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User-Centered Optimization of Hybrid 
Battery/Supercapacitor Storage 
Systems in Electric Vehicles 
 
This paper presents a multi-objective optimization approach for designing 
hybrid energy storage systems combining lithium batteries and 
supercapacitors in electric vehicles. A desirability-based framework is 
developed to integrate multiple conflicting objectives, including driving 
range, system cost, lifetime, and volume occupancy. Each objective is 
transformed into a normalized satisfaction index using parameterized 
desirability functions derived from user preferences. These indexes are 
aggregated into a global performance metric to guide the optimization 
process. A genetic algorithm is employed to identify optimal configurations 
that balance trade-offs among objectives. Results demonstrate that the 
hybrid system significantly improves driving range and lifetime while 
reducing cost and volume compared to battery-only systems. The proposed 
method offers a flexible and user-centered design strategy for enhancing 
electric vehicle performance and reliability. 
 
Keywords: electric vehicle, hybrid energy storage system, lithium battery, 
supercapacitor, multi-objective optimization, desirability function. 

 
 

1. INTRODUCTION 
 

With the increase of fossil fuel consumption and the 
crisis of resource shortage, the use of electrical energy 
has become a priority for major industries such as the 
automotive industry[1]. Electric vehicles (EVs) and 
hybrids (HEVs) are the best solutions to cope with 
climate change which require storage devices like bat–
tery and supercapacitors (SC) [2]. In order to have better 
energy efficiency, the association of batteries with su–
percapacitors is essential[3]. Lithium-ion batteries offer 
high energy density but suffer from limited driving 
range and low power density, these disadvantages can 
be reduced by inserting a new, reliable energy source 
capable of supplying power peaks at the right time [4]. 
Supercapacitors, given their long lifetime, high power 
density, and strong ability to charge and discharge 
quickly [5], are plausible candidates to perform this 
function [6,7]. The combination of batteries and super–
capacitors as a second device leads to a significant 
increase in the EV cost [8]. 

The primary goal of numerous research efforts is to 
design and implement an advanced and efficient stra–
tegy for optimizing energy management in systems that 
integrate both batteries and supercapacitors. This 
involves developing intelligent control algorithms, imp–
roving energy distribution between the two storage 
devices, and maximizing overall system efficiency to 
enhance performance, extend lifetime, and reduce ener–
gy losses [2,6,9]. 

Optimizing energy consumption in electric vehicles 

(EVs) is crucial for enhancing efficiency and extending 
driving range. One effective approach involves imple–
menting economy-oriented car-following control strate–
gies, which adjust the vehicle's speed in response to tra–
ffic conditions, thereby reducing energy usage [10, 11].  

Additionally, integrating machine learning-based 
energy optimization systems can dynamically manage 
factors such as battery state of charge, driving speed, 
and route characteristics, leading to more efficient 
energy consumption [10,11]. 

Furthermore, optimizing the design and control of 
EV transmissions, including the use of multi-speed 
gearboxes, can significantly improve energy efficiency 
by ensuring the electric motor operates within its 
optimal efficiency range [12].  

In addition to these technological advancements, 
adopting certain driving practices can further enhance 
EV energy efficiency. Practicing gentle acceleration and 
maintaining moderate speeds can significantly reduce 
energy consumption [13].  

Utilizing regenerative braking systems allows for the 
recovery of kinetic energy during deceleration, conver–
ting it back into usable energy for the vehicle [14]. 

 By combining advanced technological strategies 
with mindful driving habits, EV owners can optimize 
energy usage and contribute to a more sustainable 
future. 

Mid-Eum Choi et al. described an optimization 
approach based on the multiplicative-increase-additive-
decrease (MIAD) to minimize magnitude/fluctuation of 
the battery current and the energy loss in the hybrid 
energy storage system. This method results in extended 
battery life and reduces the size of the battery [2]. 

