between conflicting objectives such as driving range,
cost, system lifetime, and volume occupancy.

The results demonstrate that hybrid configurations,
when properly sized and optimized, offer clear advan—
tages over battery-only systems. Notably, the inclusion
of supercapacitors leads to improved battery lifespan
and smoother power delivery, while the optimization
framework ensures that these gains do not come at the
expense of excessive cost or spatial requirements. The
use of the Global Satisfaction Index (GSI), based on
weighted desirability functions calibrated via user
surveys, proved effective in guiding the selection of
optimal configurations aligned with real-world expec—
tations. Furthermore, the intelligent brute-force search
combined with constraint filtering ensured global
optimality while maintaining computational feasibility.

Despite the promising outcomes, several aspects re—
main open for future exploration. One important direc—
tion is to incorporate more advanced degradation
models for both batteries and supercapacitors, taking
into account factors such as temperature, C-rate varia—
bility, and state-of-charge windows. Another promising
avenue is the integration of real driving profiles and
probabilistic traffic patterns to better reflect urban
mobility conditions. Additionally, the current frame—
work could be extended to include dynamic recon—
figuration strategies, allowing the hybrid system to
adapt to changing load demands or driving conditions in
real time. Finally, the approach could be applied to
other use cases beyond urban electric vehicles, such as
electric buses, delivery vans, or microgrid energy
storage systems.

Overall, the proposed optimization strategy provides
a robust, transparent, and adaptable solution for
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designing next-generation hybrid storage systems, with
strong potential to support the widespread adoption of
electric vehicles.

As a perspective for future work, it would be
valuable to extend the proposed user-centered, multi-
objective optimization framework to explicitly include
environmental criteria such as recyclability. In
particular, supercapacitors (SC) generally offer higher
recyclability than lithium batteries (LB), which could
significantly improve the overall sustainability of hybrid
energy storage systems in electric  vehicles.
Incorporating  recyclability  alongside  technical,
economic, and user-preference metrics would provide a
more comprehensive design strategy that balances
performance, cost, lifetime, and environmental impact.
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NOMENCLATURE
E, demanded energy
Ellb energy of the LBs at time i

E energy of the SCs at time i
P; L demanded power

P, maximum power delivered by the LB
Di performance indexes

P, nominal power of SC

P, nominal power of LB

Ny, number of battery cells

N, number of super-capacitors
T, driving time

w; criterion weight

z; desirability indexes
Greek symbols

Niny inverter efficiency
AT Time step
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Acronyms

EoL end-of-life

ESD  energy storage design

EV electric vehicle

GSI generalized satisfaction index
LB lithium batteries

S§C supercapacitor

SoC  state of charge

OIITUMHM3AIINJA XUBPUJITHUX CUCTEMA 3A
CKIIAJMIITELE EHEPTUJE CA
BATEPUJAMA/CYIIEPKOHIAEH3ATOPUMA Y
EJIEKTPUYHUM BO3NJINMA YCMEPEHA HA
KOPUCHHUKA

II. Bomymma, M. En Amune

OBaj pan mpeicTaB/ba BHIICIHJBHH TMPUCTYI ONTHMH—
3aIMjU 32 MPOJEKTOBAE XHOPHIHUX CHUCTEMa 3a CKJa—
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JMILITEHE SHEPrije KOju KOMOUHY]Y JIMTHjyMCKe OaTepuje
U CyNEepKOHIEH3aTOpe Yy eJNEeKTPUYHHM BO3HM—IJIHMA.
Pa3BujeH je OKBUp 3aCHOBAaH Ha MOXKEJBHOCTH Kako Ou ce
WHTETPUCATN BHUIIECTPYKH KOH(IMKTHU LIMJBEBH, YKIbY—
qyjyhn JOMET BOXKHbE, TPOILIKOBE CHCTEMa, BEK Tpajama
MOy EEHOCT 3anpeMuHe. CBaku Wb ce TpaHChopMuILe y
HOPMAJIM30BaHH HHIEKC 3aJ0BOJbCTBA  KOpHILNeHEeM
napaMeTpu30BaHuX (YHKIHMja MOXKEBHO—CTH H3BEICHUX
W3 KOpHCHHYKHX Tpede—perimja. OBH HWHICKCH ce
arperupajy y riao0aHy MeT—pHKy mep—(pOpMaHCH Kako Ou
ce BOAMO TIpoLec ONTHMu3alyje. ['eHercku anropuram ce
KOPUCTH 3a UICHTHHUKALH]Y OITHMATHHX
KOH(HUrypaija Koje OanaHcHpajy KOMI—pomuce usmely
nuibeBa. Pesynrtatn mokasyjy Ja XUO—PHIHH CHCTEM
3HAYajHO TOOOJBINABA JOMET BOXKEGE M BEK Tpajarba, a
HCTOBPEMEHO CMambyje TpPOILIKOBE M 3alpe—MHHY Y
nopehemy ca cucreMuMa Koju paje camo Ha Oarepwje.
[pennoxxena Metona Hyau (IeKCHOWIHY M CTpaTerujy
MPOjEKTOBAba YCMEPEHY Ha KOPHCHHKA 3a MMOOOJBIIAE
niep(hOpMaHCH ¥ TIOY3IAHOCTH EJICKTPUYHUX BO3KIIA.
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