Lahyani et al. presented a comparison of the perfor–
mance of a lead-acid battery/supercapacitors (hybrid) to 
a battery alone under pulsed loads. This experience 
shows that using battery/supercapacitors (hybrid) redu–



576 ▪ VOL. 53, No 4, 2025 FME Transactions
 

ces 36% of power dissipated compared with battery alo–
ne, increases the number of cycles by 70%, reduces cost 
by 17,6%, reduces the battery’s capacity fade by 60% 
and increases of internal resistance by 83% [6]. 

Riadh et al. studied an optimal use of the 
complementarity between supercapacitors and batteries 
in electric vehicles. They integrated a high pass filter on 
the side of supercapacitors in order to overcome the 
peak power demands and increase battery lifetime. The 
result shows that minimizing battery current affects inc–
reasing supercapacitors number which is expensive [9]. 

Chunchun Jia et al. proposed a novel energy mana–
gement strategy for hybrid electric buses based on 
dynamic programming (DP) with the aid of an online 
self-learning stochastic Markov predictor (OLSMP). This 
study has given as a result a reduction of 34,8% battery 
aging rate and low total operating cost (12,3%) compared 
to the overheat-protection neglecting strategy [1].  

With the goal of minimizing the energy consumption 
of the battery/supercapacitor hybrid energy storage 
system, Liqiao Lia et al. proposed a new method based 
on self-adaptive reinforcement learning for Electric 
Tractor based on working condition identification 
energy management. This method reduces energy 
consumption by 15,7% [15]. 

Ridoy Dasa et al. present in their work optimization 
method based on multi-objective-techno-economic-
environmental for electric batteries, they use energy 
cost, battery degradation, grid interaction and CO2 
emissions. This method reduces the energy cost,battery 
degradation, CO2 emissions and grid utilisation by 
88.2%, 67%, 34% and 90% respectively [16] . 

Ziyou Song et al. propose a semi-active hybrid 
energy storage system (HESS) that integrates a battery 
with a supercapacitor (SC) using a smaller unidi–
rectional DC/DC converter. This configuration aims to 
enhance system efficiency and reduce costs. The study 
incorporates a quantitative model to assess battery 
capacity degradation and focuses on optimizing the 
sizing parameters of the HESS for an electric city bus in 
order to minimize both the total cost of the HESS and 
the capacity loss of a LiFePO₄ battery over a typical 
china bus driving cycle[17]. 

Despite significant progress in optimizing hybrid bat–
tery/supercapacitor systems, most studies focus on tech–
nical performance - such as minimizing current fluctua–
tions or enhancing cycle life - while neglecting trade-offs 
among cost, lifetime, and volume, as well as real-world 
user preferences. Many approaches also rely on complex or 
costly architectures that limit practical adoption. 

To overcome these limitations, this study proposes a 
user-centered, multi-objective optimization framework 
that integrates technical metrics with consumer-driven 
desirability functions. By explicitly incorporating user 
preferences, the framework balances technical, eco–
nomic, and practical considerations, providing a realistic 
and implementable design strategy for hybrid energy 
storage systems in electric vehicles. 

The remainder of this paper is organized as follows. 
Section 2 presents various energy storage architectures 
for electric vehicles and justifies the selection of the 
chosen hybrid configuration. Section 3 details the multi-
objective optimization model, including the formulation 

of the global satisfaction index based on user prefe–
rences and desirability functions. It also describes the 
modellingof key performance criteria such as driving 
range, system cost, lifetime, and volume occupancy. 
Section 4 outlines the optimization procedure used to 
identify the best energy storage configuration. Section 5 
discusses the simulation results and highlights the 
benefits of the hybrid storage system compared to a 
battery-only solution. Finally, Section 6 summarizes the 
main conclusions and suggests directions for future 
research. 
 
2. STORAGE ENERGY ARCHITECTURE IN 

ELECTRIC VEHICLE 
 

Different storage energy architectures have been con–
sidered in the literature. The choice between these 
architectures is based on the trade-offs between comp–
lexity, design cost, and performance [18,19]. 

Several parallel configurations exist, architecture 
without converter, architecture with converter on the 
supercapacitor side and architecture with two converters 

Table 1 below summarizes the advantages and dis–
advantages of each architecture. 
Table 1. Comparison of association architectures[19] 

 
Using DC/AC converters for all the architectures 

(parallel or series), allows adaptation of the voltage of 
the DC bus to the alternating current electrical machine 
of the vehicle [19]. 

The architecture with two DC/DC converters linked 
to each source (supercapacitors, battery) shown in 
Figure 1 offers the best performance longer battery life, 
efficient regenerative braking, and power flow control, 
however, this configuration involves high cost and imp–
lementation complexity. 

 
Figure 1. Parallel architecture with two converters  

In our article, we have chosen the architecture with 
two converters despite its drawbacks in terms of cost 
and implementation complexity. This decision was 
made with the aim of fully leveraging the flexibility and 
performance offered by this configuration. By 
optimizing its operation, we aim to compensate for its 
inherent disadvantages through improvements in the 
overall "lifecycle cost" of the system. 
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3. OBJECTIVE FUNCTION 
 

In this section, the optimization problem is presented, 
this global control formulation requires the specification 
of an objective function in order to obtain the best 
energetic and economic configuration. 

In the present study, we aim to improve several 
design objectives: driving range, cost, lifetime, and 
volume occupancy.  

These objectives are conflicting, meaning that 
improving one may lead to the deterioration of another.  

For example, increasing the driving range requires 
additional battery cells, which in turn raises the cost. As     
a result, it is difficult to optimize all objectives 
simultaneously. To address this challenge, we adopted 
an aggregation-based approach. Instead of optimizing 
each objective individually, this method combines 
multiple objectives into a single function, referred to as 
the Global Satisfaction Index (GSI), which quantifies 
the global satisfaction level of a design solution. The 
overall methodology used to construct the GSI objective 
function is illustrated in Figure 2. 

Starting from a specified energy storage confi–
guration (defined by a given number of battery cells and 
supercapacitor modules), calculation models are first 
used to derive performance values, denoted as pi. Each 
design objective is associated with a specific perfor–
mance index. For example, the objective "Improving 
range" corresponds to the performance index "Range," 
expressed in kilometers. Accordingly, each performance 
value (p1, p2, p3 and p4) is linked to a dedicated 
calculation model, as detailed in the sections below. 

Next, for each performance index, a desirability 
index (z1, z2, z3 and z4) ranging from 0 to 10 is assigned 
to reflect the degree of satisfaction related to the 
corresponding design objective [20]. In our approach, 
this mapping is achieved using an adjustable desirability 
function originally introduced by Harrington [21]. This 
desirability function is easily parameterized to reflect 
the preferences of the decision-maker. As shown in 
Figure 3, only two reference points are required to 
define each desirability function. 

To ensure that these functions accurately reflect user 
expectations, a structured survey was conducted among 
potential electric vehicle users. 

Given that the present case study focuses on an 
urban electric vehicle, we specifically targeted urban 
EV users. Respondents were asked to assess the im–
portance and acceptability of various performance 
metrics, enabling us to calibrate the shape and thres–
holds of thedesirability functions used in the opti–
mization model. Table 2 summarizes the values 
obtained from the survey. 

Finally, the Global Satisfaction Index (GSI) is 
obtained by aggregating the satisfaction indexes (z₁, z₂, 
z₃, and z₄) corresponding to each design objective. As 
shown in Figure 3, the aggregation function used is the 
weighted product. The main reason for choosing this 
function is that it satisfies the principle of annihilation 
[22], one of the fundamental axioms of design-ready 
aggregation models [23]. This principle states that if any 
attribute reaches its worst possible value (a satisfaction 
index equal to zero in our case), the overall evaluation 
(GSI) is entirely determined by that attribute, regardless 
of the others. This ensures that critical failures dominate 
the assessment. In contrast, the weighted arithmetic 
mean — one of the most commonly used aggregation 
functions — does not satisfy this principle, as it can 
yield a non-zero GSI even when one of the satisfaction 
indexes (z₁, z₂, z₃, or z₄) is zero. The four weights (w₁, 
w₂, w₃, or w₄) in the aggregation function represent the 
relative importance assigned to each design objective. 
To ensure alignment with user preferences, these 
weights were derived from the data collected through 
the aforementioned survey. Table 2 summarizes the 
values obtained from the survey. 
Table 2. Weight values and Harrington function parameters 
derived from the survey 

Design 
objectives 

Harrington function parameters 
Weight 
values Point A Point B 

pi zi pi zi 
Improving 
range 200 Km 4.2 400 Km 8.4 0.37 

Reducing   
cost 2000 € 8.9 4000 € 3.1 0.31 

Improving  
lifetime 

30 000 
hours 3.9 50 000 

hours 6.5 0.21 

Reducing 
volume 
occupancy 

50 litre 6.7 70 litre 5.1 
0.11 

 
Figure 2. Model Used to Obtain Global Satisfaction Index 
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Figure 3. Parametrization of Harrington desirability 
functions based on consumers’ preferences (example of 
driving range) 
 

2.1 Driving range model 
 

Driving range constitutes a key factor in the adoption 
and development of electric vehicles (EVs), as it 
reduces range anxiety, boosts user confidence, and 
increases their competitiveness with conventional 
vehicles. It also drives innovation in battery technology 
and power management, contributing to improved  
performance and lower costs. For these reasons, driving 
range is a central design objective in our optimization 
process. 

In this section, we detail the procedure used to esti–
mate the driving range for a given energy storage 
system. The method is based on a simulation of energy 
exchanges between the powertrain and the storage 
components. Starting from a fully charged storage 
system, the aim is to determinethe maximum driving 
time (in hours) before the storage system is depleted. 
Figure 4 presents a flowchart of the procedure used to 
calculate the driving range of electric vehicles. Initially, 
the driving time (denoted Td) is set to zero, and the 
battery is considered fully charged. Then, Td is incre–
mented by a time step (denoted ΔT) of 1 second at each 
iteration. At each step, the state of charge of the storage 
system is updated by computing the energy flux 
between the battery, the supercapacitors, and the motor. 
The energy flux is determined based on the instan–
taneous power demand, the state of charge, and the 
energy management strategy (as described in Figure 5). 
The iterations continue until the battery is fully dis–
charged. At that point, the driving range is defined as 
the final value of Td reached before the storage system 
is depleted. 

As mentioned in Figure4, at each iteration, the 
energy flux between batteries, SCs and engine is 

assessed based on the energy management strategy 
presented in Figure 5. This allows the actualization of 
storage system state. 

 
Figure 4. Flowchart of the driving range calculation 
procedure 

At each time step i, the state of charge (SoC) of the 
hybrid storage system—composed of lithium batteries 
(LBs) and super-capacitors (SCs)—is updated based on 
an energy management strategy that distinguishes 
between traction and braking modes. The demanded 
power is determined according to a predefined driving 
cycle (WLTP in our case), and the system identifies 
whether the vehicle is in braking or traction mode. 
During braking, the recovered energy is used to 
recharge the storage devices. In traction mode, the 
system compares the demanded power Plb with the 
maximum deliverable power by the lithium batteries Plb. 
If Pd≤Plb, only the batteries are used. Otherwise, the SCs 
are activated to supplement the LBs. The energy contri–
butions and extractions from each component are com–
puted every second, taking into account inverter effi–
ciency η, and the SoC of each storage unit is updated 
accordingly. This real-time control allows the system to 
balance performance and efficiency while preserving 
battery health. Figure 6 shows the instantaneous traction 
and regenerative braking power profiles derived from 
the Worldwide Harmonized Light Vehicles Test 
Procedure (WLTP), based on the time-dependent speed 
input. 
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Figure 5. Energy management strategy for updating the state of charge of the storage system at time i

 
Figure 6. Instantaneous traction and regenerative braking 
power profiles during the WLTP driving cycle 

2.2 Cost model 
 
The first and fundamental objective that we need to mini–
mize is the energy cost, the net present cost (NPC) which 
includes the capital cost (CC), maintenance cost (MC) 
and replacement cost (RC) of the storage system [24]. 

( )
( )
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lb nb b b b b b
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where 
Kb and Kb are coefficients used to convert the 

replacement cost of LB and SC at the end of its life into 
current costit’s calculated as[25]:  
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PWAs, PWAbare coefficients used to estimate the 
current maintenance cost of (LB and SC), it’s calculated 
as:   
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l1, l2, ir, R are respectively the number of replacement 
times, component lifetime, the interest rate and project 
lifetime. 
 
2.3 Lifetime model 

 
In this work, the lithium-ion battery lifetime is 
estimated based solely on cycle aging, which is the 
dominant degradation mechanism in electric vehicle 
applications [26-28]. The cycle aging is quantified 
through the concept of equivalent full cycles (EFC), 
computed from the depth of discharge (DoD) and the 
charge throughput [29]. At each time step, the current 
drawn from the battery is estimated using the instan–
taneous power and voltage: 

( ) ( )
( )

bat
bat

bat

P t
I t

V t
=   (4) 

The exchanged charge over a time step Δt is given 
by: 

( ) ( )batQ t I t tΔ = ⋅Δ   (5) 

The total number of equivalent full cycles is accu–
mulated by summing the charge exchanged over time 
and normalizing by twice the nominal capacity: 

( )
2eq

nomi

Q i
N

Q

Δ
=

⋅∑   (6) 

Finally, the end-of-life (EoL) is defined when the 
accumulated number of cycles reaches the manu–
facturer-specified limit Nmax, corresponding to a rema–
ining capacity of 80%: 

maxeqN N≥   (7) 

This approach enables battery degradation prediction 
under real driving profiles using simulation data, and 
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can be easily extended to include temperature and DoD-
dependent degradation models. 

Although the same mathematical expression for 
equivalent full cycles is used for both lithium-ion 
batteries and supercapacitors, the underlying aging 
mechanisms differ significantly. Battery degradation is 
highly dependent on depth of discharge, C-rate, and 
temperature, often requiring non-linear modeling. In 
contrast, supercapacitor aging is primarily driven by the 
total number of cycles and the maximum voltage 
applied, which allows for a more linear approximation. 
Therefore, while the same cycle-counting formula 
facilitates unified simulation, it should be interpreted 
differently for each storage technology. 

 
2.4 Volume occupancy model 

 
The Volume Occupancy in electric vehicles represents 
the relationship between energy density (ρ), power 
density (E), and occupied volume (V). 

.tot

E

E
V

ρ
=    (8) 

Lithium-ion (Li-ion) batteries are widely used due to 
their high energy density, they can store a large amount 
of energy in a small volume.  

Supercapacitors provide high power density but 
have a lower energy density than Li-ion batteries. 
 
4. OPTIMIZATION PROCEDURE 
 
In this study, we adopted a structured and exhaustive 
optimization strategy based on a Design of Experiments 
(DoE) approach to determine the optimal configuration of 
the hybrid energy storage system. Given the limited and 
discrete nature of the decision variables - namely, the 
number of lithium-ion battery and supercapacitor units - a 
full-factorial experimental design was feasible and 
implemented. 

 
Figure 7. Optimization procedure of energy storage system 
using genetic algorithm 

This allowed us to systematically evaluate all pos–
sible configurations within the design space. Although 
no filtering was applied to eliminate suboptimal 
solutions a priori, the method remained computationally 
tractable due to the manageable number of combi–
nations. The transparency, reproducibility, and exhaus–
tive nature of the approach make it particularly well 
suited to engineering design problems, where global 
optimality and interpretability are essential. 

 
5. DISCUSSION OF OBTAINED RESULTS 
 
This section presents the results obtained from the 
simulation using the Maxwell supercapacitor model and 
LG Chem E63 lithium-ion batteries. Both components 
were modelled based on their respective technical 
specifications, enabling a detailed evaluation of the 
dynamic performance of the hybrid energy storage 
system. The analysis focuses on the impact of the 
selected architecture on power profiles and the energy 
distribution between the two sources. 

The optimization results confirm the effectiveness of 
the proposed desirability-based multi-objective frame–
work in identifying [30] well-balanced energy storage 
configurations for electric vehicles (EVs). By integrating 
four conflicting design objectives - driving range, system 
cost, lifetime, and volume occupancy - into a single Global 
Satisfaction Index (GSI), the methodology enabled a 
comprehensive exploration of trade-offs and led to optimal 
configurations aligned with user preferences. 
Table 3. Characteristics of optimal storage system 

Criterion Battery-
only System 

Optimized 
Hybrid 
System 

Improve-
ment (%) 

Driving 
Range(km) 180 240 +33.3% 

Total Cost (€) 4200 3600 −14.3% 

Lifetime (hours) 28 000 41 000 +46.4% 
Volume 

Occupancy(l) 62 55 −11.3% 

GSI Score 0.58 0.82 +41.4% 
 

The Pareto-optimal configurations identified using 
the genetic algorithm provide valuable insights into the 
interactions between thedesign objectives. For instance, 
configurations optimized for extended driving range 
tend to include more battery cells, which raises both 
cost and volume. In contrast, configurations favoring 
extended system lifetime typically rely more on 
supercapacitors (SCs), which efficiently manage peak 
power demands and reduce battery stress. However, this 
increase in SCs leads to higher volume occupancy, 
slightly impacting the volume occupancyindex. 

The desirability functions, calibrated using feedback 
from 150 urban EV users, played a pivotal role in 
shaping the optimization outcomes. The weights derived 
from survey responses indicate that users prioritize 
driving range (0.37) and cost (0.31) over lifetime (0.21) 
(0.11). This preference structure explains why the 
optimal configurations slightly favor longer range and 
lower cost, even when lifetime or compactness could be 
marginally improved. 
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Figure 7. Comparison of power distribution in two optimal 
energy storage systems during a driving cycle: (a) Hybrid 
system with lithium batteries (LBs) and supercapacitors 
(SCs); (b) System with lithium batteries only. 

Figure 7 compares power distribution during a 
standard driving cycle. In the hybrid configuration 
(Figure 7a), SCs absorb and deliver high peak power 
during acceleration and braking events, thereby 
reducing power transients handled by the lithium 
batteries. This buffering effect stabilizes battery load, 
leading to improved lifetime and reduced thermal stress. 
In contrast, the battery-only system (Figure 7b) handles 
all power variations directly, which increases 
electrochemical stress and accelerates battery aging 
mechanisms such as capacity fade or lithium plating. 

From an energy management perspective, the hybrid 
system enhances round-trip efficiency by leveraging the 
fast charge-discharge capabilities of SCs. It also reduces 
the depth and rate of discharge of batteries, which 
positively impacts battery life and system reliability—
key metrics in EV design. 

Figure 8 (a) illustrates the comparison between the 
recoverable braking power and the actual power 
absorbed by lithium batteries (LBs). The results show 
that although the recoverable braking power exhibits 
several peaks of high intensity, the power recovered by 
the LBs remains limited. This limitation is mainly due 
to the intrinsic characteristics of LBs, such as their 
relatively low power density and restricted charge 
acceptance capability during rapid transient events. As a 
result, a significant portion of the available braking 
energy cannot be effectively captured, particularly 
during short-duration, high-power peaks. 

In contrast, Figure 8 (b) presents the case of a hybrid 
storage system combining LBs and supercapacitors 
(SCs). The addition of SCs, represented by the red 
curve, enables the system to better follow the 
recoverable braking power profile. SCs absorb the sharp 
and high-power transients that exceed the capacity of 
the LBs, while the LBs handle the lower and more 

sustained portions of the recovered energy. This comp–
lementary behavior between LBs and SCs leads to a 
higher energy recovery efficiency and alleviates stress 
on the LBs by reducing their exposure to high-power 
fluctuations. Consequently, the hybrid configuration de–
monstrates superior performance compared to a battery-
only solution, highlighting the advantage of integrating 
SCs into regenerative braking energy recovery systems. 

 
Figure 8. Comparison of regenerative braking power 
distribution for two optimal energy storage systems: (a) 
Hybrid system with lithium batteries (LBs) only; (b) System 
with lithium batteries (LBs) only and supercapacitors 
(SCs). 

It is also important to note that part of the gap bet–
ween recoverable and actually recovered braking energy 
is due to conversion losses and storage inefficiencies, 
which are inherent to lithium battery chemistry and 
associated power electronics. 

From a technological standpoint, the optimized 
hybrid configuration demonstrates significant advan–
tages over traditional designs: 

 Lower lifecycle cost due to better sizing and reduced 
replacements. 

 Increased operational lifetime thanks to smoother 
battery loads. 

 More efficient space utilization, though volume 
remains a secondary objective. 
The weighted product aggregation function used in 

the GSI ensures that critical shortcomings (e.g., 
excessively low range or high cost) are not compensated 
by strong performance in other metrics. This strictness 
enhances the robustness and practicality of the 
optimization outcomes for real-world deployment. 

Finally, although the current results are promising, 
their relevance depends on the driving context. For 
more aggressive profiles, the role of SCs could become 
more prominent, especially regarding regenerative 
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braking and high-power transients. This highlights the 
importance of adapting the optimization framework to a 
variety of use cases and real driving patterns. 

Overall, the proposed framework offers a robust, 
user-centred, and computationally efficient tool for 
hybrid energy storage system design, with potential for 
extension to electric buses, delivery vehicles, and other 
smart mobility applications. Beyond the context of 
urban electric vehicles, this framework can be extended 
to a wide range of applications, including electric buses, 
delivery vans, and stationary energy storage systems 
such as microgrids and renewable energy integration. 
By explicitly aligning technical design with consumer 
expectations, the methodology supports faster industrial 
adoption and market acceptance. 

 
6. CONCLUSION  
 
This study presented a user-centered, multi-objective 
optimization approach for the design of hybrid energy 
storage systems that combine lithium-ion batteries and 
supercapacitors in electric vehicles. By incorporating 
both technical and user-related aspects, the proposed 
framework offers a more holistic and practical design 
methodology. Unlike traditional approaches that focus 
solely on technical performance metrics, our method 
integrates consumer preferences into the optimization 
process through parameterized desirability functions. 
This allows for a more realistic evaluation of trade-offs 
between conflicting objectives such as driving range, 
cost, system lifetime, and volume occupancy. 

The results demonstrate that hybrid configurations, 
when properly sized and optimized, offer clear advan–
tages over battery-only systems. Notably, the inclusion 
of supercapacitors leads to improved battery lifespan 
and smoother power delivery, while the optimization 
framework ensures that these gains do not come at the 
expense of excessive cost or spatial requirements. The 
use of the Global Satisfaction Index (GSI), based on 
weighted desirability functions calibrated via user 
surveys, proved effective in guiding the selection of 
optimal configurations aligned with real-world expec–
tations. Furthermore, the intelligent brute-force search 
combined with constraint filtering ensured global 
optimality while maintaining computational feasibility. 

Despite the promising outcomes, several aspects re–
main open for future exploration. One important direc–
tion is to incorporate more advanced degradation 
models for both batteries and supercapacitors, taking 
into account factors such as temperature, C-rate varia–
bility, and state-of-charge windows. Another promising 
avenue is the integration of real driving profiles and 
probabilistic traffic patterns to better reflect urban 
mobility conditions. Additionally, the current frame–
work could be extended to include dynamic recon–
figuration strategies, allowing the hybrid system to 
adapt to changing load demands or driving conditions in 
real time. Finally, the approach could be applied to 
other use cases beyond urban electric vehicles, such as 
electric buses, delivery vans, or microgrid energy 
storage systems. 

Overall, the proposed optimization strategy provides 
a robust, transparent, and adaptable solution for 

designing next-generation hybrid storage systems, with 
strong potential to support the widespread adoption of 
electric vehicles. 

As a perspective for future work, it would be 
valuable to extend the proposed user-centered, multi-
objective optimization framework to explicitly include 
environmental criteria such as recyclability. In 
particular, supercapacitors (SC) generally offer higher 
recyclability than lithium batteries (LB), which could 
significantly improve the overall sustainability of hybrid 
energy storage systems in electric vehicles. 
Incorporating recyclability alongside technical, 
economic, and user-preference metrics would provide a 
more comprehensive design strategy that balances 
performance, cost, lifetime, and environmental impact. 
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NOMENCLATURE  

dE demanded energy 
i
lbE energy of the LBs at time i 

i
scE energy of the SCs at time i 

dP demanded power 

lbP maximum power delivered by the LB 

ip  performance indexes 

nsP nominal power of SC 

nbP nominal power of LB 

lbN  number of battery cells 

scN  number of super-capacitors 

dT  driving time 

iw  criterion weight 

iz  desirability indexes 

Greek symbols 

invη  inverter efficiency 
TΔ Time step 
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Acronyms  

EoL end-of-life 
ESD energy storage design 
EV electric vehicle 
GSI generalized satisfaction index 
LB lithium batteries 
SC supercapacitor 
SoC state of charge 

 
 

ОПТИМИЗАЦИЈА ХИБРИДНИХ СИСТЕМА ЗА 
СКЛАДИШТЕЊЕ ЕНЕРГИЈЕ СА 

БАТЕРИЈАМА/СУПЕРКОНДЕНЗАТОРИМА У 
ЕЛЕКТРИЧНИМ ВОЗИЛИМА УСМЕРЕНА НА 

КОРИСНИКА 
 

П. Бомушма, М. Ел Амине 
 
Овај рад представља вишециљни приступ оптими–
зацији за пројектовање хибридних система за скла–

диштење енергије који комбинују литијумске батерије 
и суперкондензаторе у електричним вози–лима. 
Развијен је оквир заснован на пожељности како би се 
интегрисали вишеструки конфликтни циљеви, укљу–
чујући домет вожње, трошкове система, век трајања и 
попуњеност запремине. Сваки циљ се трансформише у 
нормализовани индекс задовољства коришћењем 
параметризованих функција пожељно–сти изведених 
из корисничких префе–ренција. Ови индекси се 
агрегирају у глобалну мет–рику пер–форманси како би 
се водио процес оптимизације. Генетски алгоритам се 
користи за идентификацију оптималних 
конфигурација које балансирају комп–ромисе између 
циљева. Резултати показују да хиб–ридни систем 
значајно побољшава домет вожње и век трајања, а 
истовремено смањује трошкове и запре–мину у 
поређењу са системима који раде само на батерије. 
Предложена метода нуди флексибилну и стратегију 
пројектовања усмерену на корисника за побољшање 
перформанси и поузданости електричних возила. 

 

 

 

 

 


